diff mupdf-source/thirdparty/tesseract/src/ccstruct/otsuthr.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/ccstruct/otsuthr.cpp	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,159 @@
+/**********************************************************************
+ * File:        otsuthr.cpp
+ * Description: Simple Otsu thresholding for binarizing images.
+ * Author:      Ray Smith
+ *
+ * (C) Copyright 2008, Google Inc.
+ ** Licensed under the Apache License, Version 2.0 (the "License");
+ ** you may not use this file except in compliance with the License.
+ ** You may obtain a copy of the License at
+ ** http://www.apache.org/licenses/LICENSE-2.0
+ ** Unless required by applicable law or agreed to in writing, software
+ ** distributed under the License is distributed on an "AS IS" BASIS,
+ ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ ** See the License for the specific language governing permissions and
+ ** limitations under the License.
+ *
+ **********************************************************************/
+
+#include "otsuthr.h"
+
+#include <allheaders.h>
+#include <cstring>
+#include "helpers.h"
+
+namespace tesseract {
+
+// Computes the Otsu threshold(s) for the given image rectangle, making one
+// for each channel. Each channel is always one byte per pixel.
+// Returns an array of threshold values and an array of hi_values, such
+// that a pixel value >threshold[channel] is considered foreground if
+// hi_values[channel] is 0 or background if 1. A hi_value of -1 indicates
+// that there is no apparent foreground. At least one hi_value will not be -1.
+// The return value is the number of channels in the input image, being
+// the size of the output thresholds and hi_values arrays.
+int OtsuThreshold(Image src_pix, int left, int top, int width, int height, std::vector<int> &thresholds,
+                  std::vector<int> &hi_values) {
+  int num_channels = pixGetDepth(src_pix) / 8;
+  // Of all channels with no good hi_value, keep the best so we can always
+  // produce at least one answer.
+  int best_hi_value = 1;
+  int best_hi_index = 0;
+  bool any_good_hivalue = false;
+  double best_hi_dist = 0.0;
+  thresholds.resize(num_channels);
+  hi_values.resize(num_channels);
+
+  for (int ch = 0; ch < num_channels; ++ch) {
+    thresholds[ch] = -1;
+    hi_values[ch] = -1;
+    // Compute the histogram of the image rectangle.
+    int histogram[kHistogramSize];
+    HistogramRect(src_pix, ch, left, top, width, height, histogram);
+    int H;
+    int best_omega_0;
+    int best_t = OtsuStats(histogram, &H, &best_omega_0);
+    if (best_omega_0 == 0 || best_omega_0 == H) {
+      // This channel is empty.
+      continue;
+    }
+    // To be a convincing foreground we must have a small fraction of H
+    // or to be a convincing background we must have a large fraction of H.
+    // In between we assume this channel contains no thresholding information.
+    int hi_value = best_omega_0 < H * 0.5;
+    thresholds[ch] = best_t;
+    if (best_omega_0 > H * 0.75) {
+      any_good_hivalue = true;
+      hi_values[ch] = 0;
+    } else if (best_omega_0 < H * 0.25) {
+      any_good_hivalue = true;
+      hi_values[ch] = 1;
+    } else {
+      // In case all channels are like this, keep the best of the bad lot.
+      double hi_dist = hi_value ? (H - best_omega_0) : best_omega_0;
+      if (hi_dist > best_hi_dist) {
+        best_hi_dist = hi_dist;
+        best_hi_value = hi_value;
+        best_hi_index = ch;
+      }
+    }
+  }
+
+  if (!any_good_hivalue) {
+    // Use the best of the ones that were not good enough.
+    hi_values[best_hi_index] = best_hi_value;
+  }
+  return num_channels;
+}
+
+// Computes the histogram for the given image rectangle, and the given
+// single channel. Each channel is always one byte per pixel.
+// Histogram is always a kHistogramSize(256) element array to count
+// occurrences of each pixel value.
+void HistogramRect(Image src_pix, int channel, int left, int top, int width, int height,
+                   int *histogram) {
+  int num_channels = pixGetDepth(src_pix) / 8;
+  channel = ClipToRange(channel, 0, num_channels - 1);
+  int bottom = top + height;
+  memset(histogram, 0, sizeof(*histogram) * kHistogramSize);
+  int src_wpl = pixGetWpl(src_pix);
+  l_uint32 *srcdata = pixGetData(src_pix);
+  for (int y = top; y < bottom; ++y) {
+    const l_uint32 *linedata = srcdata + y * src_wpl;
+    for (int x = 0; x < width; ++x) {
+      int pixel = GET_DATA_BYTE(linedata, (x + left) * num_channels + channel);
+      ++histogram[pixel];
+    }
+  }
+}
+
+// Computes the Otsu threshold(s) for the given histogram.
+// Also returns H = total count in histogram, and
+// omega0 = count of histogram below threshold.
+int OtsuStats(const int *histogram, int *H_out, int *omega0_out) {
+  int H = 0;
+  double mu_T = 0.0;
+  for (int i = 0; i < kHistogramSize; ++i) {
+    H += histogram[i];
+    mu_T += static_cast<double>(i) * histogram[i];
+  }
+
+  // Now maximize sig_sq_B over t.
+  // http://www.ctie.monash.edu.au/hargreave/Cornall_Terry_328.pdf
+  int best_t = -1;
+  int omega_0, omega_1;
+  int best_omega_0 = 0;
+  double best_sig_sq_B = 0.0;
+  double mu_0, mu_1, mu_t;
+  omega_0 = 0;
+  mu_t = 0.0;
+  for (int t = 0; t < kHistogramSize - 1; ++t) {
+    omega_0 += histogram[t];
+    mu_t += t * static_cast<double>(histogram[t]);
+    if (omega_0 == 0) {
+      continue;
+    }
+    omega_1 = H - omega_0;
+    if (omega_1 == 0) {
+      break;
+    }
+    mu_0 = mu_t / omega_0;
+    mu_1 = (mu_T - mu_t) / omega_1;
+    double sig_sq_B = mu_1 - mu_0;
+    sig_sq_B *= sig_sq_B * omega_0 * omega_1;
+    if (best_t < 0 || sig_sq_B > best_sig_sq_B) {
+      best_sig_sq_B = sig_sq_B;
+      best_t = t;
+      best_omega_0 = omega_0;
+    }
+  }
+  if (H_out != nullptr) {
+    *H_out = H;
+  }
+  if (omega0_out != nullptr) {
+    *omega0_out = best_omega_0;
+  }
+  return best_t;
+}
+
+} // namespace tesseract.