Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/tesseract/src/lstm/weightmatrix.h @ 46:7ee69f120f19 default tip
>>>>> tag v1.26.5+1 for changeset b74429b0f5c4
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Sat, 11 Oct 2025 17:17:30 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/////////////////////////////////////////////////////////////////////// // File: weightmatrix.h // Description: Hides distinction between float/int implementations. // Author: Ray Smith // // (C) Copyright 2014, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #ifndef TESSERACT_LSTM_WEIGHTMATRIX_H_ #define TESSERACT_LSTM_WEIGHTMATRIX_H_ #include <memory> #include <vector> #include "intsimdmatrix.h" #include "matrix.h" #include "tesstypes.h" #include "tprintf.h" namespace tesseract { // Convenience instantiation of GENERIC_2D_ARRAY<TFloat> with additional // operations to write a strided vector, so the transposed form of the input // is memory-contiguous. class TransposedArray : public GENERIC_2D_ARRAY<TFloat> { public: // Copies the whole input transposed, converted to TFloat, into *this. void Transpose(const GENERIC_2D_ARRAY<TFloat> &input); // Writes a vector of data representing a timestep (gradients or sources). // The data is assumed to be of size1 in size (the strided dimension). ~TransposedArray() override; void WriteStrided(int t, const float *data) { int size1 = dim1(); for (int i = 0; i < size1; ++i) { put(i, t, data[i]); } } void WriteStrided(int t, const double *data) { int size1 = dim1(); for (int i = 0; i < size1; ++i) { put(i, t, data[i]); } } // Prints the first and last num elements of the un-transposed array. void PrintUnTransposed(int num) { int num_features = dim1(); int width = dim2(); for (int y = 0; y < num_features; ++y) { for (int t = 0; t < width; ++t) { if (num == 0 || t < num || t + num >= width) { tprintf(" %g", static_cast<double>((*this)(y, t))); } } tprintf("\n"); } } }; // class TransposedArray // Generic weight matrix for network layers. Can store the matrix as either // an array of floats or int8_t. Provides functions to compute the forward and // backward steps with the matrix and updates to the weights. class WeightMatrix { public: WeightMatrix() : int_mode_(false), use_adam_(false) {} // Sets up the network for training. Initializes weights using weights of // scale `range` picked according to the random number generator `randomizer`. // Note the order is outputs, inputs, as this is the order of indices to // the matrix, so the adjacent elements are multiplied by the input during // a forward operation. int InitWeightsFloat(int no, int ni, bool use_adam, float weight_range, TRand *randomizer); // Changes the number of outputs to the size of the given code_map, copying // the old weight matrix entries for each output from code_map[output] where // non-negative, and uses the mean (over all outputs) of the existing weights // for all outputs with negative code_map entries. Returns the new number of // weights. int RemapOutputs(const std::vector<int> &code_map); // Converts a float network to an int network. Each set of input weights that // corresponds to a single output weight is converted independently: // Compute the max absolute value of the weight set. // Scale so the max absolute value becomes INT8_MAX. // Round to integer. // Store a multiplicative scale factor (as a float) that will reproduce // the original value, subject to rounding errors. void ConvertToInt(); // Returns the size rounded up to an internal factor used by the SIMD // implementation for its input. int RoundInputs(int size) const { if (!int_mode_ || !IntSimdMatrix::intSimdMatrix) { return size; } return IntSimdMatrix::intSimdMatrix->RoundInputs(size); } // Accessors. bool is_int_mode() const { return int_mode_; } int NumOutputs() const { return int_mode_ ? wi_.dim1() : wf_.dim1(); } // Provides one set of weights. Only used by peep weight maxpool. const TFloat *GetWeights(int index) const { return wf_[index]; } // Provides access to the deltas (dw_). TFloat GetDW(int i, int j) const { return dw_(i, j); } // Allocates any needed memory for running Backward, and zeroes the deltas, // thus eliminating any existing momentum. void InitBackward(); // Writes to the given file. Returns false in case of error. bool Serialize(bool training, TFile *fp) const; // Reads from the given file. Returns false in case of error. bool DeSerialize(bool training, TFile *fp); // As DeSerialize, but reads an old (float) format WeightMatrix for // backward compatibility. bool DeSerializeOld(bool training, TFile *fp); // Computes matrix.vector v = Wu. // u is of size W.dim2() - 1 and the output v is of size W.dim1(). // u is imagined to have an extra element at the end with value 1, to // implement the bias, but it doesn't actually have it. // Asserts that the call matches what we have. void MatrixDotVector(const TFloat *u, TFloat *v) const; void MatrixDotVector(const int8_t *u, TFloat *v) const; // MatrixDotVector for peep weights, MultiplyAccumulate adds the // component-wise products of *this[0] and v to inout. void MultiplyAccumulate(const TFloat *v, TFloat *inout); // Computes vector.matrix v = uW. // u is of size W.dim1() and the output v is of size W.dim2() - 1. // The last result is discarded, as v is assumed to have an imaginary // last value of 1, as with MatrixDotVector. void VectorDotMatrix(const TFloat *u, TFloat *v) const; // Fills dw_[i][j] with the dot product u[i][] . v[j][], using elements // from u and v, starting with u[i][offset] and v[j][offset]. // Note that (matching MatrixDotVector) v[last][] is missing, presumed 1.0. // Runs parallel if requested. Note that inputs must be transposed. void SumOuterTransposed(const TransposedArray &u, const TransposedArray &v, bool parallel); // Updates the weights using the given learning rate, momentum and adam_beta. // num_samples is used in the Adam correction factor. void Update(float learning_rate, float momentum, float adam_beta, int num_samples); // Adds the dw_ in other to the dw_ is *this. void AddDeltas(const WeightMatrix &other); // Sums the products of weight updates in *this and other, splitting into // positive (same direction) in *same and negative (different direction) in // *changed. void CountAlternators(const WeightMatrix &other, TFloat *same, TFloat *changed) const; void Debug2D(const char *msg); private: // Choice between float and 8 bit int implementations. GENERIC_2D_ARRAY<TFloat> wf_; GENERIC_2D_ARRAY<int8_t> wi_; // Transposed copy of wf_, used only for Backward, and set with each Update. TransposedArray wf_t_; // Which of wf_ and wi_ are we actually using. bool int_mode_; // True if we are running adam in this weight matrix. bool use_adam_; // If we are using wi_, then scales_ is a factor to restore the row product // with a vector to the correct range. std::vector<TFloat> scales_; // Weight deltas. dw_ is the new delta, and updates_ the momentum-decaying // amount to be added to wf_/wi_. GENERIC_2D_ARRAY<TFloat> dw_; GENERIC_2D_ARRAY<TFloat> updates_; // Iff use_adam_, the sum of squares of dw_. The number of samples is // given to Update(). Serialized iff use_adam_. GENERIC_2D_ARRAY<TFloat> dw_sq_sum_; // The weights matrix reorganized in whatever way suits this instance. std::vector<int8_t> shaped_w_; }; } // namespace tesseract. #endif // TESSERACT_LSTM_WEIGHTMATRIX_H_
