diff mupdf-source/thirdparty/tesseract/src/ccstruct/points.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/ccstruct/points.cpp	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,158 @@
+/**********************************************************************
+ * File:        points.cpp  (Formerly coords.c)
+ * Description: Member functions for coordinate classes.
+ * Author:      Ray Smith
+ *
+ * (C) Copyright 1991, Hewlett-Packard Ltd.
+ ** Licensed under the Apache License, Version 2.0 (the "License");
+ ** you may not use this file except in compliance with the License.
+ ** You may obtain a copy of the License at
+ ** http://www.apache.org/licenses/LICENSE-2.0
+ ** Unless required by applicable law or agreed to in writing, software
+ ** distributed under the License is distributed on an "AS IS" BASIS,
+ ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ ** See the License for the specific language governing permissions and
+ ** limitations under the License.
+ *
+ **********************************************************************/
+
+#define _USE_MATH_DEFINES // for M_PI
+
+#include "points.h"
+
+#include "helpers.h"
+#include "serialis.h"
+
+#include <algorithm>
+#include <cmath> // for M_PI
+#include <cstdlib>
+
+namespace tesseract {
+
+bool FCOORD::normalise() { // Convert to unit vec
+  float len = length();
+
+  if (len < 0.0000000001) {
+    return false;
+  }
+  xcoord /= len;
+  ycoord /= len;
+  return true;
+}
+
+bool ICOORD::DeSerialize(TFile *f) {
+  return f->DeSerialize(&xcoord) && f->DeSerialize(&ycoord);
+}
+
+bool ICOORD::Serialize(TFile *f) const {
+  return f->Serialize(&xcoord) && f->Serialize(&ycoord);
+}
+
+// Set from the given x,y, shrinking the vector to fit if needed.
+void ICOORD::set_with_shrink(int x, int y) {
+  // Fit the vector into an ICOORD, which is 16 bit.
+  int factor = 1;
+  int max_extent = std::max(abs(x), abs(y));
+  if (max_extent > INT16_MAX) {
+    factor = max_extent / INT16_MAX + 1;
+  }
+  xcoord = x / factor;
+  ycoord = y / factor;
+}
+
+// The fortran/basic sgn function returns -1, 0, 1 if x < 0, x == 0, x > 0
+// respectively.
+static int sign(int x) {
+  if (x < 0) {
+    return -1;
+  } else {
+    return x > 0 ? 1 : 0;
+  }
+}
+
+// Writes to the given file. Returns false in case of error.
+bool ICOORD::Serialize(FILE *fp) const {
+  return tesseract::Serialize(fp, &xcoord) && tesseract::Serialize(fp, &ycoord);
+}
+// Reads from the given file. Returns false in case of error.
+// If swap is true, assumes a big/little-endian swap is needed.
+bool ICOORD::DeSerialize(bool swap, FILE *fp) {
+  if (!tesseract::DeSerialize(fp, &xcoord)) {
+    return false;
+  }
+  if (!tesseract::DeSerialize(fp, &ycoord)) {
+    return false;
+  }
+  if (swap) {
+    ReverseN(&xcoord, sizeof(xcoord));
+    ReverseN(&ycoord, sizeof(ycoord));
+  }
+  return true;
+}
+
+// Setup for iterating over the pixels in a vector by the well-known
+// Bresenham rendering algorithm.
+// Starting with major/2 in the accumulator, on each step add major_step,
+// and then add minor to the accumulator. When the accumulator >= major
+// subtract major and step a minor step.
+
+void ICOORD::setup_render(ICOORD *major_step, ICOORD *minor_step, int *major, int *minor) const {
+  int abs_x = abs(xcoord);
+  int abs_y = abs(ycoord);
+  if (abs_x >= abs_y) {
+    // X-direction is major.
+    major_step->xcoord = sign(xcoord);
+    major_step->ycoord = 0;
+    minor_step->xcoord = 0;
+    minor_step->ycoord = sign(ycoord);
+    *major = abs_x;
+    *minor = abs_y;
+  } else {
+    // Y-direction is major.
+    major_step->xcoord = 0;
+    major_step->ycoord = sign(ycoord);
+    minor_step->xcoord = sign(xcoord);
+    minor_step->ycoord = 0;
+    *major = abs_y;
+    *minor = abs_x;
+  }
+}
+
+// Returns the standard feature direction corresponding to this.
+// See binary_angle_plus_pi below for a description of the direction.
+uint8_t FCOORD::to_direction() const {
+  return binary_angle_plus_pi(angle());
+}
+// Sets this with a unit vector in the given standard feature direction.
+void FCOORD::from_direction(uint8_t direction) {
+  double radians = angle_from_direction(direction);
+  xcoord = cos(radians);
+  ycoord = sin(radians);
+}
+
+// Converts an angle in radians (from ICOORD::angle or FCOORD::angle) to a
+// standard feature direction as an unsigned angle in 256ths of a circle
+// measured anticlockwise from (-1, 0).
+uint8_t FCOORD::binary_angle_plus_pi(double radians) {
+  return Modulo(IntCastRounded((radians + M_PI) * 128.0 / M_PI), 256);
+}
+// Inverse of binary_angle_plus_pi returns an angle in radians for the
+// given standard feature direction.
+double FCOORD::angle_from_direction(uint8_t direction) {
+  return direction * M_PI / 128.0 - M_PI;
+}
+
+// Returns the point on the given line nearest to this, ie the point such
+// that the vector point->this is perpendicular to the line.
+// The line is defined as a line_point and a dir_vector for its direction.
+FCOORD FCOORD::nearest_pt_on_line(const FCOORD &line_point, const FCOORD &dir_vector) const {
+  FCOORD point_vector(*this - line_point);
+  // The dot product (%) is |dir_vector||point_vector|cos theta, so dividing by
+  // the square of the length of dir_vector gives us the fraction of dir_vector
+  // to add to line1 to get the appropriate point, so
+  // result = line1 + lambda dir_vector.
+  double lambda = point_vector % dir_vector / dir_vector.sqlength();
+  return line_point + (dir_vector * lambda);
+}
+
+} // namespace tesseract