Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/tesseract/src/classify/kdtree.h @ 46:7ee69f120f19 default tip
>>>>> tag v1.26.5+1 for changeset b74429b0f5c4
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Sat, 11 Oct 2025 17:17:30 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/****************************************************************************** ** Filename: kdtree.h ** Purpose: Definition of K-D tree access routines. ** Author: Dan Johnson ** ** (c) Copyright Hewlett-Packard Company, 1988. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. *****************************************************************************/ #ifndef KDTREE_H #define KDTREE_H #include "ocrfeatures.h" namespace tesseract { /** NOTE: All circular parameters of all keys must be in the range Min <= Param < Max where Min and Max are specified in the KeyDesc parameter passed to MakeKDTree. All KD routines assume that this is true and will not operate correctly if circular parameters outside the specified range are used. */ struct ClusteringContext; struct CLUSTER; struct KDTREE; using kdwalk_proc = void (*)(ClusteringContext *context, CLUSTER *Cluster, int32_t Level); struct KDNODE { /// This routine allocates memory for a new K-D tree node /// and places the specified Key and Data into it. The /// left and right subtree pointers for the node are /// initialized to empty subtrees. /// @param tree The tree to create the node for /// @param Key Access key for new node in KD tree /// @param Data ptr to data to be stored in new node /// @param Index index of Key to branch on KDNODE() = default; KDNODE(KDTREE *tree, float key[], CLUSTER *data, int Index); ~KDNODE() { delete Left; delete Right; } float *Key; /**< search key */ CLUSTER *Data; /**< data that corresponds to key */ float BranchPoint; /**< needed to make deletes work efficiently */ float LeftBranch; /**< used to optimize search pruning */ float RightBranch; /**< used to optimize search pruning */ KDNODE *Left; /**< ptrs for KD tree structure */ KDNODE *Right; }; struct KDTREE { KDTREE(size_t n) : KeySize(n), KeyDesc(n) { } // The destructor frees all memory which is allocated to the // specified KD-tree. This includes the data structure for // the kd-tree itself plus the data structures for each node // in the tree. It does not include the Key and Data items // which are pointed to by the nodes. This memory is left // untouched. ~KDTREE() { } // TODO: KeySize might be replaced by KeyDesc.size(). int16_t KeySize = 0; // number of dimensions in the tree KDNODE Root; // Root.Left points to actual root node std::vector<PARAM_DESC> KeyDesc; // description of each dimension }; inline KDNODE::KDNODE(KDTREE *tree, float key[], CLUSTER *data, int Index) { Key = key; Data = data; BranchPoint = Key[Index]; LeftBranch = tree->KeyDesc[Index].Min; RightBranch = tree->KeyDesc[Index].Max; Left = nullptr; Right = nullptr; } /*---------------------------------------------------------------------------- Macros -----------------------------------------------------------------------------*/ #define RootOf(T) ((T)->Root.Left->Data) /*----------------------------------------------------------------------------- Public Function Prototypes -----------------------------------------------------------------------------*/ KDTREE *MakeKDTree(int16_t KeySize, const PARAM_DESC KeyDesc[]); void KDStore(KDTREE *Tree, float *Key, CLUSTER *Data); void KDDelete(KDTREE *Tree, float Key[], void *Data); void KDNearestNeighborSearch(KDTREE *Tree, float Query[], int QuerySize, float MaxDistance, int *NumberOfResults, void **NBuffer, float DBuffer[]); void KDWalk(KDTREE *Tree, kdwalk_proc Action, ClusteringContext *context); /*----------------------------------------------------------------------------- Private Function Prototypes -----------------------------------------------------------------------------*/ float DistanceSquared(int k, PARAM_DESC *dim, float p1[], float p2[]); TESS_API float ComputeDistance(int k, PARAM_DESC *dim, float p1[], float p2[]); int QueryInSearch(KDTREE *tree); void Walk(KDTREE *tree, kdwalk_proc action, ClusteringContext *context, KDNODE *SubTree, int32_t Level); void InsertNodes(KDTREE *tree, KDNODE *nodes); } // namespace tesseract #endif
