Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/tesseract/src/classify/cluster.h @ 46:7ee69f120f19 default tip
>>>>> tag v1.26.5+1 for changeset b74429b0f5c4
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Sat, 11 Oct 2025 17:17:30 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/****************************************************************************** ** Filename: cluster.h ** Purpose: Definition of feature space clustering routines ** Author: Dan Johnson ** ** (c) Copyright Hewlett-Packard Company, 1988. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. *****************************************************************************/ #ifndef CLUSTER_H #define CLUSTER_H #include "kdtree.h" #include "oldlist.h" namespace tesseract { struct BUCKETS; #define MINBUCKETS 5 #define MAXBUCKETS 39 /*---------------------------------------------------------------------- Types ----------------------------------------------------------------------*/ struct CLUSTER { CLUSTER(size_t n) : Mean(n) { } ~CLUSTER() { delete Left; delete Right; } bool Clustered : 1; // true if included in a higher cluster bool Prototype : 1; // true if cluster represented by a proto unsigned SampleCount : 30; // number of samples in this cluster CLUSTER *Left; // ptr to left sub-cluster CLUSTER *Right; // ptr to right sub-cluster int32_t CharID; // identifier of char sample came from std::vector<float> Mean; // mean of cluster - SampleSize floats }; using SAMPLE = CLUSTER; // can refer to as either sample or cluster typedef enum { spherical, elliptical, mixed, automatic } PROTOSTYLE; struct CLUSTERCONFIG { // parameters to control clustering PROTOSTYLE ProtoStyle; // specifies types of protos to be made float MinSamples; // min # of samples per proto - % of total float MaxIllegal; // max percentage of samples in a cluster which // have more than 1 feature in that cluster float Independence; // desired independence between dimensions double Confidence; // desired confidence in prototypes created int MagicSamples; // Ideal number of samples in a cluster. }; typedef enum { normal, uniform, D_random, DISTRIBUTION_COUNT } DISTRIBUTION; union FLOATUNION { float Spherical; float *Elliptical; }; struct PROTOTYPE { bool Significant : 1; // true if prototype is significant bool Merged : 1; // Merged after clustering so do not output // but kept for display purposes. If it has no // samples then it was actually merged. // Otherwise it matched an already significant // cluster. unsigned Style : 2; // spherical, elliptical, or mixed unsigned NumSamples : 28; // number of samples in the cluster CLUSTER *Cluster; // ptr to cluster which made prototype std::vector<DISTRIBUTION> Distrib; // different distribution for each dimension std::vector<float> Mean; // prototype mean float TotalMagnitude; // total magnitude over all dimensions float LogMagnitude; // log base e of TotalMagnitude FLOATUNION Variance; // prototype variance FLOATUNION Magnitude; // magnitude of density function FLOATUNION Weight; // weight of density function }; struct CLUSTERER { int16_t SampleSize; // number of parameters per sample PARAM_DESC *ParamDesc; // description of each parameter int32_t NumberOfSamples; // total number of samples being clustered KDTREE *KDTree; // for optimal nearest neighbor searching CLUSTER *Root; // ptr to root cluster of cluster tree LIST ProtoList; // list of prototypes uint32_t NumChar; // # of characters represented by samples // cache of reusable histograms by distribution type and number of buckets. BUCKETS *bucket_cache[DISTRIBUTION_COUNT][MAXBUCKETS + 1 - MINBUCKETS]; }; struct SAMPLELIST { int32_t NumSamples; // number of samples in list int32_t MaxNumSamples; // maximum size of list SAMPLE *Sample[1]; // array of ptrs to sample data structures }; // low level cluster tree analysis routines. #define InitSampleSearch(S, C) (((C) == nullptr) ? (S = NIL_LIST) : (S = push(NIL_LIST, (C)))) /*-------------------------------------------------------------------------- Public Function Prototypes --------------------------------------------------------------------------*/ TESS_API CLUSTERER *MakeClusterer(int16_t SampleSize, const PARAM_DESC ParamDesc[]); TESS_API SAMPLE *MakeSample(CLUSTERER *Clusterer, const float *Feature, uint32_t CharID); TESS_API LIST ClusterSamples(CLUSTERER *Clusterer, CLUSTERCONFIG *Config); TESS_API void FreeClusterer(CLUSTERER *Clusterer); TESS_API void FreeProtoList(LIST *ProtoList); void FreePrototype(void *arg); // PROTOTYPE *Prototype); CLUSTER *NextSample(LIST *SearchState); float Mean(PROTOTYPE *Proto, uint16_t Dimension); float StandardDeviation(PROTOTYPE *Proto, uint16_t Dimension); TESS_API int32_t MergeClusters(int16_t N, PARAM_DESC ParamDesc[], int32_t n1, int32_t n2, float m[], float m1[], float m2[]); } // namespace tesseract #endif
