Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/tesseract/src/ccstruct/points.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/tesseract/src/ccstruct/points.cpp Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,158 @@ +/********************************************************************** + * File: points.cpp (Formerly coords.c) + * Description: Member functions for coordinate classes. + * Author: Ray Smith + * + * (C) Copyright 1991, Hewlett-Packard Ltd. + ** Licensed under the Apache License, Version 2.0 (the "License"); + ** you may not use this file except in compliance with the License. + ** You may obtain a copy of the License at + ** http://www.apache.org/licenses/LICENSE-2.0 + ** Unless required by applicable law or agreed to in writing, software + ** distributed under the License is distributed on an "AS IS" BASIS, + ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + ** See the License for the specific language governing permissions and + ** limitations under the License. + * + **********************************************************************/ + +#define _USE_MATH_DEFINES // for M_PI + +#include "points.h" + +#include "helpers.h" +#include "serialis.h" + +#include <algorithm> +#include <cmath> // for M_PI +#include <cstdlib> + +namespace tesseract { + +bool FCOORD::normalise() { // Convert to unit vec + float len = length(); + + if (len < 0.0000000001) { + return false; + } + xcoord /= len; + ycoord /= len; + return true; +} + +bool ICOORD::DeSerialize(TFile *f) { + return f->DeSerialize(&xcoord) && f->DeSerialize(&ycoord); +} + +bool ICOORD::Serialize(TFile *f) const { + return f->Serialize(&xcoord) && f->Serialize(&ycoord); +} + +// Set from the given x,y, shrinking the vector to fit if needed. +void ICOORD::set_with_shrink(int x, int y) { + // Fit the vector into an ICOORD, which is 16 bit. + int factor = 1; + int max_extent = std::max(abs(x), abs(y)); + if (max_extent > INT16_MAX) { + factor = max_extent / INT16_MAX + 1; + } + xcoord = x / factor; + ycoord = y / factor; +} + +// The fortran/basic sgn function returns -1, 0, 1 if x < 0, x == 0, x > 0 +// respectively. +static int sign(int x) { + if (x < 0) { + return -1; + } else { + return x > 0 ? 1 : 0; + } +} + +// Writes to the given file. Returns false in case of error. +bool ICOORD::Serialize(FILE *fp) const { + return tesseract::Serialize(fp, &xcoord) && tesseract::Serialize(fp, &ycoord); +} +// Reads from the given file. Returns false in case of error. +// If swap is true, assumes a big/little-endian swap is needed. +bool ICOORD::DeSerialize(bool swap, FILE *fp) { + if (!tesseract::DeSerialize(fp, &xcoord)) { + return false; + } + if (!tesseract::DeSerialize(fp, &ycoord)) { + return false; + } + if (swap) { + ReverseN(&xcoord, sizeof(xcoord)); + ReverseN(&ycoord, sizeof(ycoord)); + } + return true; +} + +// Setup for iterating over the pixels in a vector by the well-known +// Bresenham rendering algorithm. +// Starting with major/2 in the accumulator, on each step add major_step, +// and then add minor to the accumulator. When the accumulator >= major +// subtract major and step a minor step. + +void ICOORD::setup_render(ICOORD *major_step, ICOORD *minor_step, int *major, int *minor) const { + int abs_x = abs(xcoord); + int abs_y = abs(ycoord); + if (abs_x >= abs_y) { + // X-direction is major. + major_step->xcoord = sign(xcoord); + major_step->ycoord = 0; + minor_step->xcoord = 0; + minor_step->ycoord = sign(ycoord); + *major = abs_x; + *minor = abs_y; + } else { + // Y-direction is major. + major_step->xcoord = 0; + major_step->ycoord = sign(ycoord); + minor_step->xcoord = sign(xcoord); + minor_step->ycoord = 0; + *major = abs_y; + *minor = abs_x; + } +} + +// Returns the standard feature direction corresponding to this. +// See binary_angle_plus_pi below for a description of the direction. +uint8_t FCOORD::to_direction() const { + return binary_angle_plus_pi(angle()); +} +// Sets this with a unit vector in the given standard feature direction. +void FCOORD::from_direction(uint8_t direction) { + double radians = angle_from_direction(direction); + xcoord = cos(radians); + ycoord = sin(radians); +} + +// Converts an angle in radians (from ICOORD::angle or FCOORD::angle) to a +// standard feature direction as an unsigned angle in 256ths of a circle +// measured anticlockwise from (-1, 0). +uint8_t FCOORD::binary_angle_plus_pi(double radians) { + return Modulo(IntCastRounded((radians + M_PI) * 128.0 / M_PI), 256); +} +// Inverse of binary_angle_plus_pi returns an angle in radians for the +// given standard feature direction. +double FCOORD::angle_from_direction(uint8_t direction) { + return direction * M_PI / 128.0 - M_PI; +} + +// Returns the point on the given line nearest to this, ie the point such +// that the vector point->this is perpendicular to the line. +// The line is defined as a line_point and a dir_vector for its direction. +FCOORD FCOORD::nearest_pt_on_line(const FCOORD &line_point, const FCOORD &dir_vector) const { + FCOORD point_vector(*this - line_point); + // The dot product (%) is |dir_vector||point_vector|cos theta, so dividing by + // the square of the length of dir_vector gives us the fraction of dir_vector + // to add to line1 to get the appropriate point, so + // result = line1 + lambda dir_vector. + double lambda = point_vector % dir_vector / dir_vector.sqlength(); + return line_point + (dir_vector * lambda); +} + +} // namespace tesseract
