Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/tesseract/src/lstm/parallel.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/tesseract/src/lstm/parallel.cpp Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,181 @@ +///////////////////////////////////////////////////////////////////////// +// File: parallel.cpp +// Description: Runs networks in parallel on the same input. +// Author: Ray Smith +// +// (C) Copyright 2013, Google Inc. +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +/////////////////////////////////////////////////////////////////////// + +#ifdef HAVE_CONFIG_H +# include "config_auto.h" +#endif + +#include "parallel.h" + +#ifdef _OPENMP +# include <omp.h> +#endif + +#include "functions.h" // For conditional undef of _OPENMP. +#include "networkscratch.h" + +namespace tesseract { + +// ni_ and no_ will be set by AddToStack. +Parallel::Parallel(const std::string &name, NetworkType type) : Plumbing(name) { + type_ = type; +} + +// Returns the shape output from the network given an input shape (which may +// be partially unknown ie zero). +StaticShape Parallel::OutputShape(const StaticShape &input_shape) const { + StaticShape result = stack_[0]->OutputShape(input_shape); + int stack_size = stack_.size(); + for (int i = 1; i < stack_size; ++i) { + StaticShape shape = stack_[i]->OutputShape(input_shape); + result.set_depth(result.depth() + shape.depth()); + } + return result; +} + +// Runs forward propagation of activations on the input line. +// See NetworkCpp for a detailed discussion of the arguments. +void Parallel::Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose, + NetworkScratch *scratch, NetworkIO *output) { + bool parallel_debug = false; + // If this parallel is a replicator of convolvers, or holds a 1-d LSTM pair, + // or a 2-d LSTM quad, do debug locally, and don't pass the flag on. + if (debug && type_ != NT_PARALLEL) { + parallel_debug = true; + debug = false; + } + int stack_size = stack_.size(); + if (type_ == NT_PAR_2D_LSTM) { + // Special case, run parallel in parallel. + std::vector<NetworkScratch::IO> results(stack_size); + for (int i = 0; i < stack_size; ++i) { + results[i].Resize(input, stack_[i]->NumOutputs(), scratch); + } +#ifdef _OPENMP +# pragma omp parallel for num_threads(stack_size) +#endif + for (int i = 0; i < stack_size; ++i) { + stack_[i]->Forward(debug, input, nullptr, scratch, results[i]); + } + // Now pack all the results (serially) into the output. + int out_offset = 0; + output->Resize(*results[0], NumOutputs()); + for (int i = 0; i < stack_size; ++i) { + out_offset = output->CopyPacking(*results[i], out_offset); + } + } else { + // Revolving intermediate result. + NetworkScratch::IO result(input, scratch); + // Source for divided replicated. + NetworkScratch::IO source_part; + TransposedArray *src_transpose = nullptr; + if (IsTraining() && type_ == NT_REPLICATED) { + // Make a transposed copy of the input. + input.Transpose(&transposed_input_); + src_transpose = &transposed_input_; + } + // Run each network, putting the outputs into result. + int out_offset = 0; + for (int i = 0; i < stack_size; ++i) { + stack_[i]->Forward(debug, input, src_transpose, scratch, result); + // All networks must have the same output width + if (i == 0) { + output->Resize(*result, NumOutputs()); + } else { + ASSERT_HOST(result->Width() == output->Width()); + } + out_offset = output->CopyPacking(*result, out_offset); + } + } +#ifndef GRAPHICS_DISABLED + if (parallel_debug) { + DisplayForward(*output); + } +#endif +} + +// Runs backward propagation of errors on the deltas line. +// See NetworkCpp for a detailed discussion of the arguments. +bool Parallel::Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch, + NetworkIO *back_deltas) { + // If this parallel is a replicator of convolvers, or holds a 1-d LSTM pair, + // or a 2-d LSTM quad, do debug locally, and don't pass the flag on. + if (debug && type_ != NT_PARALLEL) { +#ifndef GRAPHICS_DISABLED + DisplayBackward(fwd_deltas); +#endif + debug = false; + } + auto stack_size = stack_.size(); + if (type_ == NT_PAR_2D_LSTM) { + // Special case, run parallel in parallel. + std::vector<NetworkScratch::IO> in_deltas(stack_size); + std::vector<NetworkScratch::IO> out_deltas(stack_size); + // Split the forward deltas for each stack element. + int feature_offset = 0; + for (unsigned i = 0; i < stack_.size(); ++i) { + int num_features = stack_[i]->NumOutputs(); + in_deltas[i].Resize(fwd_deltas, num_features, scratch); + out_deltas[i].Resize(fwd_deltas, stack_[i]->NumInputs(), scratch); + in_deltas[i]->CopyUnpacking(fwd_deltas, feature_offset, num_features); + feature_offset += num_features; + } +#ifdef _OPENMP +# pragma omp parallel for num_threads(stack_size) +#endif + for (unsigned i = 0; i < stack_size; ++i) { + stack_[i]->Backward(debug, *in_deltas[i], scratch, i == 0 ? back_deltas : out_deltas[i]); + } + if (needs_to_backprop_) { + for (unsigned i = 1; i < stack_size; ++i) { + back_deltas->AddAllToFloat(*out_deltas[i]); + } + } + } else { + // Revolving partial deltas. + NetworkScratch::IO in_deltas(fwd_deltas, scratch); + // The sum of deltas from different sources, which will eventually go into + // back_deltas. + NetworkScratch::IO out_deltas; + int feature_offset = 0; + for (unsigned i = 0; i < stack_.size(); ++i) { + int num_features = stack_[i]->NumOutputs(); + in_deltas->CopyUnpacking(fwd_deltas, feature_offset, num_features); + feature_offset += num_features; + if (stack_[i]->Backward(debug, *in_deltas, scratch, back_deltas)) { + if (i == 0) { + out_deltas.ResizeFloat(*back_deltas, back_deltas->NumFeatures(), scratch); + out_deltas->CopyAll(*back_deltas); + } else if (back_deltas->NumFeatures() == out_deltas->NumFeatures()) { + // Widths are allowed to be different going back, as we may have + // input nets, so only accumulate the deltas if the widths are the + // same. + out_deltas->AddAllToFloat(*back_deltas); + } + } + } + if (needs_to_backprop_) { + back_deltas->CopyAll(*out_deltas); + } + } + if (needs_to_backprop_) { + back_deltas->ScaleFloatBy(1.0f / stack_size); + } + return needs_to_backprop_; +} + +} // namespace tesseract.
