Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/tesseract/src/ccstruct/otsuthr.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /********************************************************************** | |
| 2 * File: otsuthr.cpp | |
| 3 * Description: Simple Otsu thresholding for binarizing images. | |
| 4 * Author: Ray Smith | |
| 5 * | |
| 6 * (C) Copyright 2008, Google Inc. | |
| 7 ** Licensed under the Apache License, Version 2.0 (the "License"); | |
| 8 ** you may not use this file except in compliance with the License. | |
| 9 ** You may obtain a copy of the License at | |
| 10 ** http://www.apache.org/licenses/LICENSE-2.0 | |
| 11 ** Unless required by applicable law or agreed to in writing, software | |
| 12 ** distributed under the License is distributed on an "AS IS" BASIS, | |
| 13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| 14 ** See the License for the specific language governing permissions and | |
| 15 ** limitations under the License. | |
| 16 * | |
| 17 **********************************************************************/ | |
| 18 | |
| 19 #include "otsuthr.h" | |
| 20 | |
| 21 #include <allheaders.h> | |
| 22 #include <cstring> | |
| 23 #include "helpers.h" | |
| 24 | |
| 25 namespace tesseract { | |
| 26 | |
| 27 // Computes the Otsu threshold(s) for the given image rectangle, making one | |
| 28 // for each channel. Each channel is always one byte per pixel. | |
| 29 // Returns an array of threshold values and an array of hi_values, such | |
| 30 // that a pixel value >threshold[channel] is considered foreground if | |
| 31 // hi_values[channel] is 0 or background if 1. A hi_value of -1 indicates | |
| 32 // that there is no apparent foreground. At least one hi_value will not be -1. | |
| 33 // The return value is the number of channels in the input image, being | |
| 34 // the size of the output thresholds and hi_values arrays. | |
| 35 int OtsuThreshold(Image src_pix, int left, int top, int width, int height, std::vector<int> &thresholds, | |
| 36 std::vector<int> &hi_values) { | |
| 37 int num_channels = pixGetDepth(src_pix) / 8; | |
| 38 // Of all channels with no good hi_value, keep the best so we can always | |
| 39 // produce at least one answer. | |
| 40 int best_hi_value = 1; | |
| 41 int best_hi_index = 0; | |
| 42 bool any_good_hivalue = false; | |
| 43 double best_hi_dist = 0.0; | |
| 44 thresholds.resize(num_channels); | |
| 45 hi_values.resize(num_channels); | |
| 46 | |
| 47 for (int ch = 0; ch < num_channels; ++ch) { | |
| 48 thresholds[ch] = -1; | |
| 49 hi_values[ch] = -1; | |
| 50 // Compute the histogram of the image rectangle. | |
| 51 int histogram[kHistogramSize]; | |
| 52 HistogramRect(src_pix, ch, left, top, width, height, histogram); | |
| 53 int H; | |
| 54 int best_omega_0; | |
| 55 int best_t = OtsuStats(histogram, &H, &best_omega_0); | |
| 56 if (best_omega_0 == 0 || best_omega_0 == H) { | |
| 57 // This channel is empty. | |
| 58 continue; | |
| 59 } | |
| 60 // To be a convincing foreground we must have a small fraction of H | |
| 61 // or to be a convincing background we must have a large fraction of H. | |
| 62 // In between we assume this channel contains no thresholding information. | |
| 63 int hi_value = best_omega_0 < H * 0.5; | |
| 64 thresholds[ch] = best_t; | |
| 65 if (best_omega_0 > H * 0.75) { | |
| 66 any_good_hivalue = true; | |
| 67 hi_values[ch] = 0; | |
| 68 } else if (best_omega_0 < H * 0.25) { | |
| 69 any_good_hivalue = true; | |
| 70 hi_values[ch] = 1; | |
| 71 } else { | |
| 72 // In case all channels are like this, keep the best of the bad lot. | |
| 73 double hi_dist = hi_value ? (H - best_omega_0) : best_omega_0; | |
| 74 if (hi_dist > best_hi_dist) { | |
| 75 best_hi_dist = hi_dist; | |
| 76 best_hi_value = hi_value; | |
| 77 best_hi_index = ch; | |
| 78 } | |
| 79 } | |
| 80 } | |
| 81 | |
| 82 if (!any_good_hivalue) { | |
| 83 // Use the best of the ones that were not good enough. | |
| 84 hi_values[best_hi_index] = best_hi_value; | |
| 85 } | |
| 86 return num_channels; | |
| 87 } | |
| 88 | |
| 89 // Computes the histogram for the given image rectangle, and the given | |
| 90 // single channel. Each channel is always one byte per pixel. | |
| 91 // Histogram is always a kHistogramSize(256) element array to count | |
| 92 // occurrences of each pixel value. | |
| 93 void HistogramRect(Image src_pix, int channel, int left, int top, int width, int height, | |
| 94 int *histogram) { | |
| 95 int num_channels = pixGetDepth(src_pix) / 8; | |
| 96 channel = ClipToRange(channel, 0, num_channels - 1); | |
| 97 int bottom = top + height; | |
| 98 memset(histogram, 0, sizeof(*histogram) * kHistogramSize); | |
| 99 int src_wpl = pixGetWpl(src_pix); | |
| 100 l_uint32 *srcdata = pixGetData(src_pix); | |
| 101 for (int y = top; y < bottom; ++y) { | |
| 102 const l_uint32 *linedata = srcdata + y * src_wpl; | |
| 103 for (int x = 0; x < width; ++x) { | |
| 104 int pixel = GET_DATA_BYTE(linedata, (x + left) * num_channels + channel); | |
| 105 ++histogram[pixel]; | |
| 106 } | |
| 107 } | |
| 108 } | |
| 109 | |
| 110 // Computes the Otsu threshold(s) for the given histogram. | |
| 111 // Also returns H = total count in histogram, and | |
| 112 // omega0 = count of histogram below threshold. | |
| 113 int OtsuStats(const int *histogram, int *H_out, int *omega0_out) { | |
| 114 int H = 0; | |
| 115 double mu_T = 0.0; | |
| 116 for (int i = 0; i < kHistogramSize; ++i) { | |
| 117 H += histogram[i]; | |
| 118 mu_T += static_cast<double>(i) * histogram[i]; | |
| 119 } | |
| 120 | |
| 121 // Now maximize sig_sq_B over t. | |
| 122 // http://www.ctie.monash.edu.au/hargreave/Cornall_Terry_328.pdf | |
| 123 int best_t = -1; | |
| 124 int omega_0, omega_1; | |
| 125 int best_omega_0 = 0; | |
| 126 double best_sig_sq_B = 0.0; | |
| 127 double mu_0, mu_1, mu_t; | |
| 128 omega_0 = 0; | |
| 129 mu_t = 0.0; | |
| 130 for (int t = 0; t < kHistogramSize - 1; ++t) { | |
| 131 omega_0 += histogram[t]; | |
| 132 mu_t += t * static_cast<double>(histogram[t]); | |
| 133 if (omega_0 == 0) { | |
| 134 continue; | |
| 135 } | |
| 136 omega_1 = H - omega_0; | |
| 137 if (omega_1 == 0) { | |
| 138 break; | |
| 139 } | |
| 140 mu_0 = mu_t / omega_0; | |
| 141 mu_1 = (mu_T - mu_t) / omega_1; | |
| 142 double sig_sq_B = mu_1 - mu_0; | |
| 143 sig_sq_B *= sig_sq_B * omega_0 * omega_1; | |
| 144 if (best_t < 0 || sig_sq_B > best_sig_sq_B) { | |
| 145 best_sig_sq_B = sig_sq_B; | |
| 146 best_t = t; | |
| 147 best_omega_0 = omega_0; | |
| 148 } | |
| 149 } | |
| 150 if (H_out != nullptr) { | |
| 151 *H_out = H; | |
| 152 } | |
| 153 if (omega0_out != nullptr) { | |
| 154 *omega0_out = best_omega_0; | |
| 155 } | |
| 156 return best_t; | |
| 157 } | |
| 158 | |
| 159 } // namespace tesseract. |
