Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/tesseract/src/lstm/series.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line source
/////////////////////////////////////////////////////////////////////// // File: series.cpp // Description: Runs networks in series on the same input. // Author: Ray Smith // // (C) Copyright 2013, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #include "series.h" #include "fullyconnected.h" #include "networkscratch.h" #include "scrollview.h" #include "tesserrstream.h" // for tesserr #include "tprintf.h" namespace tesseract { // ni_ and no_ will be set by AddToStack. Series::Series(const std::string &name) : Plumbing(name) { type_ = NT_SERIES; } // Returns the shape output from the network given an input shape (which may // be partially unknown ie zero). StaticShape Series::OutputShape(const StaticShape &input_shape) const { StaticShape result(input_shape); int stack_size = stack_.size(); for (int i = 0; i < stack_size; ++i) { result = stack_[i]->OutputShape(result); } return result; } // Sets up the network for training. Initializes weights using weights of // scale `range` picked according to the random number generator `randomizer`. // Note that series has its own implementation just for debug purposes. int Series::InitWeights(float range, TRand *randomizer) { num_weights_ = 0; tprintf("Num outputs,weights in Series:\n"); for (auto &i : stack_) { int weights = i->InitWeights(range, randomizer); tprintf(" %s:%d, %d\n", i->spec().c_str(), i->NumOutputs(), weights); num_weights_ += weights; } tprintf("Total weights = %d\n", num_weights_); return num_weights_; } // Recursively searches the network for softmaxes with old_no outputs, // and remaps their outputs according to code_map. See network.h for details. int Series::RemapOutputs(int old_no, const std::vector<int> &code_map) { num_weights_ = 0; tprintf("Num (Extended) outputs,weights in Series:\n"); for (auto &i : stack_) { int weights = i->RemapOutputs(old_no, code_map); tprintf(" %s:%d, %d\n", i->spec().c_str(), i->NumOutputs(), weights); num_weights_ += weights; } tprintf("Total weights = %d\n", num_weights_); no_ = stack_.back()->NumOutputs(); return num_weights_; } // Sets needs_to_backprop_ to needs_backprop and returns true if // needs_backprop || any weights in this network so the next layer forward // can be told to produce backprop for this layer if needed. bool Series::SetupNeedsBackprop(bool needs_backprop) { needs_to_backprop_ = needs_backprop; for (auto &i : stack_) { needs_backprop = i->SetupNeedsBackprop(needs_backprop); } return needs_backprop; } // Returns an integer reduction factor that the network applies to the // time sequence. Assumes that any 2-d is already eliminated. Used for // scaling bounding boxes of truth data. // WARNING: if GlobalMinimax is used to vary the scale, this will return // the last used scale factor. Call it before any forward, and it will return // the minimum scale factor of the paths through the GlobalMinimax. int Series::XScaleFactor() const { int factor = 1; for (auto i : stack_) { factor *= i->XScaleFactor(); } return factor; } // Provides the (minimum) x scale factor to the network (of interest only to // input units) so they can determine how to scale bounding boxes. void Series::CacheXScaleFactor(int factor) { stack_[0]->CacheXScaleFactor(factor); } // Runs forward propagation of activations on the input line. // See NetworkCpp for a detailed discussion of the arguments. void Series::Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose, NetworkScratch *scratch, NetworkIO *output) { int stack_size = stack_.size(); ASSERT_HOST(stack_size > 1); // Revolving intermediate buffers. NetworkScratch::IO buffer1(input, scratch); NetworkScratch::IO buffer2(input, scratch); // Run each network in turn, giving the output of n as the input to n + 1, // with the final network providing the real output. stack_[0]->Forward(debug, input, input_transpose, scratch, buffer1); for (int i = 1; i < stack_size; i += 2) { stack_[i]->Forward(debug, *buffer1, nullptr, scratch, i + 1 < stack_size ? buffer2 : output); if (i + 1 == stack_size) { return; } stack_[i + 1]->Forward(debug, *buffer2, nullptr, scratch, i + 2 < stack_size ? buffer1 : output); } } // Runs backward propagation of errors on the deltas line. // See NetworkCpp for a detailed discussion of the arguments. bool Series::Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch, NetworkIO *back_deltas) { if (!IsTraining()) { return false; } int stack_size = stack_.size(); ASSERT_HOST(stack_size > 1); // Revolving intermediate buffers. NetworkScratch::IO buffer1(fwd_deltas, scratch); NetworkScratch::IO buffer2(fwd_deltas, scratch); // Run each network in reverse order, giving the back_deltas output of n as // the fwd_deltas input to n-1, with the 0 network providing the real output. if (!stack_.back()->IsTraining() || !stack_.back()->Backward(debug, fwd_deltas, scratch, buffer1)) { return false; } for (int i = stack_size - 2; i >= 0; i -= 2) { if (!stack_[i]->IsTraining() || !stack_[i]->Backward(debug, *buffer1, scratch, i > 0 ? buffer2 : back_deltas)) { return false; } if (i == 0) { return needs_to_backprop_; } if (!stack_[i - 1]->IsTraining() || !stack_[i - 1]->Backward(debug, *buffer2, scratch, i > 1 ? buffer1 : back_deltas)) { return false; } } return needs_to_backprop_; } // Splits the series after the given index, returning the two parts and // deletes itself. The first part, up to network with index last_start, goes // into start, and the rest goes into end. void Series::SplitAt(unsigned last_start, Series **start, Series **end) { *start = nullptr; *end = nullptr; if (last_start >= stack_.size()) { tesserr << "Invalid split index " << last_start << " must be in range [0," << stack_.size() - 1 << "]!\n"; return; } auto *master_series = new Series("MasterSeries"); auto *boosted_series = new Series("BoostedSeries"); for (unsigned s = 0; s <= last_start; ++s) { if (s + 1 == stack_.size() && stack_[s]->type() == NT_SOFTMAX) { // Change the softmax to a tanh. auto *fc = static_cast<FullyConnected *>(stack_[s]); fc->ChangeType(NT_TANH); } master_series->AddToStack(stack_[s]); stack_[s] = nullptr; } for (unsigned s = last_start + 1; s < stack_.size(); ++s) { boosted_series->AddToStack(stack_[s]); stack_[s] = nullptr; } *start = master_series; *end = boosted_series; delete this; } // Appends the elements of the src series to this, removing from src and // deleting it. void Series::AppendSeries(Network *src) { ASSERT_HOST(src->type() == NT_SERIES); auto *src_series = static_cast<Series *>(src); for (auto &s : src_series->stack_) { AddToStack(s); s = nullptr; } delete src; } } // namespace tesseract.
