Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/tesseract/src/ccstruct/statistc.cpp @ 46:7ee69f120f19 default tip
>>>>> tag v1.26.5+1 for changeset b74429b0f5c4
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Sat, 11 Oct 2025 17:17:30 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/********************************************************************** * File: statistc.cpp (Formerly stats.c) * Description: Simple statistical package for integer values. * Author: Ray Smith * * (C) Copyright 1991, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ // Include automatically generated configuration file if running autoconf. #ifdef HAVE_CONFIG_H # include "config_auto.h" #endif #include "statistc.h" #include "errcode.h" #include "scrollview.h" #include "tprintf.h" #include "helpers.h" #include <cmath> #include <cstdlib> #include <cstring> namespace tesseract { /********************************************************************** * STATS::STATS * * Construct a new stats element by allocating and zeroing the memory. **********************************************************************/ STATS::STATS(int32_t min_bucket_value, int32_t max_bucket_value) { if (max_bucket_value < min_bucket_value) { min_bucket_value = 0; max_bucket_value = 1; } rangemin_ = min_bucket_value; // setup rangemax_ = max_bucket_value; buckets_ = new int32_t[1 + rangemax_ - rangemin_]; clear(); } /********************************************************************** * STATS::set_range * * Alter the range on an existing stats element. **********************************************************************/ bool STATS::set_range(int32_t min_bucket_value, int32_t max_bucket_value) { if (max_bucket_value < min_bucket_value) { return false; } if (rangemax_ - rangemin_ != max_bucket_value - min_bucket_value) { delete[] buckets_; buckets_ = new int32_t[1 + max_bucket_value - min_bucket_value]; } rangemin_ = min_bucket_value; // setup rangemax_ = max_bucket_value; clear(); // zero it return true; } /********************************************************************** * STATS::clear * * Clear out the STATS class by zeroing all the buckets. **********************************************************************/ void STATS::clear() { // clear out buckets total_count_ = 0; if (buckets_ != nullptr) { memset(buckets_, 0, (1 + rangemax_ - rangemin_) * sizeof(buckets_[0])); } } /********************************************************************** * STATS::~STATS * * Destructor for a stats class. **********************************************************************/ STATS::~STATS() { delete[] buckets_; } /********************************************************************** * STATS::add * * Add a set of samples to (or delete from) a pile. **********************************************************************/ void STATS::add(int32_t value, int32_t count) { if (buckets_ != nullptr) { value = ClipToRange(value, rangemin_, rangemax_); buckets_[value - rangemin_] += count; total_count_ += count; // keep count of total } } /********************************************************************** * STATS::mode * * Find the mode of a stats class. **********************************************************************/ int32_t STATS::mode() const { // get mode of samples if (buckets_ == nullptr) { return rangemin_; } int32_t max = buckets_[0]; // max cell count int32_t maxindex = 0; // index of max for (int index = rangemax_ - rangemin_; index > 0; --index) { if (buckets_[index] > max) { max = buckets_[index]; // find biggest maxindex = index; } } return maxindex + rangemin_; // index of biggest } /********************************************************************** * STATS::mean * * Find the mean of a stats class. **********************************************************************/ double STATS::mean() const { // get mean of samples if (buckets_ == nullptr || total_count_ <= 0) { return static_cast<double>(rangemin_); } int64_t sum = 0; for (int index = rangemax_ - rangemin_; index >= 0; --index) { sum += static_cast<int64_t>(index) * buckets_[index]; } return static_cast<double>(sum) / total_count_ + rangemin_; } /********************************************************************** * STATS::sd * * Find the standard deviation of a stats class. **********************************************************************/ double STATS::sd() const { // standard deviation if (buckets_ == nullptr || total_count_ <= 0) { return 0.0; } int64_t sum = 0; double sqsum = 0.0; for (int index = rangemax_ - rangemin_; index >= 0; --index) { sum += static_cast<int64_t>(index) * buckets_[index]; sqsum += static_cast<double>(index) * index * buckets_[index]; } double variance = static_cast<double>(sum) / total_count_; variance = sqsum / total_count_ - variance * variance; if (variance > 0.0) { return sqrt(variance); } return 0.0; } /********************************************************************** * STATS::ile * * Returns the fractile value such that frac fraction (in [0,1]) of samples * has a value less than the return value. **********************************************************************/ double STATS::ile(double frac) const { if (buckets_ == nullptr || total_count_ == 0) { return static_cast<double>(rangemin_); } #if 0 // TODO(rays) The existing code doesn't seem to be doing the right thing // with target a double but this substitute crashes the code that uses it. // Investigate and fix properly. int target = IntCastRounded(frac * total_count_); target = ClipToRange(target, 1, total_count_); #else double target = frac * total_count_; target = ClipToRange(target, 1.0, static_cast<double>(total_count_)); #endif int sum = 0; int index = 0; for (index = 0; index <= rangemax_ - rangemin_ && sum < target; sum += buckets_[index++]) { ; } if (index > 0) { ASSERT_HOST(buckets_[index - 1] > 0); return rangemin_ + index - static_cast<double>(sum - target) / buckets_[index - 1]; } else { return static_cast<double>(rangemin_); } } /********************************************************************** * STATS::min_bucket * * Find REAL minimum bucket - ile(0.0) isn't necessarily correct **********************************************************************/ int32_t STATS::min_bucket() const { // Find min if (buckets_ == nullptr || total_count_ == 0) { return rangemin_; } int32_t min = 0; for (min = 0; (min <= rangemax_ - rangemin_) && (buckets_[min] == 0); min++) { ; } return rangemin_ + min; } /********************************************************************** * STATS::max_bucket * * Find REAL maximum bucket - ile(1.0) isn't necessarily correct **********************************************************************/ int32_t STATS::max_bucket() const { // Find max if (buckets_ == nullptr || total_count_ == 0) { return rangemin_; } int32_t max; for (max = rangemax_ - rangemin_; max > 0 && buckets_[max] == 0; max--) { ; } return rangemin_ + max; } /********************************************************************** * STATS::median * * Finds a more useful estimate of median than ile(0.5). * * Overcomes a problem with ile() - if the samples are, for example, * 6,6,13,14 ile(0.5) return 7.0 - when a more useful value would be midway * between 6 and 13 = 9.5 **********************************************************************/ double STATS::median() const { // get median if (buckets_ == nullptr) { return static_cast<double>(rangemin_); } double median = ile(0.5); int median_pile = static_cast<int>(floor(median)); if ((total_count_ > 1) && (pile_count(median_pile) == 0)) { int32_t min_pile; int32_t max_pile; /* Find preceding non zero pile */ for (min_pile = median_pile; pile_count(min_pile) == 0; min_pile--) { ; } /* Find following non zero pile */ for (max_pile = median_pile; pile_count(max_pile) == 0; max_pile++) { ; } median = (min_pile + max_pile) / 2.0; } return median; } /********************************************************************** * STATS::local_min * * Return true if this point is a local min. **********************************************************************/ bool STATS::local_min(int32_t x) const { if (buckets_ == nullptr) { return false; } x = ClipToRange(x, rangemin_, rangemax_) - rangemin_; if (buckets_[x] == 0) { return true; } int32_t index; // table index for (index = x - 1; index >= 0 && buckets_[index] == buckets_[x]; --index) { ; } if (index >= 0 && buckets_[index] < buckets_[x]) { return false; } for (index = x + 1; index <= rangemax_ - rangemin_ && buckets_[index] == buckets_[x]; ++index) { ; } if (index <= rangemax_ - rangemin_ && buckets_[index] < buckets_[x]) { return false; } else { return true; } } /********************************************************************** * STATS::smooth * * Apply a triangular smoothing filter to the stats. * This makes the modes a bit more useful. * The factor gives the height of the triangle, i.e. the weight of the * centre. **********************************************************************/ void STATS::smooth(int32_t factor) { if (buckets_ == nullptr || factor < 2) { return; } STATS result(rangemin_, rangemax_); int entrycount = 1 + rangemax_ - rangemin_; for (int entry = 0; entry < entrycount; entry++) { // centre weight int count = buckets_[entry] * factor; for (int offset = 1; offset < factor; offset++) { if (entry - offset >= 0) { count += buckets_[entry - offset] * (factor - offset); } if (entry + offset < entrycount) { count += buckets_[entry + offset] * (factor - offset); } } result.add(entry + rangemin_, count); } total_count_ = result.total_count_; memcpy(buckets_, result.buckets_, entrycount * sizeof(buckets_[0])); } /********************************************************************** * STATS::cluster * * Cluster the samples into max_cluster clusters. * Each call runs one iteration. The array of clusters must be * max_clusters+1 in size as cluster 0 is used to indicate which samples * have been used. * The return value is the current number of clusters. **********************************************************************/ int32_t STATS::cluster(float lower, // thresholds float upper, float multiple, // distance threshold int32_t max_clusters, // max no to make STATS *clusters) { // array of clusters bool new_cluster; // added one float *centres; // cluster centres int32_t entry; // bucket index int32_t cluster; // cluster index int32_t best_cluster; // one to assign to int32_t new_centre = 0; // residual mode int32_t new_mode; // pile count of new_centre int32_t count; // pile to place float dist; // from cluster float min_dist; // from best_cluster int32_t cluster_count; // no of clusters if (buckets_ == nullptr || max_clusters < 1) { return 0; } centres = new float[max_clusters + 1]; for (cluster_count = 1; cluster_count <= max_clusters && clusters[cluster_count].buckets_ != nullptr && clusters[cluster_count].total_count_ > 0; cluster_count++) { centres[cluster_count] = static_cast<float>(clusters[cluster_count].ile(0.5)); new_centre = clusters[cluster_count].mode(); for (entry = new_centre - 1; centres[cluster_count] - entry < lower && entry >= rangemin_ && pile_count(entry) <= pile_count(entry + 1); entry--) { count = pile_count(entry) - clusters[0].pile_count(entry); if (count > 0) { clusters[cluster_count].add(entry, count); clusters[0].add(entry, count); } } for (entry = new_centre + 1; entry - centres[cluster_count] < lower && entry <= rangemax_ && pile_count(entry) <= pile_count(entry - 1); entry++) { count = pile_count(entry) - clusters[0].pile_count(entry); if (count > 0) { clusters[cluster_count].add(entry, count); clusters[0].add(entry, count); } } } cluster_count--; if (cluster_count == 0) { clusters[0].set_range(rangemin_, rangemax_); } do { new_cluster = false; new_mode = 0; for (entry = 0; entry <= rangemax_ - rangemin_; entry++) { count = buckets_[entry] - clusters[0].buckets_[entry]; // remaining pile if (count > 0) { // any to handle min_dist = static_cast<float>(INT32_MAX); best_cluster = 0; for (cluster = 1; cluster <= cluster_count; cluster++) { dist = entry + rangemin_ - centres[cluster]; // find distance if (dist < 0) { dist = -dist; } if (dist < min_dist) { min_dist = dist; // find least best_cluster = cluster; } } if (min_dist > upper // far enough for new && (best_cluster == 0 || entry + rangemin_ > centres[best_cluster] * multiple || entry + rangemin_ < centres[best_cluster] / multiple)) { if (count > new_mode) { new_mode = count; new_centre = entry + rangemin_; } } } } // need new and room if (new_mode > 0 && cluster_count < max_clusters) { cluster_count++; new_cluster = true; if (!clusters[cluster_count].set_range(rangemin_, rangemax_)) { delete[] centres; return 0; } centres[cluster_count] = static_cast<float>(new_centre); clusters[cluster_count].add(new_centre, new_mode); clusters[0].add(new_centre, new_mode); for (entry = new_centre - 1; centres[cluster_count] - entry < lower && entry >= rangemin_ && pile_count(entry) <= pile_count(entry + 1); entry--) { count = pile_count(entry) - clusters[0].pile_count(entry); if (count > 0) { clusters[cluster_count].add(entry, count); clusters[0].add(entry, count); } } for (entry = new_centre + 1; entry - centres[cluster_count] < lower && entry <= rangemax_ && pile_count(entry) <= pile_count(entry - 1); entry++) { count = pile_count(entry) - clusters[0].pile_count(entry); if (count > 0) { clusters[cluster_count].add(entry, count); clusters[0].add(entry, count); } } centres[cluster_count] = static_cast<float>(clusters[cluster_count].ile(0.5)); } } while (new_cluster && cluster_count < max_clusters); delete[] centres; return cluster_count; } // Helper tests that the current index is still part of the peak and gathers // the data into the peak, returning false when the peak is ended. // src_buckets[index] - used_buckets[index] is the unused part of the histogram. // prev_count is the histogram count of the previous index on entry and is // updated to the current index on return. // total_count and total_value are accumulating the mean of the peak. static bool GatherPeak(int index, const int *src_buckets, int *used_buckets, int *prev_count, int *total_count, double *total_value) { int pile_count = src_buckets[index] - used_buckets[index]; if (pile_count <= *prev_count && pile_count > 0) { // Accumulate count and index.count product. *total_count += pile_count; *total_value += index * pile_count; // Mark this index as used used_buckets[index] = src_buckets[index]; *prev_count = pile_count; return true; } else { return false; } } // Finds (at most) the top max_modes modes, well actually the whole peak around // each mode, returning them in the given modes vector as a <mean of peak, // total count of peak> pair in order of decreasing total count. // Since the mean is the key and the count the data in the pair, a single call // to sort on the output will re-sort by increasing mean of peak if that is // more useful than decreasing total count. // Returns the actual number of modes found. int STATS::top_n_modes(int max_modes, std::vector<KDPairInc<float, int>> &modes) const { if (max_modes <= 0) { return 0; } int src_count = 1 + rangemax_ - rangemin_; // Used copies the counts in buckets_ as they get used. STATS used(rangemin_, rangemax_); modes.clear(); // Total count of the smallest peak found so far. int least_count = 1; // Mode that is used as a seed for each peak int max_count = 0; do { // Find an unused mode. max_count = 0; int max_index = 0; for (int src_index = 0; src_index < src_count; src_index++) { int pile_count = buckets_[src_index] - used.buckets_[src_index]; if (pile_count > max_count) { max_count = pile_count; max_index = src_index; } } if (max_count > 0) { // Copy the bucket count to used so it doesn't get found again. used.buckets_[max_index] = max_count; // Get the entire peak. double total_value = max_index * max_count; int total_count = max_count; int prev_pile = max_count; for (int offset = 1; max_index + offset < src_count; ++offset) { if (!GatherPeak(max_index + offset, buckets_, used.buckets_, &prev_pile, &total_count, &total_value)) { break; } } prev_pile = buckets_[max_index]; for (int offset = 1; max_index - offset >= 0; ++offset) { if (!GatherPeak(max_index - offset, buckets_, used.buckets_, &prev_pile, &total_count, &total_value)) { break; } } if (total_count > least_count || modes.size() < static_cast<size_t>(max_modes)) { // We definitely want this mode, so if we have enough discard the least. if (modes.size() == static_cast<size_t>(max_modes)) { modes.resize(max_modes - 1); } size_t target_index = 0; // Linear search for the target insertion point. while (target_index < modes.size() && modes[target_index].data() >= total_count) { ++target_index; } auto peak_mean = static_cast<float>(total_value / total_count + rangemin_); modes.insert(modes.begin() + target_index, KDPairInc<float, int>(peak_mean, total_count)); least_count = modes.back().data(); } } } while (max_count > 0); return modes.size(); } /********************************************************************** * STATS::print * * Prints a summary and table of the histogram. **********************************************************************/ void STATS::print() const { if (buckets_ == nullptr) { return; } int32_t min = min_bucket() - rangemin_; int32_t max = max_bucket() - rangemin_; int num_printed = 0; for (int index = min; index <= max; index++) { if (buckets_[index] != 0) { tprintf("%4d:%-3d ", rangemin_ + index, buckets_[index]); if (++num_printed % 8 == 0) { tprintf("\n"); } } } tprintf("\n"); print_summary(); } /********************************************************************** * STATS::print_summary * * Print a summary of the stats. **********************************************************************/ void STATS::print_summary() const { if (buckets_ == nullptr) { return; } int32_t min = min_bucket(); int32_t max = max_bucket(); tprintf("Total count=%d\n", total_count_); tprintf("Min=%.2f Really=%d\n", ile(0.0), min); tprintf("Lower quartile=%.2f\n", ile(0.25)); tprintf("Median=%.2f, ile(0.5)=%.2f\n", median(), ile(0.5)); tprintf("Upper quartile=%.2f\n", ile(0.75)); tprintf("Max=%.2f Really=%d\n", ile(1.0), max); tprintf("Range=%d\n", max + 1 - min); tprintf("Mean= %.2f\n", mean()); tprintf("SD= %.2f\n", sd()); } /********************************************************************** * STATS::plot * * Draw a histogram of the stats table. **********************************************************************/ #ifndef GRAPHICS_DISABLED void STATS::plot(ScrollView *window, // to draw in float xorigin, // bottom left float yorigin, float xscale, // one x unit float yscale, // one y unit ScrollView::Color colour) const { // colour to draw in if (buckets_ == nullptr) { return; } window->Pen(colour); for (int index = 0; index <= rangemax_ - rangemin_; index++) { window->Rectangle(xorigin + xscale * index, yorigin, xorigin + xscale * (index + 1), yorigin + yscale * buckets_[index]); } } #endif /********************************************************************** * STATS::plotline * * Draw a histogram of the stats table. (Line only) **********************************************************************/ #ifndef GRAPHICS_DISABLED void STATS::plotline(ScrollView *window, // to draw in float xorigin, // bottom left float yorigin, float xscale, // one x unit float yscale, // one y unit ScrollView::Color colour) const { // colour to draw in if (buckets_ == nullptr) { return; } window->Pen(colour); window->SetCursor(xorigin, yorigin + yscale * buckets_[0]); for (int index = 0; index <= rangemax_ - rangemin_; index++) { window->DrawTo(xorigin + xscale * index, yorigin + yscale * buckets_[index]); } } #endif } // namespace tesseract
