diff mupdf-source/thirdparty/tesseract/src/classify/fpoint.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/classify/fpoint.cpp	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,56 @@
+/******************************************************************************
+ ** Filename:    fpoint.cpp
+ ** Purpose:     Abstract data type for a 2D point (floating point coords)
+ ** Author:      Dan Johnson
+ **
+ ** (c) Copyright Hewlett-Packard Company, 1988.
+ ** Licensed under the Apache License, Version 2.0 (the "License");
+ ** you may not use this file except in compliance with the License.
+ ** You may obtain a copy of the License at
+ ** http://www.apache.org/licenses/LICENSE-2.0
+ ** Unless required by applicable law or agreed to in writing, software
+ ** distributed under the License is distributed on an "AS IS" BASIS,
+ ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ ** See the License for the specific language governing permissions and
+ ** limitations under the License.
+ ******************************************************************************/
+/*----------------------------------------------------------------------------
+          Include Files and Type Defines
+----------------------------------------------------------------------------*/
+#define _USE_MATH_DEFINES // for M_PI
+#include "fpoint.h"
+#include <cmath> // for M_PI
+#include <cstdio>
+
+/*----------------------------------------------------------------------------
+              Public Code
+----------------------------------------------------------------------------*/
+
+float DistanceBetween(FPOINT A, FPOINT B) {
+  const double xd = XDelta(A, B);
+  const double yd = YDelta(A, B);
+  return sqrt(static_cast<double>(xd * xd + yd * yd));
+}
+
+/**
+ * Return the angle from Point1 to Point2 normalized to
+ * lie in the range 0 to FullScale (where FullScale corresponds
+ * to 2*pi or 360 degrees).
+ * @param Point1 points to compute angle between
+ * @param Point2 points to compute angle between
+ * @param FullScale value to associate with 2*pi
+ * @return angle
+ */
+float NormalizedAngleFrom(FPOINT *Point1, FPOINT *Point2, float FullScale) {
+  float NumRadsInCircle = 2.0 * M_PI;
+
+  float Angle = AngleFrom(*Point1, *Point2);
+  if (Angle < 0.0) {
+    Angle += NumRadsInCircle;
+  }
+  Angle *= FullScale / NumRadsInCircle;
+  if (Angle < 0.0 || Angle >= FullScale) {
+    Angle = 0.0;
+  }
+  return (Angle);
+}