Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/tesseract/src/lstm/parallel.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 ///////////////////////////////////////////////////////////////////////// | |
| 2 // File: parallel.cpp | |
| 3 // Description: Runs networks in parallel on the same input. | |
| 4 // Author: Ray Smith | |
| 5 // | |
| 6 // (C) Copyright 2013, Google Inc. | |
| 7 // Licensed under the Apache License, Version 2.0 (the "License"); | |
| 8 // you may not use this file except in compliance with the License. | |
| 9 // You may obtain a copy of the License at | |
| 10 // http://www.apache.org/licenses/LICENSE-2.0 | |
| 11 // Unless required by applicable law or agreed to in writing, software | |
| 12 // distributed under the License is distributed on an "AS IS" BASIS, | |
| 13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| 14 // See the License for the specific language governing permissions and | |
| 15 // limitations under the License. | |
| 16 /////////////////////////////////////////////////////////////////////// | |
| 17 | |
| 18 #ifdef HAVE_CONFIG_H | |
| 19 # include "config_auto.h" | |
| 20 #endif | |
| 21 | |
| 22 #include "parallel.h" | |
| 23 | |
| 24 #ifdef _OPENMP | |
| 25 # include <omp.h> | |
| 26 #endif | |
| 27 | |
| 28 #include "functions.h" // For conditional undef of _OPENMP. | |
| 29 #include "networkscratch.h" | |
| 30 | |
| 31 namespace tesseract { | |
| 32 | |
| 33 // ni_ and no_ will be set by AddToStack. | |
| 34 Parallel::Parallel(const std::string &name, NetworkType type) : Plumbing(name) { | |
| 35 type_ = type; | |
| 36 } | |
| 37 | |
| 38 // Returns the shape output from the network given an input shape (which may | |
| 39 // be partially unknown ie zero). | |
| 40 StaticShape Parallel::OutputShape(const StaticShape &input_shape) const { | |
| 41 StaticShape result = stack_[0]->OutputShape(input_shape); | |
| 42 int stack_size = stack_.size(); | |
| 43 for (int i = 1; i < stack_size; ++i) { | |
| 44 StaticShape shape = stack_[i]->OutputShape(input_shape); | |
| 45 result.set_depth(result.depth() + shape.depth()); | |
| 46 } | |
| 47 return result; | |
| 48 } | |
| 49 | |
| 50 // Runs forward propagation of activations on the input line. | |
| 51 // See NetworkCpp for a detailed discussion of the arguments. | |
| 52 void Parallel::Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose, | |
| 53 NetworkScratch *scratch, NetworkIO *output) { | |
| 54 bool parallel_debug = false; | |
| 55 // If this parallel is a replicator of convolvers, or holds a 1-d LSTM pair, | |
| 56 // or a 2-d LSTM quad, do debug locally, and don't pass the flag on. | |
| 57 if (debug && type_ != NT_PARALLEL) { | |
| 58 parallel_debug = true; | |
| 59 debug = false; | |
| 60 } | |
| 61 int stack_size = stack_.size(); | |
| 62 if (type_ == NT_PAR_2D_LSTM) { | |
| 63 // Special case, run parallel in parallel. | |
| 64 std::vector<NetworkScratch::IO> results(stack_size); | |
| 65 for (int i = 0; i < stack_size; ++i) { | |
| 66 results[i].Resize(input, stack_[i]->NumOutputs(), scratch); | |
| 67 } | |
| 68 #ifdef _OPENMP | |
| 69 # pragma omp parallel for num_threads(stack_size) | |
| 70 #endif | |
| 71 for (int i = 0; i < stack_size; ++i) { | |
| 72 stack_[i]->Forward(debug, input, nullptr, scratch, results[i]); | |
| 73 } | |
| 74 // Now pack all the results (serially) into the output. | |
| 75 int out_offset = 0; | |
| 76 output->Resize(*results[0], NumOutputs()); | |
| 77 for (int i = 0; i < stack_size; ++i) { | |
| 78 out_offset = output->CopyPacking(*results[i], out_offset); | |
| 79 } | |
| 80 } else { | |
| 81 // Revolving intermediate result. | |
| 82 NetworkScratch::IO result(input, scratch); | |
| 83 // Source for divided replicated. | |
| 84 NetworkScratch::IO source_part; | |
| 85 TransposedArray *src_transpose = nullptr; | |
| 86 if (IsTraining() && type_ == NT_REPLICATED) { | |
| 87 // Make a transposed copy of the input. | |
| 88 input.Transpose(&transposed_input_); | |
| 89 src_transpose = &transposed_input_; | |
| 90 } | |
| 91 // Run each network, putting the outputs into result. | |
| 92 int out_offset = 0; | |
| 93 for (int i = 0; i < stack_size; ++i) { | |
| 94 stack_[i]->Forward(debug, input, src_transpose, scratch, result); | |
| 95 // All networks must have the same output width | |
| 96 if (i == 0) { | |
| 97 output->Resize(*result, NumOutputs()); | |
| 98 } else { | |
| 99 ASSERT_HOST(result->Width() == output->Width()); | |
| 100 } | |
| 101 out_offset = output->CopyPacking(*result, out_offset); | |
| 102 } | |
| 103 } | |
| 104 #ifndef GRAPHICS_DISABLED | |
| 105 if (parallel_debug) { | |
| 106 DisplayForward(*output); | |
| 107 } | |
| 108 #endif | |
| 109 } | |
| 110 | |
| 111 // Runs backward propagation of errors on the deltas line. | |
| 112 // See NetworkCpp for a detailed discussion of the arguments. | |
| 113 bool Parallel::Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch, | |
| 114 NetworkIO *back_deltas) { | |
| 115 // If this parallel is a replicator of convolvers, or holds a 1-d LSTM pair, | |
| 116 // or a 2-d LSTM quad, do debug locally, and don't pass the flag on. | |
| 117 if (debug && type_ != NT_PARALLEL) { | |
| 118 #ifndef GRAPHICS_DISABLED | |
| 119 DisplayBackward(fwd_deltas); | |
| 120 #endif | |
| 121 debug = false; | |
| 122 } | |
| 123 auto stack_size = stack_.size(); | |
| 124 if (type_ == NT_PAR_2D_LSTM) { | |
| 125 // Special case, run parallel in parallel. | |
| 126 std::vector<NetworkScratch::IO> in_deltas(stack_size); | |
| 127 std::vector<NetworkScratch::IO> out_deltas(stack_size); | |
| 128 // Split the forward deltas for each stack element. | |
| 129 int feature_offset = 0; | |
| 130 for (unsigned i = 0; i < stack_.size(); ++i) { | |
| 131 int num_features = stack_[i]->NumOutputs(); | |
| 132 in_deltas[i].Resize(fwd_deltas, num_features, scratch); | |
| 133 out_deltas[i].Resize(fwd_deltas, stack_[i]->NumInputs(), scratch); | |
| 134 in_deltas[i]->CopyUnpacking(fwd_deltas, feature_offset, num_features); | |
| 135 feature_offset += num_features; | |
| 136 } | |
| 137 #ifdef _OPENMP | |
| 138 # pragma omp parallel for num_threads(stack_size) | |
| 139 #endif | |
| 140 for (unsigned i = 0; i < stack_size; ++i) { | |
| 141 stack_[i]->Backward(debug, *in_deltas[i], scratch, i == 0 ? back_deltas : out_deltas[i]); | |
| 142 } | |
| 143 if (needs_to_backprop_) { | |
| 144 for (unsigned i = 1; i < stack_size; ++i) { | |
| 145 back_deltas->AddAllToFloat(*out_deltas[i]); | |
| 146 } | |
| 147 } | |
| 148 } else { | |
| 149 // Revolving partial deltas. | |
| 150 NetworkScratch::IO in_deltas(fwd_deltas, scratch); | |
| 151 // The sum of deltas from different sources, which will eventually go into | |
| 152 // back_deltas. | |
| 153 NetworkScratch::IO out_deltas; | |
| 154 int feature_offset = 0; | |
| 155 for (unsigned i = 0; i < stack_.size(); ++i) { | |
| 156 int num_features = stack_[i]->NumOutputs(); | |
| 157 in_deltas->CopyUnpacking(fwd_deltas, feature_offset, num_features); | |
| 158 feature_offset += num_features; | |
| 159 if (stack_[i]->Backward(debug, *in_deltas, scratch, back_deltas)) { | |
| 160 if (i == 0) { | |
| 161 out_deltas.ResizeFloat(*back_deltas, back_deltas->NumFeatures(), scratch); | |
| 162 out_deltas->CopyAll(*back_deltas); | |
| 163 } else if (back_deltas->NumFeatures() == out_deltas->NumFeatures()) { | |
| 164 // Widths are allowed to be different going back, as we may have | |
| 165 // input nets, so only accumulate the deltas if the widths are the | |
| 166 // same. | |
| 167 out_deltas->AddAllToFloat(*back_deltas); | |
| 168 } | |
| 169 } | |
| 170 } | |
| 171 if (needs_to_backprop_) { | |
| 172 back_deltas->CopyAll(*out_deltas); | |
| 173 } | |
| 174 } | |
| 175 if (needs_to_backprop_) { | |
| 176 back_deltas->ScaleFloatBy(1.0f / stack_size); | |
| 177 } | |
| 178 return needs_to_backprop_; | |
| 179 } | |
| 180 | |
| 181 } // namespace tesseract. |
