comparison mupdf-source/thirdparty/tesseract/src/ccstruct/points.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
comparison
equal deleted inserted replaced
1:1d09e1dec1d9 2:b50eed0cc0ef
1 /**********************************************************************
2 * File: points.cpp (Formerly coords.c)
3 * Description: Member functions for coordinate classes.
4 * Author: Ray Smith
5 *
6 * (C) Copyright 1991, Hewlett-Packard Ltd.
7 ** Licensed under the Apache License, Version 2.0 (the "License");
8 ** you may not use this file except in compliance with the License.
9 ** You may obtain a copy of the License at
10 ** http://www.apache.org/licenses/LICENSE-2.0
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 *
17 **********************************************************************/
18
19 #define _USE_MATH_DEFINES // for M_PI
20
21 #include "points.h"
22
23 #include "helpers.h"
24 #include "serialis.h"
25
26 #include <algorithm>
27 #include <cmath> // for M_PI
28 #include <cstdlib>
29
30 namespace tesseract {
31
32 bool FCOORD::normalise() { // Convert to unit vec
33 float len = length();
34
35 if (len < 0.0000000001) {
36 return false;
37 }
38 xcoord /= len;
39 ycoord /= len;
40 return true;
41 }
42
43 bool ICOORD::DeSerialize(TFile *f) {
44 return f->DeSerialize(&xcoord) && f->DeSerialize(&ycoord);
45 }
46
47 bool ICOORD::Serialize(TFile *f) const {
48 return f->Serialize(&xcoord) && f->Serialize(&ycoord);
49 }
50
51 // Set from the given x,y, shrinking the vector to fit if needed.
52 void ICOORD::set_with_shrink(int x, int y) {
53 // Fit the vector into an ICOORD, which is 16 bit.
54 int factor = 1;
55 int max_extent = std::max(abs(x), abs(y));
56 if (max_extent > INT16_MAX) {
57 factor = max_extent / INT16_MAX + 1;
58 }
59 xcoord = x / factor;
60 ycoord = y / factor;
61 }
62
63 // The fortran/basic sgn function returns -1, 0, 1 if x < 0, x == 0, x > 0
64 // respectively.
65 static int sign(int x) {
66 if (x < 0) {
67 return -1;
68 } else {
69 return x > 0 ? 1 : 0;
70 }
71 }
72
73 // Writes to the given file. Returns false in case of error.
74 bool ICOORD::Serialize(FILE *fp) const {
75 return tesseract::Serialize(fp, &xcoord) && tesseract::Serialize(fp, &ycoord);
76 }
77 // Reads from the given file. Returns false in case of error.
78 // If swap is true, assumes a big/little-endian swap is needed.
79 bool ICOORD::DeSerialize(bool swap, FILE *fp) {
80 if (!tesseract::DeSerialize(fp, &xcoord)) {
81 return false;
82 }
83 if (!tesseract::DeSerialize(fp, &ycoord)) {
84 return false;
85 }
86 if (swap) {
87 ReverseN(&xcoord, sizeof(xcoord));
88 ReverseN(&ycoord, sizeof(ycoord));
89 }
90 return true;
91 }
92
93 // Setup for iterating over the pixels in a vector by the well-known
94 // Bresenham rendering algorithm.
95 // Starting with major/2 in the accumulator, on each step add major_step,
96 // and then add minor to the accumulator. When the accumulator >= major
97 // subtract major and step a minor step.
98
99 void ICOORD::setup_render(ICOORD *major_step, ICOORD *minor_step, int *major, int *minor) const {
100 int abs_x = abs(xcoord);
101 int abs_y = abs(ycoord);
102 if (abs_x >= abs_y) {
103 // X-direction is major.
104 major_step->xcoord = sign(xcoord);
105 major_step->ycoord = 0;
106 minor_step->xcoord = 0;
107 minor_step->ycoord = sign(ycoord);
108 *major = abs_x;
109 *minor = abs_y;
110 } else {
111 // Y-direction is major.
112 major_step->xcoord = 0;
113 major_step->ycoord = sign(ycoord);
114 minor_step->xcoord = sign(xcoord);
115 minor_step->ycoord = 0;
116 *major = abs_y;
117 *minor = abs_x;
118 }
119 }
120
121 // Returns the standard feature direction corresponding to this.
122 // See binary_angle_plus_pi below for a description of the direction.
123 uint8_t FCOORD::to_direction() const {
124 return binary_angle_plus_pi(angle());
125 }
126 // Sets this with a unit vector in the given standard feature direction.
127 void FCOORD::from_direction(uint8_t direction) {
128 double radians = angle_from_direction(direction);
129 xcoord = cos(radians);
130 ycoord = sin(radians);
131 }
132
133 // Converts an angle in radians (from ICOORD::angle or FCOORD::angle) to a
134 // standard feature direction as an unsigned angle in 256ths of a circle
135 // measured anticlockwise from (-1, 0).
136 uint8_t FCOORD::binary_angle_plus_pi(double radians) {
137 return Modulo(IntCastRounded((radians + M_PI) * 128.0 / M_PI), 256);
138 }
139 // Inverse of binary_angle_plus_pi returns an angle in radians for the
140 // given standard feature direction.
141 double FCOORD::angle_from_direction(uint8_t direction) {
142 return direction * M_PI / 128.0 - M_PI;
143 }
144
145 // Returns the point on the given line nearest to this, ie the point such
146 // that the vector point->this is perpendicular to the line.
147 // The line is defined as a line_point and a dir_vector for its direction.
148 FCOORD FCOORD::nearest_pt_on_line(const FCOORD &line_point, const FCOORD &dir_vector) const {
149 FCOORD point_vector(*this - line_point);
150 // The dot product (%) is |dir_vector||point_vector|cos theta, so dividing by
151 // the square of the length of dir_vector gives us the fraction of dir_vector
152 // to add to line1 to get the appropriate point, so
153 // result = line1 + lambda dir_vector.
154 double lambda = point_vector % dir_vector / dir_vector.sqlength();
155 return line_point + (dir_vector * lambda);
156 }
157
158 } // namespace tesseract