Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/tesseract/src/classify/fpoint.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/tesseract/src/classify/fpoint.cpp Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,56 @@ +/****************************************************************************** + ** Filename: fpoint.cpp + ** Purpose: Abstract data type for a 2D point (floating point coords) + ** Author: Dan Johnson + ** + ** (c) Copyright Hewlett-Packard Company, 1988. + ** Licensed under the Apache License, Version 2.0 (the "License"); + ** you may not use this file except in compliance with the License. + ** You may obtain a copy of the License at + ** http://www.apache.org/licenses/LICENSE-2.0 + ** Unless required by applicable law or agreed to in writing, software + ** distributed under the License is distributed on an "AS IS" BASIS, + ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + ** See the License for the specific language governing permissions and + ** limitations under the License. + ******************************************************************************/ +/*---------------------------------------------------------------------------- + Include Files and Type Defines +----------------------------------------------------------------------------*/ +#define _USE_MATH_DEFINES // for M_PI +#include "fpoint.h" +#include <cmath> // for M_PI +#include <cstdio> + +/*---------------------------------------------------------------------------- + Public Code +----------------------------------------------------------------------------*/ + +float DistanceBetween(FPOINT A, FPOINT B) { + const double xd = XDelta(A, B); + const double yd = YDelta(A, B); + return sqrt(static_cast<double>(xd * xd + yd * yd)); +} + +/** + * Return the angle from Point1 to Point2 normalized to + * lie in the range 0 to FullScale (where FullScale corresponds + * to 2*pi or 360 degrees). + * @param Point1 points to compute angle between + * @param Point2 points to compute angle between + * @param FullScale value to associate with 2*pi + * @return angle + */ +float NormalizedAngleFrom(FPOINT *Point1, FPOINT *Point2, float FullScale) { + float NumRadsInCircle = 2.0 * M_PI; + + float Angle = AngleFrom(*Point1, *Point2); + if (Angle < 0.0) { + Angle += NumRadsInCircle; + } + Angle *= FullScale / NumRadsInCircle; + if (Angle < 0.0 || Angle >= FullScale) { + Angle = 0.0; + } + return (Angle); +}
