Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/tesseract/src/lstm/weightmatrix.h @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/tesseract/src/lstm/weightmatrix.h Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,189 @@ +/////////////////////////////////////////////////////////////////////// +// File: weightmatrix.h +// Description: Hides distinction between float/int implementations. +// Author: Ray Smith +// +// (C) Copyright 2014, Google Inc. +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +/////////////////////////////////////////////////////////////////////// + +#ifndef TESSERACT_LSTM_WEIGHTMATRIX_H_ +#define TESSERACT_LSTM_WEIGHTMATRIX_H_ + +#include <memory> +#include <vector> +#include "intsimdmatrix.h" +#include "matrix.h" +#include "tesstypes.h" +#include "tprintf.h" + +namespace tesseract { + +// Convenience instantiation of GENERIC_2D_ARRAY<TFloat> with additional +// operations to write a strided vector, so the transposed form of the input +// is memory-contiguous. +class TransposedArray : public GENERIC_2D_ARRAY<TFloat> { +public: + // Copies the whole input transposed, converted to TFloat, into *this. + void Transpose(const GENERIC_2D_ARRAY<TFloat> &input); + // Writes a vector of data representing a timestep (gradients or sources). + // The data is assumed to be of size1 in size (the strided dimension). + ~TransposedArray() override; + void WriteStrided(int t, const float *data) { + int size1 = dim1(); + for (int i = 0; i < size1; ++i) { + put(i, t, data[i]); + } + } + void WriteStrided(int t, const double *data) { + int size1 = dim1(); + for (int i = 0; i < size1; ++i) { + put(i, t, data[i]); + } + } + // Prints the first and last num elements of the un-transposed array. + void PrintUnTransposed(int num) { + int num_features = dim1(); + int width = dim2(); + for (int y = 0; y < num_features; ++y) { + for (int t = 0; t < width; ++t) { + if (num == 0 || t < num || t + num >= width) { + tprintf(" %g", static_cast<double>((*this)(y, t))); + } + } + tprintf("\n"); + } + } +}; // class TransposedArray + +// Generic weight matrix for network layers. Can store the matrix as either +// an array of floats or int8_t. Provides functions to compute the forward and +// backward steps with the matrix and updates to the weights. +class WeightMatrix { +public: + WeightMatrix() : int_mode_(false), use_adam_(false) {} + // Sets up the network for training. Initializes weights using weights of + // scale `range` picked according to the random number generator `randomizer`. + // Note the order is outputs, inputs, as this is the order of indices to + // the matrix, so the adjacent elements are multiplied by the input during + // a forward operation. + int InitWeightsFloat(int no, int ni, bool use_adam, float weight_range, TRand *randomizer); + // Changes the number of outputs to the size of the given code_map, copying + // the old weight matrix entries for each output from code_map[output] where + // non-negative, and uses the mean (over all outputs) of the existing weights + // for all outputs with negative code_map entries. Returns the new number of + // weights. + int RemapOutputs(const std::vector<int> &code_map); + + // Converts a float network to an int network. Each set of input weights that + // corresponds to a single output weight is converted independently: + // Compute the max absolute value of the weight set. + // Scale so the max absolute value becomes INT8_MAX. + // Round to integer. + // Store a multiplicative scale factor (as a float) that will reproduce + // the original value, subject to rounding errors. + void ConvertToInt(); + // Returns the size rounded up to an internal factor used by the SIMD + // implementation for its input. + int RoundInputs(int size) const { + if (!int_mode_ || !IntSimdMatrix::intSimdMatrix) { + return size; + } + return IntSimdMatrix::intSimdMatrix->RoundInputs(size); + } + + // Accessors. + bool is_int_mode() const { + return int_mode_; + } + int NumOutputs() const { + return int_mode_ ? wi_.dim1() : wf_.dim1(); + } + // Provides one set of weights. Only used by peep weight maxpool. + const TFloat *GetWeights(int index) const { + return wf_[index]; + } + // Provides access to the deltas (dw_). + TFloat GetDW(int i, int j) const { + return dw_(i, j); + } + + // Allocates any needed memory for running Backward, and zeroes the deltas, + // thus eliminating any existing momentum. + void InitBackward(); + + // Writes to the given file. Returns false in case of error. + bool Serialize(bool training, TFile *fp) const; + // Reads from the given file. Returns false in case of error. + bool DeSerialize(bool training, TFile *fp); + // As DeSerialize, but reads an old (float) format WeightMatrix for + // backward compatibility. + bool DeSerializeOld(bool training, TFile *fp); + + // Computes matrix.vector v = Wu. + // u is of size W.dim2() - 1 and the output v is of size W.dim1(). + // u is imagined to have an extra element at the end with value 1, to + // implement the bias, but it doesn't actually have it. + // Asserts that the call matches what we have. + void MatrixDotVector(const TFloat *u, TFloat *v) const; + void MatrixDotVector(const int8_t *u, TFloat *v) const; + // MatrixDotVector for peep weights, MultiplyAccumulate adds the + // component-wise products of *this[0] and v to inout. + void MultiplyAccumulate(const TFloat *v, TFloat *inout); + // Computes vector.matrix v = uW. + // u is of size W.dim1() and the output v is of size W.dim2() - 1. + // The last result is discarded, as v is assumed to have an imaginary + // last value of 1, as with MatrixDotVector. + void VectorDotMatrix(const TFloat *u, TFloat *v) const; + // Fills dw_[i][j] with the dot product u[i][] . v[j][], using elements + // from u and v, starting with u[i][offset] and v[j][offset]. + // Note that (matching MatrixDotVector) v[last][] is missing, presumed 1.0. + // Runs parallel if requested. Note that inputs must be transposed. + void SumOuterTransposed(const TransposedArray &u, const TransposedArray &v, bool parallel); + // Updates the weights using the given learning rate, momentum and adam_beta. + // num_samples is used in the Adam correction factor. + void Update(float learning_rate, float momentum, float adam_beta, int num_samples); + // Adds the dw_ in other to the dw_ is *this. + void AddDeltas(const WeightMatrix &other); + // Sums the products of weight updates in *this and other, splitting into + // positive (same direction) in *same and negative (different direction) in + // *changed. + void CountAlternators(const WeightMatrix &other, TFloat *same, TFloat *changed) const; + + void Debug2D(const char *msg); + +private: + // Choice between float and 8 bit int implementations. + GENERIC_2D_ARRAY<TFloat> wf_; + GENERIC_2D_ARRAY<int8_t> wi_; + // Transposed copy of wf_, used only for Backward, and set with each Update. + TransposedArray wf_t_; + // Which of wf_ and wi_ are we actually using. + bool int_mode_; + // True if we are running adam in this weight matrix. + bool use_adam_; + // If we are using wi_, then scales_ is a factor to restore the row product + // with a vector to the correct range. + std::vector<TFloat> scales_; + // Weight deltas. dw_ is the new delta, and updates_ the momentum-decaying + // amount to be added to wf_/wi_. + GENERIC_2D_ARRAY<TFloat> dw_; + GENERIC_2D_ARRAY<TFloat> updates_; + // Iff use_adam_, the sum of squares of dw_. The number of samples is + // given to Update(). Serialized iff use_adam_. + GENERIC_2D_ARRAY<TFloat> dw_sq_sum_; + // The weights matrix reorganized in whatever way suits this instance. + std::vector<int8_t> shaped_w_; +}; + +} // namespace tesseract. + +#endif // TESSERACT_LSTM_WEIGHTMATRIX_H_
