comparison mupdf-source/thirdparty/tesseract/src/lstm/series.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
comparison
equal deleted inserted replaced
1:1d09e1dec1d9 2:b50eed0cc0ef
1 ///////////////////////////////////////////////////////////////////////
2 // File: series.cpp
3 // Description: Runs networks in series on the same input.
4 // Author: Ray Smith
5 //
6 // (C) Copyright 2013, Google Inc.
7 // Licensed under the Apache License, Version 2.0 (the "License");
8 // you may not use this file except in compliance with the License.
9 // You may obtain a copy of the License at
10 // http://www.apache.org/licenses/LICENSE-2.0
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16 ///////////////////////////////////////////////////////////////////////
17
18 #include "series.h"
19
20 #include "fullyconnected.h"
21 #include "networkscratch.h"
22 #include "scrollview.h"
23 #include "tesserrstream.h" // for tesserr
24 #include "tprintf.h"
25
26 namespace tesseract {
27
28 // ni_ and no_ will be set by AddToStack.
29 Series::Series(const std::string &name) : Plumbing(name) {
30 type_ = NT_SERIES;
31 }
32
33 // Returns the shape output from the network given an input shape (which may
34 // be partially unknown ie zero).
35 StaticShape Series::OutputShape(const StaticShape &input_shape) const {
36 StaticShape result(input_shape);
37 int stack_size = stack_.size();
38 for (int i = 0; i < stack_size; ++i) {
39 result = stack_[i]->OutputShape(result);
40 }
41 return result;
42 }
43
44 // Sets up the network for training. Initializes weights using weights of
45 // scale `range` picked according to the random number generator `randomizer`.
46 // Note that series has its own implementation just for debug purposes.
47 int Series::InitWeights(float range, TRand *randomizer) {
48 num_weights_ = 0;
49 tprintf("Num outputs,weights in Series:\n");
50 for (auto &i : stack_) {
51 int weights = i->InitWeights(range, randomizer);
52 tprintf(" %s:%d, %d\n", i->spec().c_str(), i->NumOutputs(), weights);
53 num_weights_ += weights;
54 }
55 tprintf("Total weights = %d\n", num_weights_);
56 return num_weights_;
57 }
58
59 // Recursively searches the network for softmaxes with old_no outputs,
60 // and remaps their outputs according to code_map. See network.h for details.
61 int Series::RemapOutputs(int old_no, const std::vector<int> &code_map) {
62 num_weights_ = 0;
63 tprintf("Num (Extended) outputs,weights in Series:\n");
64 for (auto &i : stack_) {
65 int weights = i->RemapOutputs(old_no, code_map);
66 tprintf(" %s:%d, %d\n", i->spec().c_str(), i->NumOutputs(), weights);
67 num_weights_ += weights;
68 }
69 tprintf("Total weights = %d\n", num_weights_);
70 no_ = stack_.back()->NumOutputs();
71 return num_weights_;
72 }
73
74 // Sets needs_to_backprop_ to needs_backprop and returns true if
75 // needs_backprop || any weights in this network so the next layer forward
76 // can be told to produce backprop for this layer if needed.
77 bool Series::SetupNeedsBackprop(bool needs_backprop) {
78 needs_to_backprop_ = needs_backprop;
79 for (auto &i : stack_) {
80 needs_backprop = i->SetupNeedsBackprop(needs_backprop);
81 }
82 return needs_backprop;
83 }
84
85 // Returns an integer reduction factor that the network applies to the
86 // time sequence. Assumes that any 2-d is already eliminated. Used for
87 // scaling bounding boxes of truth data.
88 // WARNING: if GlobalMinimax is used to vary the scale, this will return
89 // the last used scale factor. Call it before any forward, and it will return
90 // the minimum scale factor of the paths through the GlobalMinimax.
91 int Series::XScaleFactor() const {
92 int factor = 1;
93 for (auto i : stack_) {
94 factor *= i->XScaleFactor();
95 }
96 return factor;
97 }
98
99 // Provides the (minimum) x scale factor to the network (of interest only to
100 // input units) so they can determine how to scale bounding boxes.
101 void Series::CacheXScaleFactor(int factor) {
102 stack_[0]->CacheXScaleFactor(factor);
103 }
104
105 // Runs forward propagation of activations on the input line.
106 // See NetworkCpp for a detailed discussion of the arguments.
107 void Series::Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose,
108 NetworkScratch *scratch, NetworkIO *output) {
109 int stack_size = stack_.size();
110 ASSERT_HOST(stack_size > 1);
111 // Revolving intermediate buffers.
112 NetworkScratch::IO buffer1(input, scratch);
113 NetworkScratch::IO buffer2(input, scratch);
114 // Run each network in turn, giving the output of n as the input to n + 1,
115 // with the final network providing the real output.
116 stack_[0]->Forward(debug, input, input_transpose, scratch, buffer1);
117 for (int i = 1; i < stack_size; i += 2) {
118 stack_[i]->Forward(debug, *buffer1, nullptr, scratch, i + 1 < stack_size ? buffer2 : output);
119 if (i + 1 == stack_size) {
120 return;
121 }
122 stack_[i + 1]->Forward(debug, *buffer2, nullptr, scratch,
123 i + 2 < stack_size ? buffer1 : output);
124 }
125 }
126
127 // Runs backward propagation of errors on the deltas line.
128 // See NetworkCpp for a detailed discussion of the arguments.
129 bool Series::Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch,
130 NetworkIO *back_deltas) {
131 if (!IsTraining()) {
132 return false;
133 }
134 int stack_size = stack_.size();
135 ASSERT_HOST(stack_size > 1);
136 // Revolving intermediate buffers.
137 NetworkScratch::IO buffer1(fwd_deltas, scratch);
138 NetworkScratch::IO buffer2(fwd_deltas, scratch);
139 // Run each network in reverse order, giving the back_deltas output of n as
140 // the fwd_deltas input to n-1, with the 0 network providing the real output.
141 if (!stack_.back()->IsTraining() ||
142 !stack_.back()->Backward(debug, fwd_deltas, scratch, buffer1)) {
143 return false;
144 }
145 for (int i = stack_size - 2; i >= 0; i -= 2) {
146 if (!stack_[i]->IsTraining() ||
147 !stack_[i]->Backward(debug, *buffer1, scratch, i > 0 ? buffer2 : back_deltas)) {
148 return false;
149 }
150 if (i == 0) {
151 return needs_to_backprop_;
152 }
153 if (!stack_[i - 1]->IsTraining() ||
154 !stack_[i - 1]->Backward(debug, *buffer2, scratch, i > 1 ? buffer1 : back_deltas)) {
155 return false;
156 }
157 }
158 return needs_to_backprop_;
159 }
160
161 // Splits the series after the given index, returning the two parts and
162 // deletes itself. The first part, up to network with index last_start, goes
163 // into start, and the rest goes into end.
164 void Series::SplitAt(unsigned last_start, Series **start, Series **end) {
165 *start = nullptr;
166 *end = nullptr;
167 if (last_start >= stack_.size()) {
168 tesserr << "Invalid split index " << last_start
169 << " must be in range [0," << stack_.size() - 1 << "]!\n";
170 return;
171 }
172 auto *master_series = new Series("MasterSeries");
173 auto *boosted_series = new Series("BoostedSeries");
174 for (unsigned s = 0; s <= last_start; ++s) {
175 if (s + 1 == stack_.size() && stack_[s]->type() == NT_SOFTMAX) {
176 // Change the softmax to a tanh.
177 auto *fc = static_cast<FullyConnected *>(stack_[s]);
178 fc->ChangeType(NT_TANH);
179 }
180 master_series->AddToStack(stack_[s]);
181 stack_[s] = nullptr;
182 }
183 for (unsigned s = last_start + 1; s < stack_.size(); ++s) {
184 boosted_series->AddToStack(stack_[s]);
185 stack_[s] = nullptr;
186 }
187 *start = master_series;
188 *end = boosted_series;
189 delete this;
190 }
191
192 // Appends the elements of the src series to this, removing from src and
193 // deleting it.
194 void Series::AppendSeries(Network *src) {
195 ASSERT_HOST(src->type() == NT_SERIES);
196 auto *src_series = static_cast<Series *>(src);
197 for (auto &s : src_series->stack_) {
198 AddToStack(s);
199 s = nullptr;
200 }
201 delete src;
202 }
203
204 } // namespace tesseract.