Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/leptonica/src/seedfill.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/leptonica/src/seedfill.c Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,3400 @@ +/*====================================================================* + - Copyright (C) 2001 Leptonica. All rights reserved. + - + - Redistribution and use in source and binary forms, with or without + - modification, are permitted provided that the following conditions + - are met: + - 1. Redistributions of source code must retain the above copyright + - notice, this list of conditions and the following disclaimer. + - 2. Redistributions in binary form must reproduce the above + - copyright notice, this list of conditions and the following + - disclaimer in the documentation and/or other materials + - provided with the distribution. + - + - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY + - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY + - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *====================================================================*/ + +/*! + * \file seedfill.c + * <pre> + * + * Binary seedfill (source: Luc Vincent) + * PIX *pixSeedfillBinary() + * PIX *pixSeedfillBinaryRestricted() + * static void seedfillBinaryLow() + * + * Applications of binary seedfill to find and fill holes, + * remove c.c. touching the border and fill bg from border: + * PIX *pixHolesByFilling() + * PIX *pixFillClosedBorders() + * PIX *pixExtractBorderConnComps() + * PIX *pixRemoveBorderConnComps() + * PIX *pixFillBgFromBorder() + * + * Hole-filling of components to bounding rectangle + * PIX *pixFillHolesToBoundingRect() + * + * Gray seedfill (source: Luc Vincent:fast-hybrid-grayscale-reconstruction) + * l_int32 pixSeedfillGray() + * l_int32 pixSeedfillGrayInv() + * static void seedfillGrayLow() + * static void seedfillGrayInvLow() + + * + * Gray seedfill (source: Luc Vincent: sequential-reconstruction algorithm) + * l_int32 pixSeedfillGraySimple() + * l_int32 pixSeedfillGrayInvSimple() + * static void seedfillGrayLowSimple() + * static void seedfillGrayInvLowSimple() + * + * Gray seedfill variations + * PIX *pixSeedfillGrayBasin() + * + * Distance function (source: Luc Vincent) + * PIX *pixDistanceFunction() + * static void distanceFunctionLow() + * + * Seed spread (based on distance function) + * PIX *pixSeedspread() + * static void seedspreadLow() + * + * Local extrema: + * l_int32 pixLocalExtrema() + * static l_int32 pixQualifyLocalMinima() + * l_int32 pixSelectedLocalExtrema() + * PIX *pixFindEqualValues() + * + * Selection of minima in mask of connected components + * PTA *pixSelectMinInConnComp() + * + * Removal of seeded connected components from a mask + * PIX *pixRemoveSeededComponents() + * + * + * ITERATIVE RASTER-ORDER SEEDFILL + * + * The basic method in the Vincent seedfill (aka reconstruction) + * algorithm is simple. We describe here the situation for + * binary seedfill. Pixels are sampled in raster order in + * the seed image. If they are 4-connected to ON pixels + * either directly above or to the left, and are not masked + * out by the mask image, they are turned on (or remain on). + * (Ditto for 8-connected, except you need to check 3 pixels + * on the previous line as well as the pixel to the left + * on the current line. This is extra computational work + * for relatively little gain, so it is preferable + * in most situations to use the 4-connected version.) + * The algorithm proceeds from UR to LL of the image, and + * then reverses and sweeps up from LL to UR. + * These double sweeps are iterated until there is no change. + * At this point, the seed has entirely filled the region it + * is allowed to, as delimited by the mask image. + * + * The grayscale seedfill is a straightforward generalization + * of the binary seedfill, and is described in seedfillLowGray(). + * + * For some applications, the filled seed will later be OR'd + * with the negative of the mask. This is used, for example, + * when you flood fill into a 4-connected region of OFF pixels + * and you want the result after those pixels are turned ON. + * + * Note carefully that the mask we use delineates which pixels + * are allowed to be ON as the seed is filled. We will call this + * a "filling mask". As the seed expands, it is repeatedly + * ANDed with the filling mask: s & fm. The process can equivalently + * be formulated using the inverse of the filling mask, which + * we will call a "blocking mask": bm = ~fm. As the seed + * expands, the blocking mask is repeatedly used to prevent + * the seed from expanding into the blocking mask. This is done + * by set subtracting the blocking mask from the expanded seed: + * s - bm. Set subtraction of the blocking mask is equivalent + * to ANDing with the inverse of the blocking mask: s & (~bm). + * But from the inverse relation between blocking and filling + * masks, this is equal to s & fm, which proves the equivalence. + * + * For efficiency, the pixels can be taken in larger units + * for processing, but still in raster order. It is natural + * to take them in 32-bit words. The outline of the work + * to be done for 4-cc (not including special cases for boundary + * words, such as the first line or the last word in each line) + * is as follows. Let the filling mask be m. The + * seed is to fill "under" the mask; i.e., limited by an AND + * with the mask. Let the current word be w, the word + * in the line above be wa, and the previous word in the + * current line be wp. Let t be a temporary word that + * is used in computation. Note that masking is performed by + * w & m. (If we had instead used a "blocking" mask, we + * would perform masking by the set subtraction operation, + * w - m, which is defined to be w & ~m.) + * + * The entire operation can be implemented with shifts, + * logical operations and tests. For each word in the seed image + * there are two steps. The first step is to OR the word with + * the word above and with the rightmost pixel in wp (call it "x"). + * Because wp is shifted one pixel to its right, "x" is ORed + * to the leftmost pixel of w. We then clip to the ON pixels in + * the mask. The result is + * t <-- (w | wa | x000... ) & m + * We've now finished taking data from above and to the left. + * The second step is to allow filling to propagate horizontally + * in t, always making sure that it is properly masked at each + * step. So if filling can be done (i.e., t is neither all 0s + * nor all 1s), iteratively take: + * t <-- (t | (t >> 1) | (t << 1)) & m + * until t stops changing. Then write t back into w. + * + * Finally, the boundary conditions require we note that in doing + * the above steps: + * (a) The words in the first row have no wa + * (b) The first word in each row has no wp in that row + * (c) The last word in each row must be masked so that + * pixels don't propagate beyond the right edge of the + * actual image. (This is easily accomplished by + * setting the out-of-bound pixels in m to OFF.) + * </pre> + */ + +#ifdef HAVE_CONFIG_H +#include <config_auto.h> +#endif /* HAVE_CONFIG_H */ + +#include <math.h> +#include "allheaders.h" + +struct L_Pixel +{ + l_int32 x; + l_int32 y; +}; +typedef struct L_Pixel L_PIXEL; + +static void seedfillBinaryLow(l_uint32 *datas, l_int32 hs, l_int32 wpls, + l_uint32 *datam, l_int32 hm, l_int32 wplm, + l_int32 connectivity); +static void seedfillGrayLow(l_uint32 *datas, l_int32 w, l_int32 h, + l_int32 wpls, l_uint32 *datam, l_int32 wplm, + l_int32 connectivity); +static void seedfillGrayInvLow(l_uint32 *datas, l_int32 w, l_int32 h, + l_int32 wpls, l_uint32 *datam, l_int32 wplm, + l_int32 connectivity); +static void seedfillGrayLowSimple(l_uint32 *datas, l_int32 w, l_int32 h, + l_int32 wpls, l_uint32 *datam, l_int32 wplm, + l_int32 connectivity); +static void seedfillGrayInvLowSimple(l_uint32 *datas, l_int32 w, l_int32 h, + l_int32 wpls, l_uint32 *datam, + l_int32 wplm, l_int32 connectivity); +static void distanceFunctionLow(l_uint32 *datad, l_int32 w, l_int32 h, + l_int32 d, l_int32 wpld, l_int32 connectivity); +static void seedspreadLow(l_uint32 *datad, l_int32 w, l_int32 h, l_int32 wpld, + l_uint32 *datat, l_int32 wplt, l_int32 connectivity); + + +static l_int32 pixQualifyLocalMinima(PIX *pixs, PIX *pixm, l_int32 maxval); + +#ifndef NO_CONSOLE_IO +#define DEBUG_PRINT_ITERS 0 +#endif /* ~NO_CONSOLE_IO */ + + /* Two-way (UL --> LR, LR --> UL) sweep iterations; typically need only 4 */ +static const l_int32 MaxIters = 40; + + +/*-----------------------------------------------------------------------* + * Vincent's Iterative Binary Seedfill method * + *-----------------------------------------------------------------------*/ +/*! + * \brief pixSeedfillBinary() + * + * \param[in] pixd [optional]; can be null, equal to pixs, + * or different from pixs; 1 bpp + * \param[in] pixs 1 bpp seed + * \param[in] pixm 1 bpp filling mask + * \param[in] connectivity 4 or 8 + * \return pixd always + * + * <pre> + * Notes: + * (1) This is for binary seedfill (aka "binary reconstruction"). + * (2) There are 3 cases: + * (a) pixd == null (make a new pixd) + * (b) pixd == pixs (in-place) + * (c) pixd != pixs + * (3) If you know the case, use these patterns for clarity: + * (a) pixd = pixSeedfillBinary(NULL, pixs, ...); + * (b) pixSeedfillBinary(pixs, pixs, ...); + * (c) pixSeedfillBinary(pixd, pixs, ...); + * (4) The resulting pixd contains the filled seed. For some + * applications you want to OR it with the inverse of + * the filling mask. + * (5) The input seed and mask images can be different sizes, but + * in typical use the difference, if any, would be only + * a few pixels in each direction. If the sizes differ, + * the clipping is handled by the low-level function + * seedfillBinaryLow(). + * </pre> + */ +PIX * +pixSeedfillBinary(PIX *pixd, + PIX *pixs, + PIX *pixm, + l_int32 connectivity) +{ +l_int32 i, boolval; +l_int32 hd, hm, wpld, wplm; +l_uint32 *datad, *datam; +PIX *pixt; + + if (!pixs || pixGetDepth(pixs) != 1) + return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, pixd); + if (!pixm || pixGetDepth(pixm) != 1) + return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", __func__, pixd); + if (connectivity != 4 && connectivity != 8) + return (PIX *)ERROR_PTR("connectivity not in {4,8}", __func__, pixd); + + /* Prepare pixd as a copy of pixs if not identical */ + if ((pixd = pixCopy(pixd, pixs)) == NULL) + return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); + pixSetPadBits(pixd, 0); /* be safe: */ + pixSetPadBits(pixm, 0); /* avoid using uninitialized memory */ + + /* pixt is used to test for completion */ + if ((pixt = pixCreateTemplate(pixs)) == NULL) + return (PIX *)ERROR_PTR("pixt not made", __func__, pixd); + + hd = pixGetHeight(pixd); + hm = pixGetHeight(pixm); /* included so seedfillBinaryLow() can clip */ + datad = pixGetData(pixd); + datam = pixGetData(pixm); + wpld = pixGetWpl(pixd); + wplm = pixGetWpl(pixm); + + + for (i = 0; i < MaxIters; i++) { + pixCopy(pixt, pixd); + seedfillBinaryLow(datad, hd, wpld, datam, hm, wplm, connectivity); + pixEqual(pixd, pixt, &boolval); + if (boolval == 1) { +#if DEBUG_PRINT_ITERS + lept_stderr("Binary seed fill converged: %d iters\n", i + 1); +#endif /* DEBUG_PRINT_ITERS */ + break; + } + } + + pixDestroy(&pixt); + return pixd; +} + + +/*! + * \brief pixSeedfillBinaryRestricted() + * + * \param[in] pixd [optional]; can be null, equal to pixs, + * or different from pixs; 1 bpp + * \param[in] pixs 1 bpp seed + * \param[in] pixm 1 bpp filling mask + * \param[in] connectivity 4 or 8 + * \param[in] xmax max distance in x direction of fill into mask + * \param[in] ymax max distance in y direction of fill into mask + * \return pixd always + * + * <pre> + * Notes: + * (1) See usage for pixSeedfillBinary(), which has unrestricted fill. + * In pixSeedfillBinary(), the filling distance is unrestricted + * and can be larger than pixs, depending on the topology of + * th mask. + * (2) There are occasions where it is useful not to permit the + * fill to go more than a certain distance into the mask. + * %xmax specifies the maximum horizontal distance allowed + * in the fill; %ymax does likewise in the vertical direction. + * (3) Operationally, the max "distance" allowed for the fill + * is a linear distance from the original seed, independent + * of the actual mask topology. + * (4) Another formulation of this problem, not implemented, + * would use the manhattan distance from the seed, as + * determined by a breadth-first search starting at the seed + * boundaries and working outward where the mask fg allows. + * How this might use the constraints of separate xmax and ymax + * is not clear. + * </pre> + */ +PIX * +pixSeedfillBinaryRestricted(PIX *pixd, + PIX *pixs, + PIX *pixm, + l_int32 connectivity, + l_int32 xmax, + l_int32 ymax) +{ +l_int32 w, h; +PIX *pix1, *pix2; + + if (!pixs || pixGetDepth(pixs) != 1) + return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, pixd); + if (!pixm || pixGetDepth(pixm) != 1) + return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", __func__, pixd); + if (connectivity != 4 && connectivity != 8) + return (PIX *)ERROR_PTR("connectivity not in {4,8}", __func__, pixd); + if (xmax == 0 && ymax == 0) /* no filling permitted */ + return pixClone(pixs); + if (xmax < 0 || ymax < 0) { + L_ERROR("xmax and ymax must be non-negative", __func__); + return pixClone(pixs); + } + + /* Full fill from the seed into the mask. */ + if ((pix1 = pixSeedfillBinary(NULL, pixs, pixm, connectivity)) == NULL) + return (PIX *)ERROR_PTR("pix1 not made", __func__, pixd); + + /* Dilate the seed. This gives the maximal region where changes + * are permitted. Invert to get the region where pixs is + * not allowed to change. */ + pix2 = pixDilateCompBrick(NULL, pixs, 2 * xmax + 1, 2 * ymax + 1); + pixInvert(pix2, pix2); + + /* Blank the region of pix1 specified by the fg of pix2. + * This is not yet the final result, because it may have fg pixels + * that are not accessible from the seed in the restricted distance. + * For example, such pixels may be connected to the original seed, + * but through a path that goes outside the permitted region. */ + pixGetDimensions(pixs, &w, &h, NULL); + pixRasterop(pix1, 0, 0, w, h, PIX_DST & PIX_NOT(PIX_SRC), pix2, 0, 0); + + /* To get the accessible pixels in the restricted region, do + * a second seedfill from the original seed, using pix1 as + * a mask. The result, in pixd, will not have any bad fg + * pixels that were in pix1. */ + pixd = pixSeedfillBinary(pixd, pixs, pix1, connectivity); + + pixDestroy(&pix1); + pixDestroy(&pix2); + return pixd; +} + + +/*! + * \brief seedfillBinaryLow() + * + * Notes: + * (1) This is an in-place fill, where the seed image is + * filled, clipping to the filling mask, in one full + * cycle of UL -> LR and LR -> UL raster scans. + * (2) Assume the mask is a filling mask, not a blocking mask. + * (3) Assume that the RHS pad bits of the mask + * are properly set to 0. + * (4) Clip to the smallest dimensions to avoid invalid reads. + */ +static void +seedfillBinaryLow(l_uint32 *datas, + l_int32 hs, + l_int32 wpls, + l_uint32 *datam, + l_int32 hm, + l_int32 wplm, + l_int32 connectivity) +{ +l_int32 i, j, h, wpl; +l_uint32 word, mask; +l_uint32 wordabove, wordleft, wordbelow, wordright; +l_uint32 wordprev; /* test against this in previous iteration */ +l_uint32 *lines, *linem; + + h = L_MIN(hs, hm); + wpl = L_MIN(wpls, wplm); + + switch (connectivity) + { + case 4: + /* UL --> LR scan */ + for (i = 0; i < h; i++) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = 0; j < wpl; j++) { + word = *(lines + j); + mask = *(linem + j); + + /* OR from word above and from word to left; mask */ + if (i > 0) { + wordabove = *(lines - wpls + j); + word |= wordabove; + } + if (j > 0) { + wordleft = *(lines + j - 1); + word |= wordleft << 31; + } + word &= mask; + + /* No need to fill horizontally? */ + if (!word || !(~word)) { + *(lines + j) = word; + continue; + } + + while (1) { + wordprev = word; + word = (word | (word >> 1) | (word << 1)) & mask; + if ((word ^ wordprev) == 0) { + *(lines + j) = word; + break; + } + } + } + } + + /* LR --> UL scan */ + for (i = h - 1; i >= 0; i--) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = wpl - 1; j >= 0; j--) { + word = *(lines + j); + mask = *(linem + j); + + /* OR from word below and from word to right; mask */ + if (i < h - 1) { + wordbelow = *(lines + wpls + j); + word |= wordbelow; + } + if (j < wpl - 1) { + wordright = *(lines + j + 1); + word |= wordright >> 31; + } + word &= mask; + + /* No need to fill horizontally? */ + if (!word || !(~word)) { + *(lines + j) = word; + continue; + } + + while (1) { + wordprev = word; + word = (word | (word >> 1) | (word << 1)) & mask; + if ((word ^ wordprev) == 0) { + *(lines + j) = word; + break; + } + } + } + } + break; + + case 8: + /* UL --> LR scan */ + for (i = 0; i < h; i++) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = 0; j < wpl; j++) { + word = *(lines + j); + mask = *(linem + j); + + /* OR from words above and from word to left; mask */ + if (i > 0) { + wordabove = *(lines - wpls + j); + word |= (wordabove | (wordabove << 1) | (wordabove >> 1)); + if (j > 0) + word |= (*(lines - wpls + j - 1)) << 31; + if (j < wpl - 1) + word |= (*(lines - wpls + j + 1)) >> 31; + } + if (j > 0) { + wordleft = *(lines + j - 1); + word |= wordleft << 31; + } + word &= mask; + + /* No need to fill horizontally? */ + if (!word || !(~word)) { + *(lines + j) = word; + continue; + } + + while (1) { + wordprev = word; + word = (word | (word >> 1) | (word << 1)) & mask; + if ((word ^ wordprev) == 0) { + *(lines + j) = word; + break; + } + } + } + } + + /* LR --> UL scan */ + for (i = h - 1; i >= 0; i--) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = wpl - 1; j >= 0; j--) { + word = *(lines + j); + mask = *(linem + j); + + /* OR from words below and from word to right; mask */ + if (i < h - 1) { + wordbelow = *(lines + wpls + j); + word |= (wordbelow | (wordbelow << 1) | (wordbelow >> 1)); + if (j > 0) + word |= (*(lines + wpls + j - 1)) << 31; + if (j < wpl - 1) + word |= (*(lines + wpls + j + 1)) >> 31; + } + if (j < wpl - 1) { + wordright = *(lines + j + 1); + word |= wordright >> 31; + } + word &= mask; + + /* No need to fill horizontally? */ + if (!word || !(~word)) { + *(lines + j) = word; + continue; + } + + while (1) { + wordprev = word; + word = (word | (word >> 1) | (word << 1)) & mask; + if ((word ^ wordprev) == 0) { + *(lines + j) = word; + break; + } + } + } + } + break; + + default: + L_ERROR("connectivity must be 4 or 8\n", __func__); + } +} + + +/*! + * \brief pixHolesByFilling() + * + * \param[in] pixs 1 bpp + * \param[in] connectivity 4 or 8 + * \return pixd inverted image of all holes, or NULL on error + * + * Action: + * 1 Start with 1-pixel black border on otherwise white pixd + * 2 Use the inverted pixs as the filling mask to fill in + * all the pixels from the border to the pixs foreground + * 3 OR the result with pixs to have an image with all + * ON pixels except for the holes. + * 4 Invert the result to get the holes as foreground + * + * <pre> + * Notes: + * (1) To get 4-c.c. holes of the 8-c.c. as foreground, use + * 4-connected filling; to get 8-c.c. holes of the 4-c.c. + * as foreground, use 8-connected filling. + * </pre> + */ +PIX * +pixHolesByFilling(PIX *pixs, + l_int32 connectivity) +{ +PIX *pixsi, *pixd; + + if (!pixs || pixGetDepth(pixs) != 1) + return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); + if (connectivity != 4 && connectivity != 8) + return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); + + if ((pixd = pixCreateTemplate(pixs)) == NULL) + return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); + if ((pixsi = pixInvert(NULL, pixs)) == NULL) { + pixDestroy(&pixd); + return (PIX *)ERROR_PTR("pixsi not made", __func__, NULL); + } + + pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET); + pixSeedfillBinary(pixd, pixd, pixsi, connectivity); + pixOr(pixd, pixd, pixs); + pixInvert(pixd, pixd); + pixDestroy(&pixsi); + return pixd; +} + + +/*! + * \brief pixFillClosedBorders() + * + * \param[in] pixs 1 bpp + * \param[in] connectivity filling connectivity 4 or 8 + * \return pixd all topologically outer closed borders are filled + * as connected comonents, or NULL on error + * + * <pre> + * Notes: + * (1) Start with 1-pixel black border on otherwise white pixd + * (2) Subtract input pixs to remove border pixels that were + * also on the closed border + * (3) Use the inverted pixs as the filling mask to fill in + * all the pixels from the outer border to the closed border + * on pixs + * (4) Invert the result to get the filled component, including + * the input border + * (5) If the borders are 4-c.c., use 8-c.c. filling, and v.v. + * (6) Closed borders within c.c. that represent holes, etc., are filled. + * </pre> + */ +PIX * +pixFillClosedBorders(PIX *pixs, + l_int32 connectivity) +{ +PIX *pixsi, *pixd; + + if (!pixs || pixGetDepth(pixs) != 1) + return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); + if (connectivity != 4 && connectivity != 8) + return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); + + if ((pixd = pixCreateTemplate(pixs)) == NULL) + return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); + pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET); + pixSubtract(pixd, pixd, pixs); + if ((pixsi = pixInvert(NULL, pixs)) == NULL) { + pixDestroy(&pixd); + return (PIX *)ERROR_PTR("pixsi not made", __func__, NULL); + } + + pixSeedfillBinary(pixd, pixd, pixsi, connectivity); + pixInvert(pixd, pixd); + pixDestroy(&pixsi); + + return pixd; +} + + +/*! + * \brief pixExtractBorderConnComps() + * + * \param[in] pixs 1 bpp + * \param[in] connectivity filling connectivity 4 or 8 + * \return pixd all pixels in the src that are in connected + * components touching the border, or NULL on error + */ +PIX * +pixExtractBorderConnComps(PIX *pixs, + l_int32 connectivity) +{ +PIX *pixd; + + if (!pixs || pixGetDepth(pixs) != 1) + return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); + if (connectivity != 4 && connectivity != 8) + return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); + + /* Start with 1 pixel wide black border as seed in pixd */ + if ((pixd = pixCreateTemplate(pixs)) == NULL) + return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); + pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET); + + /* Fill in pixd from the seed, using pixs as the filling mask. + * This fills all components from pixs that are touching the border. */ + pixSeedfillBinary(pixd, pixd, pixs, connectivity); + + return pixd; +} + + +/*! + * \brief pixRemoveBorderConnComps() + * + * \param[in] pixs 1 bpp + * \param[in] connectivity filling connectivity 4 or 8 + * \return pixd all pixels in the src that are not touching the + * border or NULL on error + * + * <pre> + * Notes: + * (1) This removes all fg components touching the border. + * </pre> + */ +PIX * +pixRemoveBorderConnComps(PIX *pixs, + l_int32 connectivity) +{ +PIX *pixd; + + if (!pixs || pixGetDepth(pixs) != 1) + return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); + if (connectivity != 4 && connectivity != 8) + return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); + + /* Fill from a 1 pixel wide seed at the border into all components + * in pixs (the filling mask) that are touching the border */ + pixd = pixExtractBorderConnComps(pixs, connectivity); + + /* Save in pixd only those components in pixs not touching the border */ + pixXor(pixd, pixd, pixs); + return pixd; +} + + +/*! + * \brief pixFillBgFromBorder() + * + * \param[in] pixs 1 bpp + * \param[in] connectivity filling connectivity 4 or 8 + * \return pixd with the background c.c. touching the border + * filled to foreground, or NULL on error + * + * <pre> + * Notes: + * (1) This fills all bg components touching the border to fg. + * It is the photometric inverse of pixRemoveBorderConnComps(). + * (2) Invert the result to get the "holes" left after this fill. + * This can be done multiple times, extracting holes within + * holes after each pair of fillings. Specifically, this code + * peels away n successive embeddings of components: + * \code + * pix1 = <initial image> + * for (i = 0; i < 2 * n; i++) { + * pix2 = pixFillBgFromBorder(pix1, 8); + * pixInvert(pix2, pix2); + * pixDestroy(&pix1); + * pix1 = pix2; + * } + * \endcode + * </pre> + */ +PIX * +pixFillBgFromBorder(PIX *pixs, + l_int32 connectivity) +{ +PIX *pixd; + + if (!pixs || pixGetDepth(pixs) != 1) + return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); + if (connectivity != 4 && connectivity != 8) + return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); + + /* Invert to turn bg touching the border to a fg component. + * Extract this by filling from a 1 pixel wide seed at the border. */ + pixInvert(pixs, pixs); + pixd = pixExtractBorderConnComps(pixs, connectivity); + pixInvert(pixs, pixs); /* restore pixs */ + + /* Bit-or the filled bg component with pixs */ + pixOr(pixd, pixd, pixs); + return pixd; +} + + +/*-----------------------------------------------------------------------* + * Hole-filling of components to bounding rectangle * + *-----------------------------------------------------------------------*/ +/*! + * \brief pixFillHolesToBoundingRect() + * + * \param[in] pixs 1 bpp + * \param[in] minsize min number of pixels in the hole + * \param[in] maxhfract max hole area as fraction of fg pixels in the cc + * \param[in] minfgfract min fg area as fraction of bounding rectangle + * \return pixd with some holes possibly filled and some c.c. possibly + * expanded to their bounding rects, or NULL on error + * + * <pre> + * Notes: + * (1) This does not fill holes that are smaller in area than 'minsize'. + * Use %minsize = 0 and %maxhfract = 1.0 to fill all holes. + * (2) This does not fill holes with an area larger than + * %maxhfract times the fg area of the c.c. + * Use 1.0 to fill all holes. + * (3) This does not expand the fg of the c.c. to bounding rect if + * the fg area is less than %minfgfract times the area of the + * bounding rect. Use 1.0 to skip expanding to the bounding rect. + * (4) The decisions are made as follows: + * ~ Decide if we are filling the holes; if so, when using + * the fg area, include the filled holes. + * ~ Decide based on the fg area if we are filling to a bounding rect. + * If so, do it. + * If not, fill the holes if the condition is satisfied. + * (5) The choice of %minsize depends on the resolution. + * (6) For solidifying image mask regions on printed materials, + * which tend to be rectangular, values for %maxhfract + * and %minfgfract around 0.5 are reasonable. + * </pre> + */ +PIX * +pixFillHolesToBoundingRect(PIX *pixs, + l_int32 minsize, + l_float32 maxhfract, + l_float32 minfgfract) +{ +l_int32 i, x, y, w, h, n, nfg, nh, ntot, area; +l_int32 *tab; +l_float32 hfract; /* measured hole fraction */ +l_float32 fgfract; /* measured fg fraction */ +BOXA *boxa; +PIX *pixd, *pixfg, *pixh; +PIXA *pixa; + + if (!pixs || pixGetDepth(pixs) != 1) + return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); + maxhfract = L_MIN(L_MAX(maxhfract, 0.0), 1.0); + minfgfract = L_MIN(L_MAX(minfgfract, 0.0), 1.0); + + pixd = pixCopy(NULL, pixs); + boxa = pixConnComp(pixd, &pixa, 8); + n = boxaGetCount(boxa); + tab = makePixelSumTab8(); + for (i = 0; i < n; i++) { + boxaGetBoxGeometry(boxa, i, &x, &y, &w, &h); + area = w * h; + if (area < minsize) + continue; + pixfg = pixaGetPix(pixa, i, L_COPY); + pixh = pixHolesByFilling(pixfg, 4); /* holes only */ + pixCountPixels(pixfg, &nfg, tab); + pixCountPixels(pixh, &nh, tab); + hfract = (l_float32)nh / (l_float32)nfg; + ntot = nfg; + if (hfract <= maxhfract) /* we will fill the holes (at least) */ + ntot = nfg + nh; + fgfract = (l_float32)ntot / (l_float32)area; + if (fgfract >= minfgfract) { /* fill to bounding rect */ + pixSetAll(pixfg); + pixRasterop(pixd, x, y, w, h, PIX_SRC, pixfg, 0, 0); + } else if (hfract <= maxhfract) { /* fill just the holes */ + pixRasterop(pixd, x, y, w, h, PIX_DST | PIX_SRC , pixh, 0, 0); + } + pixDestroy(&pixfg); + pixDestroy(&pixh); + } + boxaDestroy(&boxa); + pixaDestroy(&pixa); + LEPT_FREE(tab); + return pixd; +} + + +/*-----------------------------------------------------------------------* + * Vincent's hybrid Grayscale Seedfill method * + *-----------------------------------------------------------------------*/ +/*! + * \brief pixSeedfillGray() + * + * \param[in] pixs 8 bpp seed; filled in place + * \param[in] pixm 8 bpp filling mask + * \param[in] connectivity 4 or 8 + * \return 0 if OK, 1 on error + * + * <pre> + * Notes: + * (1) This is an in-place filling operation on the seed, pixs, + * where the clipping mask is always above or at the level + * of the seed as it is filled. + * (2) For details of the operation, see the description in + * seedfillGrayLow() and the code there. + * (3) As an example of use, see the description in pixHDome(). + * There, the seed is an image where each pixel is a fixed + * amount smaller than the corresponding mask pixel. + * (4) Reference paper : + * L. Vincent, Morphological grayscale reconstruction in image + * analysis: applications and efficient algorithms, IEEE Transactions + * on Image Processing, vol. 2, no. 2, pp. 176-201, 1993. + * </pre> + */ +l_ok +pixSeedfillGray(PIX *pixs, + PIX *pixm, + l_int32 connectivity) +{ +l_int32 h, w, wpls, wplm; +l_uint32 *datas, *datam; + + if (!pixs || pixGetDepth(pixs) != 8) + return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); + if (!pixm || pixGetDepth(pixm) != 8) + return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1); + if (connectivity != 4 && connectivity != 8) + return ERROR_INT("connectivity not in {4,8}", __func__, 1); + + /* Make sure the sizes of seed and mask images are the same */ + if (pixSizesEqual(pixs, pixm) == 0) + return ERROR_INT("pixs and pixm sizes differ", __func__, 1); + + datas = pixGetData(pixs); + datam = pixGetData(pixm); + wpls = pixGetWpl(pixs); + wplm = pixGetWpl(pixm); + pixGetDimensions(pixs, &w, &h, NULL); + seedfillGrayLow(datas, w, h, wpls, datam, wplm, connectivity); + + return 0; +} + + +/*! + * \brief pixSeedfillGrayInv() + * + * \param[in] pixs 8 bpp seed; filled in place + * \param[in] pixm 8 bpp filling mask + * \param[in] connectivity 4 or 8 + * \return 0 if OK, 1 on error + * + * <pre> + * Notes: + * (1) This is an in-place filling operation on the seed, pixs, + * where the clipping mask is always below or at the level + * of the seed as it is filled. Think of filling up a basin + * to a particular level, given by the maximum seed value + * in the basin. Outside the filled region, the mask + * is above the filling level. + * (2) Contrast this with pixSeedfillGray(), where the clipping mask + * is always above or at the level of the fill. An example + * of its use is the hdome fill, where the seed is an image + * where each pixel is a fixed amount smaller than the + * corresponding mask pixel. + * (3) The basin fill, pixSeedfillGrayBasin(), is a special case + * where the seed pixel values are generated from the mask, + * and where the implementation uses pixSeedfillGray() by + * inverting both the seed and mask. + * </pre> + */ +l_ok +pixSeedfillGrayInv(PIX *pixs, + PIX *pixm, + l_int32 connectivity) +{ +l_int32 h, w, wpls, wplm; +l_uint32 *datas, *datam; + + if (!pixs || pixGetDepth(pixs) != 8) + return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); + if (!pixm || pixGetDepth(pixm) != 8) + return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1); + if (connectivity != 4 && connectivity != 8) + return ERROR_INT("connectivity not in {4,8}", __func__, 1); + + /* Make sure the sizes of seed and mask images are the same */ + if (pixSizesEqual(pixs, pixm) == 0) + return ERROR_INT("pixs and pixm sizes differ", __func__, 1); + + datas = pixGetData(pixs); + datam = pixGetData(pixm); + wpls = pixGetWpl(pixs); + wplm = pixGetWpl(pixm); + pixGetDimensions(pixs, &w, &h, NULL); + seedfillGrayInvLow(datas, w, h, wpls, datam, wplm, connectivity); + + return 0; +} + + +/*! + * \brief seedfillGrayLow() + * + * Notes: + * (1) The pixels are numbered as follows: + * 1 2 3 + * 4 x 5 + * 6 7 8 + * This low-level filling operation consists of two scans, + * raster and anti-raster, covering the entire seed image. + * This is followed by a breadth-first propagation operation to + * complete the fill. + * During the anti-raster scan, every pixel p whose current value + * could still be propagated after the anti-raster scan is put into + * the FIFO queue. + * The propagation step is a breadth-first fill to completion. + * Unlike the simple grayscale seedfill pixSeedfillGraySimple(), + * where at least two full raster/anti-raster iterations are required + * for completion and verification, the hybrid method uses only a + * single raster/anti-raster set of scans. + * (2) The filling action can be visualized from the following example. + * Suppose the mask, which clips the fill, is a sombrero-shaped + * surface, where the highest point is 200 and the low pixels + * around the rim are 30. Beyond the rim, the mask goes up a bit. + * Suppose the seed, which is filled, consists of a single point + * of height 150, located below the max of the mask, with + * the rest 0. Then in the raster scan, nothing happens until + * the high seed point is encountered, and then this value is + * propagated right and down, until it hits the side of the + * sombrero. The seed can never exceed the mask, so it fills + * to the rim, going lower along the mask surface. When it + * passes the rim, the seed continues to fill at the rim + * height to the edge of the seed image. Then on the + * anti-raster scan, the seed fills flat inside the + * sombrero to the upper and left, and then out from the + * rim as before. The final result has a seed that is + * flat outside the rim, and inside it fills the sombrero + * but only up to 150. If the rim height varies, the + * filled seed outside the rim will be at the highest + * point on the rim, which is a saddle point on the rim. + * (3) Reference paper : + * L. Vincent, Morphological grayscale reconstruction in image + * analysis: applications and efficient algorithms, IEEE Transactions + * on Image Processing, vol. 2, no. 2, pp. 176-201, 1993. + */ +static void +seedfillGrayLow(l_uint32 *datas, + l_int32 w, + l_int32 h, + l_int32 wpls, + l_uint32 *datam, + l_int32 wplm, + l_int32 connectivity) +{ +l_uint8 val1, val2, val3, val4, val5, val6, val7, val8; +l_uint8 val, maxval, maskval, boolval; +l_int32 i, j, imax, jmax, queue_size; +l_uint32 *lines, *linem; +L_PIXEL *pixel; +L_QUEUE *lq_pixel; + + if (connectivity != 4 && connectivity != 8) { + L_ERROR("connectivity must be 4 or 8\n", __func__); + return; + } + + imax = h - 1; + jmax = w - 1; + + /* In the worst case, most of the pixels could be pushed + * onto the FIFO queue during anti-raster scan. However this + * will rarely happen, and we initialize the queue ptr size to + * the image perimeter. */ + lq_pixel = lqueueCreate(2 * (w + h)); + + switch (connectivity) + { + case 4: + /* UL --> LR scan (Raster Order) + * If I : mask image + * J : marker image + * Let p be the currect pixel; + * J(p) <- (max{J(p) union J(p) neighbors in raster order}) + * intersection I(p) */ + for (i = 0; i < h; i++) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = 0; j < w; j++) { + if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { + maxval = 0; + if (i > 0) + maxval = GET_DATA_BYTE(lines - wpls, j); + if (j > 0) { + val4 = GET_DATA_BYTE(lines, j - 1); + maxval = L_MAX(maxval, val4); + } + val = GET_DATA_BYTE(lines, j); + maxval = L_MAX(maxval, val); + val = L_MIN(maxval, maskval); + SET_DATA_BYTE(lines, j, val); + } + } + } + + /* LR --> UL scan (anti-raster order) + * Let p be the currect pixel; + * J(p) <- (max{J(p) union J(p) neighbors in anti-raster order}) + * intersection I(p) */ + for (i = imax; i >= 0; i--) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = jmax; j >= 0; j--) { + boolval = FALSE; + if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { + maxval = 0; + if (i < imax) + maxval = GET_DATA_BYTE(lines + wpls, j); + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + maxval = L_MAX(maxval, val5); + } + val = GET_DATA_BYTE(lines, j); + maxval = L_MAX(maxval, val); + val = L_MIN(maxval, maskval); + SET_DATA_BYTE(lines, j, val); + + /* + * If there exists a point (q) which belongs to J(p) + * neighbors in anti-raster order such that J(q) < J(p) + * and J(q) < I(q) then + * fifo_add(p) */ + if (i < imax) { + val7 = GET_DATA_BYTE(lines + wpls, j); + if ((val7 < val) && + (val7 < GET_DATA_BYTE(linem + wplm, j))) { + boolval = TRUE; + } + } + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + if (!boolval && (val5 < val) && + (val5 < GET_DATA_BYTE(linem, j + 1))) { + boolval = TRUE; + } + } + if (boolval) { + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i; + pixel->y = j; + lqueueAdd(lq_pixel, pixel); + } + } + } + } + + /* Propagation step: + * while fifo_empty = false + * p <- fifo_first() + * for every pixel (q) belong to neighbors of (p) + * if J(q) < J(p) and I(q) != J(q) + * J(q) <- min(J(p), I(q)); + * fifo_add(q); + * end + * end + * end */ + queue_size = lqueueGetCount(lq_pixel); + while (queue_size) { + pixel = (L_PIXEL *)lqueueRemove(lq_pixel); + i = pixel->x; + j = pixel->y; + LEPT_FREE(pixel); + lines = datas + i * wpls; + linem = datam + i * wplm; + + if ((val = GET_DATA_BYTE(lines, j)) > 0) { + if (i > 0) { + val2 = GET_DATA_BYTE(lines - wpls, j); + maskval = GET_DATA_BYTE(linem - wplm, j); + if (val > val2 && val2 != maskval) { + SET_DATA_BYTE(lines - wpls, j, L_MIN(val, maskval)); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i - 1; + pixel->y = j; + lqueueAdd(lq_pixel, pixel); + } + + } + if (j > 0) { + val4 = GET_DATA_BYTE(lines, j - 1); + maskval = GET_DATA_BYTE(linem, j - 1); + if (val > val4 && val4 != maskval) { + SET_DATA_BYTE(lines, j - 1, L_MIN(val, maskval)); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i; + pixel->y = j - 1; + lqueueAdd(lq_pixel, pixel); + } + } + if (i < imax) { + val7 = GET_DATA_BYTE(lines + wpls, j); + maskval = GET_DATA_BYTE(linem + wplm, j); + if (val > val7 && val7 != maskval) { + SET_DATA_BYTE(lines + wpls, j, L_MIN(val, maskval)); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i + 1; + pixel->y = j; + lqueueAdd(lq_pixel, pixel); + } + } + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + maskval = GET_DATA_BYTE(linem, j + 1); + if (val > val5 && val5 != maskval) { + SET_DATA_BYTE(lines, j + 1, L_MIN(val, maskval)); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i; + pixel->y = j + 1; + lqueueAdd(lq_pixel, pixel); + } + } + } + + queue_size = lqueueGetCount(lq_pixel); + } + break; + + case 8: + /* UL --> LR scan (Raster Order) + * If I : mask image + * J : marker image + * Let p be the currect pixel; + * J(p) <- (max{J(p) union J(p) neighbors in raster order}) + * intersection I(p) */ + for (i = 0; i < h; i++) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = 0; j < w; j++) { + if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { + maxval = 0; + if (i > 0) { + if (j > 0) + maxval = GET_DATA_BYTE(lines - wpls, j - 1); + if (j < jmax) { + val3 = GET_DATA_BYTE(lines - wpls, j + 1); + maxval = L_MAX(maxval, val3); + } + val2 = GET_DATA_BYTE(lines - wpls, j); + maxval = L_MAX(maxval, val2); + } + if (j > 0) { + val4 = GET_DATA_BYTE(lines, j - 1); + maxval = L_MAX(maxval, val4); + } + val = GET_DATA_BYTE(lines, j); + maxval = L_MAX(maxval, val); + val = L_MIN(maxval, maskval); + SET_DATA_BYTE(lines, j, val); + } + } + } + + /* LR --> UL scan (anti-raster order) + * Let p be the currect pixel; + * J(p) <- (max{J(p) union J(p) neighbors in anti-raster order}) + * intersection I(p) */ + for (i = imax; i >= 0; i--) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = jmax; j >= 0; j--) { + boolval = FALSE; + if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { + maxval = 0; + if (i < imax) { + if (j > 0) { + maxval = GET_DATA_BYTE(lines + wpls, j - 1); + } + if (j < jmax) { + val8 = GET_DATA_BYTE(lines + wpls, j + 1); + maxval = L_MAX(maxval, val8); + } + val7 = GET_DATA_BYTE(lines + wpls, j); + maxval = L_MAX(maxval, val7); + } + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + maxval = L_MAX(maxval, val5); + } + val = GET_DATA_BYTE(lines, j); + maxval = L_MAX(maxval, val); + val = L_MIN(maxval, maskval); + SET_DATA_BYTE(lines, j, val); + + /* If there exists a point (q) which belongs to J(p) + * neighbors in anti-raster order such that J(q) < J(p) + * and J(q) < I(q) then + * fifo_add(p) */ + if (i < imax) { + if (j > 0) { + val6 = GET_DATA_BYTE(lines + wpls, j - 1); + if ((val6 < val) && + (val6 < GET_DATA_BYTE(linem + wplm, j - 1))) { + boolval = TRUE; + } + } + if (j < jmax) { + val8 = GET_DATA_BYTE(lines + wpls, j + 1); + if (!boolval && (val8 < val) && + (val8 < GET_DATA_BYTE(linem + wplm, j + 1))) { + boolval = TRUE; + } + } + val7 = GET_DATA_BYTE(lines + wpls, j); + if (!boolval && (val7 < val) && + (val7 < GET_DATA_BYTE(linem + wplm, j))) { + boolval = TRUE; + } + } + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + if (!boolval && (val5 < val) && + (val5 < GET_DATA_BYTE(linem, j + 1))) { + boolval = TRUE; + } + } + if (boolval) { + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i; + pixel->y = j; + lqueueAdd(lq_pixel, pixel); + } + } + } + } + + /* Propagation step: + * while fifo_empty = false + * p <- fifo_first() + * for every pixel (q) belong to neighbors of (p) + * if J(q) < J(p) and I(q) != J(q) + * J(q) <- min(J(p), I(q)); + * fifo_add(q); + * end + * end + * end */ + queue_size = lqueueGetCount(lq_pixel); + while (queue_size) { + pixel = (L_PIXEL *)lqueueRemove(lq_pixel); + i = pixel->x; + j = pixel->y; + LEPT_FREE(pixel); + lines = datas + i * wpls; + linem = datam + i * wplm; + + if ((val = GET_DATA_BYTE(lines, j)) > 0) { + if (i > 0) { + if (j > 0) { + val1 = GET_DATA_BYTE(lines - wpls, j - 1); + maskval = GET_DATA_BYTE(linem - wplm, j - 1); + if (val > val1 && val1 != maskval) { + SET_DATA_BYTE(lines - wpls, j - 1, + L_MIN(val, maskval)); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i - 1; + pixel->y = j - 1; + lqueueAdd(lq_pixel, pixel); + } + } + if (j < jmax) { + val3 = GET_DATA_BYTE(lines - wpls, j + 1); + maskval = GET_DATA_BYTE(linem - wplm, j + 1); + if (val > val3 && val3 != maskval) { + SET_DATA_BYTE(lines - wpls, j + 1, + L_MIN(val, maskval)); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i - 1; + pixel->y = j + 1; + lqueueAdd(lq_pixel, pixel); + } + } + val2 = GET_DATA_BYTE(lines - wpls, j); + maskval = GET_DATA_BYTE(linem - wplm, j); + if (val > val2 && val2 != maskval) { + SET_DATA_BYTE(lines - wpls, j, L_MIN(val, maskval)); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i - 1; + pixel->y = j; + lqueueAdd(lq_pixel, pixel); + } + + } + if (j > 0) { + val4 = GET_DATA_BYTE(lines, j - 1); + maskval = GET_DATA_BYTE(linem, j - 1); + if (val > val4 && val4 != maskval) { + SET_DATA_BYTE(lines, j - 1, L_MIN(val, maskval)); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i; + pixel->y = j - 1; + lqueueAdd(lq_pixel, pixel); + } + } + if (i < imax) { + if (j > 0) { + val6 = GET_DATA_BYTE(lines + wpls, j - 1); + maskval = GET_DATA_BYTE(linem + wplm, j - 1); + if (val > val6 && val6 != maskval) { + SET_DATA_BYTE(lines + wpls, j - 1, + L_MIN(val, maskval)); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i + 1; + pixel->y = j - 1; + lqueueAdd(lq_pixel, pixel); + } + } + if (j < jmax) { + val8 = GET_DATA_BYTE(lines + wpls, j + 1); + maskval = GET_DATA_BYTE(linem + wplm, j + 1); + if (val > val8 && val8 != maskval) { + SET_DATA_BYTE(lines + wpls, j + 1, + L_MIN(val, maskval)); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i + 1; + pixel->y = j + 1; + lqueueAdd(lq_pixel, pixel); + } + } + val7 = GET_DATA_BYTE(lines + wpls, j); + maskval = GET_DATA_BYTE(linem + wplm, j); + if (val > val7 && val7 != maskval) { + SET_DATA_BYTE(lines + wpls, j, L_MIN(val, maskval)); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i + 1; + pixel->y = j; + lqueueAdd(lq_pixel, pixel); + } + } + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + maskval = GET_DATA_BYTE(linem, j + 1); + if (val > val5 && val5 != maskval) { + SET_DATA_BYTE(lines, j + 1, L_MIN(val, maskval)); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i; + pixel->y = j + 1; + lqueueAdd(lq_pixel, pixel); + } + } + } + + queue_size = lqueueGetCount(lq_pixel); + } + break; + + default: + L_ERROR("shouldn't get here!\n", __func__); + } + + lqueueDestroy(&lq_pixel, TRUE); +} + + +/*! + * \brief seedfillGrayInvLow() + * + * Notes: + * (1) The pixels are numbered as follows: + * 1 2 3 + * 4 x 5 + * 6 7 8 + * This low-level filling operation consists of two scans, + * raster and anti-raster, covering the entire seed image. + * During the anti-raster scan, every pixel p such that its + * current value could still be propagated during the next + * raster scanning is put into the FIFO-queue. + * Next step is the propagation step where where we update + * and propagate the values using FIFO structure created in + * anti-raster scan. + * (2) The "Inv" signifies the fact that in this case, filling + * of the seed only takes place when the seed value is + * greater than the mask value. The mask will act to stop + * the fill when it is higher than the seed level. (This is + * in contrast to conventional grayscale filling where the + * seed always fills below the mask.) + * (3) An example of use is a basin, described by the mask (pixm), + * where within the basin, the seed pix (pixs) gets filled to the + * height of the highest seed pixel that is above its + * corresponding max pixel. Filling occurs while the + * propagating seed pixels in pixs are larger than the + * corresponding mask values in pixm. + * (4) Reference paper : + * L. Vincent, Morphological grayscale reconstruction in image + * analysis: applications and efficient algorithms, IEEE Transactions + * on Image Processing, vol. 2, no. 2, pp. 176-201, 1993. + */ +static void +seedfillGrayInvLow(l_uint32 *datas, + l_int32 w, + l_int32 h, + l_int32 wpls, + l_uint32 *datam, + l_int32 wplm, + l_int32 connectivity) +{ +l_uint8 val1, val2, val3, val4, val5, val6, val7, val8; +l_uint8 val, maxval, maskval, boolval; +l_int32 i, j, imax, jmax, queue_size; +l_uint32 *lines, *linem; +L_PIXEL *pixel; +L_QUEUE *lq_pixel; + + if (connectivity != 4 && connectivity != 8) { + L_ERROR("connectivity must be 4 or 8\n", __func__); + return; + } + + imax = h - 1; + jmax = w - 1; + + /* In the worst case, most of the pixels could be pushed + * onto the FIFO queue during anti-raster scan. However this + * will rarely happen, and we initialize the queue ptr size to + * the image perimeter. */ + lq_pixel = lqueueCreate(2 * (w + h)); + + switch (connectivity) + { + case 4: + /* UL --> LR scan (Raster Order) + * If I : mask image + * J : marker image + * Let p be the currect pixel; + * tmp <- max{J(p) union J(p) neighbors in raster order} + * if (tmp > I(p)) + * J(p) <- tmp + * end */ + for (i = 0; i < h; i++) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = 0; j < w; j++) { + if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { + maxval = GET_DATA_BYTE(lines, j); + if (i > 0) { + val2 = GET_DATA_BYTE(lines - wpls, j); + maxval = L_MAX(maxval, val2); + } + if (j > 0) { + val4 = GET_DATA_BYTE(lines, j - 1); + maxval = L_MAX(maxval, val4); + } + if (maxval > maskval) + SET_DATA_BYTE(lines, j, maxval); + } + } + } + + /* LR --> UL scan (anti-raster order) + * If I : mask image + * J : marker image + * Let p be the currect pixel; + * tmp <- max{J(p) union J(p) neighbors in anti-raster order} + * if (tmp > I(p)) + * J(p) <- tmp + * end */ + for (i = imax; i >= 0; i--) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = jmax; j >= 0; j--) { + boolval = FALSE; + if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { + val = maxval = GET_DATA_BYTE(lines, j); + if (i < imax) { + val7 = GET_DATA_BYTE(lines + wpls, j); + maxval = L_MAX(maxval, val7); + } + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + maxval = L_MAX(maxval, val5); + } + if (maxval > maskval) + SET_DATA_BYTE(lines, j, maxval); + val = GET_DATA_BYTE(lines, j); + + /* + * If there exists a point (q) which belongs to J(p) + * neighbors in anti-raster order such that J(q) < J(p) + * and J(p) > I(q) then + * fifo_add(p) */ + if (i < imax) { + val7 = GET_DATA_BYTE(lines + wpls, j); + if ((val7 < val) && + (val > GET_DATA_BYTE(linem + wplm, j))) { + boolval = TRUE; + } + } + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + if (!boolval && (val5 < val) && + (val > GET_DATA_BYTE(linem, j + 1))) { + boolval = TRUE; + } + } + if (boolval) { + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i; + pixel->y = j; + lqueueAdd(lq_pixel, pixel); + } + } + } + } + + /* Propagation step: + * while fifo_empty = false + * p <- fifo_first() + * for every pixel (q) belong to neighbors of (p) + * if J(q) < J(p) and J(p) > I(q) + * J(q) <- min(J(p), I(q)); + * fifo_add(q); + * end + * end + * end */ + queue_size = lqueueGetCount(lq_pixel); + while (queue_size) { + pixel = (L_PIXEL *)lqueueRemove(lq_pixel); + i = pixel->x; + j = pixel->y; + LEPT_FREE(pixel); + lines = datas + i * wpls; + linem = datam + i * wplm; + + if ((val = GET_DATA_BYTE(lines, j)) > 0) { + if (i > 0) { + val2 = GET_DATA_BYTE(lines - wpls, j); + maskval = GET_DATA_BYTE(linem - wplm, j); + if (val > val2 && val > maskval) { + SET_DATA_BYTE(lines - wpls, j, val); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i - 1; + pixel->y = j; + lqueueAdd(lq_pixel, pixel); + } + + } + if (j > 0) { + val4 = GET_DATA_BYTE(lines, j - 1); + maskval = GET_DATA_BYTE(linem, j - 1); + if (val > val4 && val > maskval) { + SET_DATA_BYTE(lines, j - 1, val); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i; + pixel->y = j - 1; + lqueueAdd(lq_pixel, pixel); + } + } + if (i < imax) { + val7 = GET_DATA_BYTE(lines + wpls, j); + maskval = GET_DATA_BYTE(linem + wplm, j); + if (val > val7 && val > maskval) { + SET_DATA_BYTE(lines + wpls, j, val); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i + 1; + pixel->y = j; + lqueueAdd(lq_pixel, pixel); + } + } + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + maskval = GET_DATA_BYTE(linem, j + 1); + if (val > val5 && val > maskval) { + SET_DATA_BYTE(lines, j + 1, val); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i; + pixel->y = j + 1; + lqueueAdd(lq_pixel, pixel); + } + } + } + + queue_size = lqueueGetCount(lq_pixel); + } + break; + + case 8: + /* UL --> LR scan (Raster Order) + * If I : mask image + * J : marker image + * Let p be the currect pixel; + * tmp <- max{J(p) union J(p) neighbors in raster order} + * if (tmp > I(p)) + * J(p) <- tmp + * end */ + for (i = 0; i < h; i++) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = 0; j < w; j++) { + if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { + maxval = GET_DATA_BYTE(lines, j); + if (i > 0) { + if (j > 0) { + val1 = GET_DATA_BYTE(lines - wpls, j - 1); + maxval = L_MAX(maxval, val1); + } + if (j < jmax) { + val3 = GET_DATA_BYTE(lines - wpls, j + 1); + maxval = L_MAX(maxval, val3); + } + val2 = GET_DATA_BYTE(lines - wpls, j); + maxval = L_MAX(maxval, val2); + } + if (j > 0) { + val4 = GET_DATA_BYTE(lines, j - 1); + maxval = L_MAX(maxval, val4); + } + if (maxval > maskval) + SET_DATA_BYTE(lines, j, maxval); + } + } + } + + /* LR --> UL scan (anti-raster order) + * If I : mask image + * J : marker image + * Let p be the currect pixel; + * tmp <- max{J(p) union J(p) neighbors in anti-raster order} + * if (tmp > I(p)) + * J(p) <- tmp + * end */ + for (i = imax; i >= 0; i--) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = jmax; j >= 0; j--) { + boolval = FALSE; + if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { + maxval = GET_DATA_BYTE(lines, j); + if (i < imax) { + if (j > 0) { + val6 = GET_DATA_BYTE(lines + wpls, j - 1); + maxval = L_MAX(maxval, val6); + } + if (j < jmax) { + val8 = GET_DATA_BYTE(lines + wpls, j + 1); + maxval = L_MAX(maxval, val8); + } + val7 = GET_DATA_BYTE(lines + wpls, j); + maxval = L_MAX(maxval, val7); + } + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + maxval = L_MAX(maxval, val5); + } + if (maxval > maskval) + SET_DATA_BYTE(lines, j, maxval); + val = GET_DATA_BYTE(lines, j); + + /* + * If there exists a point (q) which belongs to J(p) + * neighbors in anti-raster order such that J(q) < J(p) + * and J(p) > I(q) then + * fifo_add(p) */ + if (i < imax) { + if (j > 0) { + val6 = GET_DATA_BYTE(lines + wpls, j - 1); + if ((val6 < val) && + (val > GET_DATA_BYTE(linem + wplm, j - 1))) { + boolval = TRUE; + } + } + if (j < jmax) { + val8 = GET_DATA_BYTE(lines + wpls, j + 1); + if (!boolval && (val8 < val) && + (val > GET_DATA_BYTE(linem + wplm, j + 1))) { + boolval = TRUE; + } + } + val7 = GET_DATA_BYTE(lines + wpls, j); + if (!boolval && (val7 < val) && + (val > GET_DATA_BYTE(linem + wplm, j))) { + boolval = TRUE; + } + } + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + if (!boolval && (val5 < val) && + (val > GET_DATA_BYTE(linem, j + 1))) { + boolval = TRUE; + } + } + if (boolval) { + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i; + pixel->y = j; + lqueueAdd(lq_pixel, pixel); + } + } + } + } + + /* Propagation step: + * while fifo_empty = false + * p <- fifo_first() + * for every pixel (q) belong to neighbors of (p) + * if J(q) < J(p) and J(p) > I(q) + * J(q) <- min(J(p), I(q)); + * fifo_add(q); + * end + * end + * end */ + queue_size = lqueueGetCount(lq_pixel); + while (queue_size) { + pixel = (L_PIXEL *)lqueueRemove(lq_pixel); + i = pixel->x; + j = pixel->y; + LEPT_FREE(pixel); + lines = datas + i * wpls; + linem = datam + i * wplm; + + if ((val = GET_DATA_BYTE(lines, j)) > 0) { + if (i > 0) { + if (j > 0) { + val1 = GET_DATA_BYTE(lines - wpls, j - 1); + maskval = GET_DATA_BYTE(linem - wplm, j - 1); + if (val > val1 && val > maskval) { + SET_DATA_BYTE(lines - wpls, j - 1, val); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i - 1; + pixel->y = j - 1; + lqueueAdd(lq_pixel, pixel); + } + } + if (j < jmax) { + val3 = GET_DATA_BYTE(lines - wpls, j + 1); + maskval = GET_DATA_BYTE(linem - wplm, j + 1); + if (val > val3 && val > maskval) { + SET_DATA_BYTE(lines - wpls, j + 1, val); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i - 1; + pixel->y = j + 1; + lqueueAdd(lq_pixel, pixel); + } + } + val2 = GET_DATA_BYTE(lines - wpls, j); + maskval = GET_DATA_BYTE(linem - wplm, j); + if (val > val2 && val > maskval) { + SET_DATA_BYTE(lines - wpls, j, val); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i - 1; + pixel->y = j; + lqueueAdd(lq_pixel, pixel); + } + + } + if (j > 0) { + val4 = GET_DATA_BYTE(lines, j - 1); + maskval = GET_DATA_BYTE(linem, j - 1); + if (val > val4 && val > maskval) { + SET_DATA_BYTE(lines, j - 1, val); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i; + pixel->y = j - 1; + lqueueAdd(lq_pixel, pixel); + } + } + if (i < imax) { + if (j > 0) { + val6 = GET_DATA_BYTE(lines + wpls, j - 1); + maskval = GET_DATA_BYTE(linem + wplm, j - 1); + if (val > val6 && val > maskval) { + SET_DATA_BYTE(lines + wpls, j - 1, val); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i + 1; + pixel->y = j - 1; + lqueueAdd(lq_pixel, pixel); + } + } + if (j < jmax) { + val8 = GET_DATA_BYTE(lines + wpls, j + 1); + maskval = GET_DATA_BYTE(linem + wplm, j + 1); + if (val > val8 && val > maskval) { + SET_DATA_BYTE(lines + wpls, j + 1, val); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i + 1; + pixel->y = j + 1; + lqueueAdd(lq_pixel, pixel); + } + } + val7 = GET_DATA_BYTE(lines + wpls, j); + maskval = GET_DATA_BYTE(linem + wplm, j); + if (val > val7 && val > maskval) { + SET_DATA_BYTE(lines + wpls, j, val); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i + 1; + pixel->y = j; + lqueueAdd(lq_pixel, pixel); + } + } + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + maskval = GET_DATA_BYTE(linem, j + 1); + if (val > val5 && val > maskval) { + SET_DATA_BYTE(lines, j + 1, val); + pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); + pixel->x = i; + pixel->y = j + 1; + lqueueAdd(lq_pixel, pixel); + } + } + } + + queue_size = lqueueGetCount(lq_pixel); + } + break; + + default: + L_ERROR("shouldn't get here!\n", __func__); + } + + lqueueDestroy(&lq_pixel, TRUE); +} + + +/*-----------------------------------------------------------------------* + * Vincent's Iterative Grayscale Seedfill method * + *-----------------------------------------------------------------------*/ +/*! + * \brief pixSeedfillGraySimple() + * + * \param[in] pixs 8 bpp seed; filled in place + * \param[in] pixm 8 bpp filling mask + * \param[in] connectivity 4 or 8 + * \return 0 if OK, 1 on error + * + * <pre> + * Notes: + * (1) This is an in-place filling operation on the seed, pixs, + * where the clipping mask is always above or at the level + * of the seed as it is filled. + * (2) For details of the operation, see the description in + * seedfillGrayLowSimple() and the code there. + * (3) As an example of use, see the description in pixHDome(). + * There, the seed is an image where each pixel is a fixed + * amount smaller than the corresponding mask pixel. + * (4) Reference paper : + * L. Vincent, Morphological grayscale reconstruction in image + * analysis: applications and efficient algorithms, IEEE Transactions + * on Image Processing, vol. 2, no. 2, pp. 176-201, 1993. + * </pre> + */ +l_ok +pixSeedfillGraySimple(PIX *pixs, + PIX *pixm, + l_int32 connectivity) +{ +l_int32 i, h, w, wpls, wplm, boolval; +l_uint32 *datas, *datam; +PIX *pixt; + + if (!pixs || pixGetDepth(pixs) != 8) + return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); + if (!pixm || pixGetDepth(pixm) != 8) + return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1); + if (connectivity != 4 && connectivity != 8) + return ERROR_INT("connectivity not in {4,8}", __func__, 1); + + /* Make sure the sizes of seed and mask images are the same */ + if (pixSizesEqual(pixs, pixm) == 0) + return ERROR_INT("pixs and pixm sizes differ", __func__, 1); + + /* This is used to test for completion */ + if ((pixt = pixCreateTemplate(pixs)) == NULL) + return ERROR_INT("pixt not made", __func__, 1); + + datas = pixGetData(pixs); + datam = pixGetData(pixm); + wpls = pixGetWpl(pixs); + wplm = pixGetWpl(pixm); + pixGetDimensions(pixs, &w, &h, NULL); + for (i = 0; i < MaxIters; i++) { + pixCopy(pixt, pixs); + seedfillGrayLowSimple(datas, w, h, wpls, datam, wplm, connectivity); + pixEqual(pixs, pixt, &boolval); + if (boolval == 1) { +#if DEBUG_PRINT_ITERS + L_INFO("Gray seed fill converged: %d iters\n", __func__, i + 1); +#endif /* DEBUG_PRINT_ITERS */ + break; + } + } + + pixDestroy(&pixt); + return 0; +} + + +/*! + * \brief pixSeedfillGrayInvSimple() + * + * \param[in] pixs 8 bpp seed; filled in place + * \param[in] pixm 8 bpp filling mask + * \param[in] connectivity 4 or 8 + * \return 0 if OK, 1 on error + * + * <pre> + * Notes: + * (1) This is an in-place filling operation on the seed, pixs, + * where the clipping mask is always below or at the level + * of the seed as it is filled. Think of filling up a basin + * to a particular level, given by the maximum seed value + * in the basin. Outside the filled region, the mask + * is above the filling level. + * (2) Contrast this with pixSeedfillGraySimple(), where the clipping mask + * is always above or at the level of the fill. An example + * of its use is the hdome fill, where the seed is an image + * where each pixel is a fixed amount smaller than the + * corresponding mask pixel. + * </pre> + */ +l_ok +pixSeedfillGrayInvSimple(PIX *pixs, + PIX *pixm, + l_int32 connectivity) +{ +l_int32 i, h, w, wpls, wplm, boolval; +l_uint32 *datas, *datam; +PIX *pixt; + + if (!pixs || pixGetDepth(pixs) != 8) + return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); + if (!pixm || pixGetDepth(pixm) != 8) + return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1); + if (connectivity != 4 && connectivity != 8) + return ERROR_INT("connectivity not in {4,8}", __func__, 1); + + /* Make sure the sizes of seed and mask images are the same */ + if (pixSizesEqual(pixs, pixm) == 0) + return ERROR_INT("pixs and pixm sizes differ", __func__, 1); + + /* This is used to test for completion */ + if ((pixt = pixCreateTemplate(pixs)) == NULL) + return ERROR_INT("pixt not made", __func__, 1); + + datas = pixGetData(pixs); + datam = pixGetData(pixm); + wpls = pixGetWpl(pixs); + wplm = pixGetWpl(pixm); + pixGetDimensions(pixs, &w, &h, NULL); + for (i = 0; i < MaxIters; i++) { + pixCopy(pixt, pixs); + seedfillGrayInvLowSimple(datas, w, h, wpls, datam, wplm, connectivity); + pixEqual(pixs, pixt, &boolval); + if (boolval == 1) { +#if DEBUG_PRINT_ITERS + L_INFO("Gray seed fill converged: %d iters\n", __func__, i + 1); +#endif /* DEBUG_PRINT_ITERS */ + break; + } + } + + pixDestroy(&pixt); + return 0; +} + + +/*! + * \brief seedfillGrayLowSimple() + * + * Notes: + * (1) The pixels are numbered as follows: + * 1 2 3 + * 4 x 5 + * 6 7 8 + * This low-level filling operation consists of two scans, + * raster and anti-raster, covering the entire seed image. + * The caller typically iterates until the filling is + * complete. + * (2) The filling action can be visualized from the following example. + * Suppose the mask, which clips the fill, is a sombrero-shaped + * surface, where the highest point is 200 and the low pixels + * around the rim are 30. Beyond the rim, the mask goes up a bit. + * Suppose the seed, which is filled, consists of a single point + * of height 150, located below the max of the mask, with + * the rest 0. Then in the raster scan, nothing happens until + * the high seed point is encountered, and then this value is + * propagated right and down, until it hits the side of the + * sombrero. The seed can never exceed the mask, so it fills + * to the rim, going lower along the mask surface. When it + * passes the rim, the seed continues to fill at the rim + * height to the edge of the seed image. Then on the + * anti-raster scan, the seed fills flat inside the + * sombrero to the upper and left, and then out from the + * rim as before. The final result has a seed that is + * flat outside the rim, and inside it fills the sombrero + * but only up to 150. If the rim height varies, the + * filled seed outside the rim will be at the highest + * point on the rim, which is a saddle point on the rim. + */ +static void +seedfillGrayLowSimple(l_uint32 *datas, + l_int32 w, + l_int32 h, + l_int32 wpls, + l_uint32 *datam, + l_int32 wplm, + l_int32 connectivity) +{ +l_uint8 val2, val3, val4, val5, val7, val8; +l_uint8 val, maxval, maskval; +l_int32 i, j, imax, jmax; +l_uint32 *lines, *linem; + + imax = h - 1; + jmax = w - 1; + + switch (connectivity) + { + case 4: + /* UL --> LR scan */ + for (i = 0; i < h; i++) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = 0; j < w; j++) { + if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { + maxval = 0; + if (i > 0) + maxval = GET_DATA_BYTE(lines - wpls, j); + if (j > 0) { + val4 = GET_DATA_BYTE(lines, j - 1); + maxval = L_MAX(maxval, val4); + } + val = GET_DATA_BYTE(lines, j); + maxval = L_MAX(maxval, val); + val = L_MIN(maxval, maskval); + SET_DATA_BYTE(lines, j, val); + } + } + } + + /* LR --> UL scan */ + for (i = imax; i >= 0; i--) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = jmax; j >= 0; j--) { + if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { + maxval = 0; + if (i < imax) + maxval = GET_DATA_BYTE(lines + wpls, j); + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + maxval = L_MAX(maxval, val5); + } + val = GET_DATA_BYTE(lines, j); + maxval = L_MAX(maxval, val); + val = L_MIN(maxval, maskval); + SET_DATA_BYTE(lines, j, val); + } + } + } + break; + + case 8: + /* UL --> LR scan */ + for (i = 0; i < h; i++) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = 0; j < w; j++) { + if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { + maxval = 0; + if (i > 0) { + if (j > 0) + maxval = GET_DATA_BYTE(lines - wpls, j - 1); + if (j < jmax) { + val2 = GET_DATA_BYTE(lines - wpls, j + 1); + maxval = L_MAX(maxval, val2); + } + val3 = GET_DATA_BYTE(lines - wpls, j); + maxval = L_MAX(maxval, val3); + } + if (j > 0) { + val4 = GET_DATA_BYTE(lines, j - 1); + maxval = L_MAX(maxval, val4); + } + val = GET_DATA_BYTE(lines, j); + maxval = L_MAX(maxval, val); + val = L_MIN(maxval, maskval); + SET_DATA_BYTE(lines, j, val); + } + } + } + + /* LR --> UL scan */ + for (i = imax; i >= 0; i--) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = jmax; j >= 0; j--) { + if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { + maxval = 0; + if (i < imax) { + if (j > 0) + maxval = GET_DATA_BYTE(lines + wpls, j - 1); + if (j < jmax) { + val8 = GET_DATA_BYTE(lines + wpls, j + 1); + maxval = L_MAX(maxval, val8); + } + val7 = GET_DATA_BYTE(lines + wpls, j); + maxval = L_MAX(maxval, val7); + } + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + maxval = L_MAX(maxval, val5); + } + val = GET_DATA_BYTE(lines, j); + maxval = L_MAX(maxval, val); + val = L_MIN(maxval, maskval); + SET_DATA_BYTE(lines, j, val); + } + } + } + break; + + default: + L_ERROR("connectivity must be 4 or 8\n", __func__); + } +} + + +/*! + * \brief seedfillGrayInvLowSimple() + * + * Notes: + * (1) The pixels are numbered as follows: + * 1 2 3 + * 4 x 5 + * 6 7 8 + * This low-level filling operation consists of two scans, + * raster and anti-raster, covering the entire seed image. + * The caller typically iterates until the filling is + * complete. + * (2) The "Inv" signifies the fact that in this case, filling + * of the seed only takes place when the seed value is + * greater than the mask value. The mask will act to stop + * the fill when it is higher than the seed level. (This is + * in contrast to conventional grayscale filling where the + * seed always fills below the mask.) + * (3) An example of use is a basin, described by the mask (pixm), + * where within the basin, the seed pix (pixs) gets filled to the + * height of the highest seed pixel that is above its + * corresponding max pixel. Filling occurs while the + * propagating seed pixels in pixs are larger than the + * corresponding mask values in pixm. + */ +static void +seedfillGrayInvLowSimple(l_uint32 *datas, + l_int32 w, + l_int32 h, + l_int32 wpls, + l_uint32 *datam, + l_int32 wplm, + l_int32 connectivity) +{ +l_uint8 val1, val2, val3, val4, val5, val6, val7, val8; +l_uint8 maxval, maskval; +l_int32 i, j, imax, jmax; +l_uint32 *lines, *linem; + + imax = h - 1; + jmax = w - 1; + + switch (connectivity) + { + case 4: + /* UL --> LR scan */ + for (i = 0; i < h; i++) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = 0; j < w; j++) { + if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { + maxval = GET_DATA_BYTE(lines, j); + if (i > 0) { + val2 = GET_DATA_BYTE(lines - wpls, j); + maxval = L_MAX(maxval, val2); + } + if (j > 0) { + val4 = GET_DATA_BYTE(lines, j - 1); + maxval = L_MAX(maxval, val4); + } + if (maxval > maskval) + SET_DATA_BYTE(lines, j, maxval); + } + } + } + + /* LR --> UL scan */ + for (i = imax; i >= 0; i--) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = jmax; j >= 0; j--) { + if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { + maxval = GET_DATA_BYTE(lines, j); + if (i < imax) { + val7 = GET_DATA_BYTE(lines + wpls, j); + maxval = L_MAX(maxval, val7); + } + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + maxval = L_MAX(maxval, val5); + } + if (maxval > maskval) + SET_DATA_BYTE(lines, j, maxval); + } + } + } + break; + + case 8: + /* UL --> LR scan */ + for (i = 0; i < h; i++) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = 0; j < w; j++) { + if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { + maxval = GET_DATA_BYTE(lines, j); + if (i > 0) { + if (j > 0) { + val1 = GET_DATA_BYTE(lines - wpls, j - 1); + maxval = L_MAX(maxval, val1); + } + if (j < jmax) { + val2 = GET_DATA_BYTE(lines - wpls, j + 1); + maxval = L_MAX(maxval, val2); + } + val3 = GET_DATA_BYTE(lines - wpls, j); + maxval = L_MAX(maxval, val3); + } + if (j > 0) { + val4 = GET_DATA_BYTE(lines, j - 1); + maxval = L_MAX(maxval, val4); + } + if (maxval > maskval) + SET_DATA_BYTE(lines, j, maxval); + } + } + } + + /* LR --> UL scan */ + for (i = imax; i >= 0; i--) { + lines = datas + i * wpls; + linem = datam + i * wplm; + for (j = jmax; j >= 0; j--) { + if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { + maxval = GET_DATA_BYTE(lines, j); + if (i < imax) { + if (j > 0) { + val6 = GET_DATA_BYTE(lines + wpls, j - 1); + maxval = L_MAX(maxval, val6); + } + if (j < jmax) { + val8 = GET_DATA_BYTE(lines + wpls, j + 1); + maxval = L_MAX(maxval, val8); + } + val7 = GET_DATA_BYTE(lines + wpls, j); + maxval = L_MAX(maxval, val7); + } + if (j < jmax) { + val5 = GET_DATA_BYTE(lines, j + 1); + maxval = L_MAX(maxval, val5); + } + if (maxval > maskval) + SET_DATA_BYTE(lines, j, maxval); + } + } + } + break; + + default: + L_ERROR("connectivity must be 4 or 8\n", __func__); + } +} + + +/*-----------------------------------------------------------------------* + * Gray seedfill variations * + *-----------------------------------------------------------------------*/ +/*! + * \brief pixSeedfillGrayBasin() + * + * \param[in] pixb binary mask giving seed locations + * \param[in] pixm 8 bpp basin-type filling mask + * \param[in] delta amount of seed value above mask + * \param[in] connectivity 4 or 8 + * \return pixd filled seed if OK, NULL on error + * + * <pre> + * Notes: + * (1) This fills from a seed within basins defined by a filling mask. + * The seed value(s) are greater than the corresponding + * filling mask value, and the result has the bottoms of + * the basins raised by the initial seed value. + * (2) The seed has value 255 except where pixb has fg (1), which + * are the seed 'locations'. At the seed locations, the seed + * value is the corresponding value of the mask pixel in pixm + * plus %delta. If %delta == 0, we return a copy of pixm. + * (3) The actual filling is done using the standard grayscale filling + * operation on the inverse of the mask and using the inverse + * of the seed image. After filling, we return the inverse of + * the filled seed. + * (4) As an example of use: pixm can describe a grayscale image + * of text, where the (dark) text pixels are basins of + * low values; pixb can identify the local minima in pixm (say, at + * the bottom of the basins); and delta is the amount that we wish + * to raise (lighten) the basins. We construct the seed + * (a.k.a marker) image from pixb, pixm and %delta. + * </pre> + */ +PIX * +pixSeedfillGrayBasin(PIX *pixb, + PIX *pixm, + l_int32 delta, + l_int32 connectivity) +{ +PIX *pixbi, *pixmi, *pixsd; + + if (!pixb || pixGetDepth(pixb) != 1) + return (PIX *)ERROR_PTR("pixb undefined or not 1 bpp", __func__, NULL); + if (!pixm || pixGetDepth(pixm) != 8) + return (PIX *)ERROR_PTR("pixm undefined or not 8 bpp", __func__, NULL); + if (connectivity != 4 && connectivity != 8) + return (PIX *)ERROR_PTR("connectivity not in {4,8}", __func__, NULL); + + if (delta <= 0) { + L_WARNING("delta <= 0; returning a copy of pixm\n", __func__); + return pixCopy(NULL, pixm); + } + + /* Add delta to every pixel in pixm */ + pixsd = pixCopy(NULL, pixm); + pixAddConstantGray(pixsd, delta); + + /* Prepare the seed. Write 255 in all pixels of + * ([pixm] + delta) where pixb is 0. */ + pixbi = pixInvert(NULL, pixb); + pixSetMasked(pixsd, pixbi, 255); + + /* Fill the inverse seed, using the inverse clipping mask */ + pixmi = pixInvert(NULL, pixm); + pixInvert(pixsd, pixsd); + pixSeedfillGray(pixsd, pixmi, connectivity); + + /* Re-invert the filled seed */ + pixInvert(pixsd, pixsd); + + pixDestroy(&pixbi); + pixDestroy(&pixmi); + return pixsd; +} + + +/*-----------------------------------------------------------------------* + * Vincent's Distance Function method * + *-----------------------------------------------------------------------*/ +/*! + * \brief pixDistanceFunction() + * + * \param[in] pixs 1 bpp + * \param[in] connectivity 4 or 8 + * \param[in] outdepth 8 or 16 bits for pixd + * \param[in] boundcond L_BOUNDARY_BG, L_BOUNDARY_FG + * \return pixd, or NULL on error + * + * <pre> + * Notes: + * (1) This computes the distance of each pixel from the nearest + * background pixel. All bg pixels therefore have a distance of 0, + * and the fg pixel distances increase linearly from 1 at the + * boundary. It can also be used to compute the distance of + * each pixel from the nearest fg pixel, by inverting the input + * image before calling this function. Then all fg pixels have + * a distance 0 and the bg pixel distances increase linearly + * from 1 at the boundary. + * (2) The algorithm, described in Leptonica on the page on seed + * filling and connected components, is due to Luc Vincent. + * In brief, we generate an 8 or 16 bpp image, initialized + * with the fg pixels of the input pix set to 1 and the + * 1-boundary pixels (i.e., the boundary pixels of width 1 on + * the four sides set as either: + * * L_BOUNDARY_BG: 0 + * * L_BOUNDARY_FG: max + * where max = 0xff for 8 bpp and 0xffff for 16 bpp. + * Then do raster/anti-raster sweeps over all pixels interior + * to the 1-boundary, where the value of each new pixel is + * taken to be 1 more than the minimum of the previously-seen + * connected pixels (using either 4 or 8 connectivity). + * Finally, set the 1-boundary pixels using the mirrored method; + * this removes the max values there. + * (3) Using L_BOUNDARY_BG clamps the distance to 0 at the + * boundary. Using L_BOUNDARY_FG allows the distance + * at the image boundary to "float". + * (4) For 4-connected, one could initialize only the left and top + * 1-boundary pixels, and go all the way to the right + * and bottom; then coming back reset left and top. But we + * instead use a method that works for both 4- and 8-connected. + * </pre> + */ +PIX * +pixDistanceFunction(PIX *pixs, + l_int32 connectivity, + l_int32 outdepth, + l_int32 boundcond) +{ +l_int32 w, h, wpld; +l_uint32 *datad; +PIX *pixd; + + if (!pixs || pixGetDepth(pixs) != 1) + return (PIX *)ERROR_PTR("!pixs or pixs not 1 bpp", __func__, NULL); + if (connectivity != 4 && connectivity != 8) + return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); + if (outdepth != 8 && outdepth != 16) + return (PIX *)ERROR_PTR("outdepth not 8 or 16 bpp", __func__, NULL); + if (boundcond != L_BOUNDARY_BG && boundcond != L_BOUNDARY_FG) + return (PIX *)ERROR_PTR("invalid boundcond", __func__, NULL); + + pixGetDimensions(pixs, &w, &h, NULL); + if ((pixd = pixCreate(w, h, outdepth)) == NULL) + return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); + datad = pixGetData(pixd); + wpld = pixGetWpl(pixd); + + /* Initialize the fg pixels to 1 and the bg pixels to 0 */ + pixSetMasked(pixd, pixs, 1); + + if (boundcond == L_BOUNDARY_BG) { + distanceFunctionLow(datad, w, h, outdepth, wpld, connectivity); + } else { /* L_BOUNDARY_FG: set boundary pixels to max val */ + pixRasterop(pixd, 0, 0, w, 1, PIX_SET, NULL, 0, 0); /* top */ + pixRasterop(pixd, 0, h - 1, w, 1, PIX_SET, NULL, 0, 0); /* bot */ + pixRasterop(pixd, 0, 0, 1, h, PIX_SET, NULL, 0, 0); /* left */ + pixRasterop(pixd, w - 1, 0, 1, h, PIX_SET, NULL, 0, 0); /* right */ + + distanceFunctionLow(datad, w, h, outdepth, wpld, connectivity); + + /* Set each boundary pixel equal to the pixel next to it */ + pixSetMirroredBorder(pixd, 1, 1, 1, 1); + } + + return pixd; +} + + +/*! + * \brief distanceFunctionLow() + */ +static void +distanceFunctionLow(l_uint32 *datad, + l_int32 w, + l_int32 h, + l_int32 d, + l_int32 wpld, + l_int32 connectivity) +{ +l_int32 val1, val2, val3, val4, val5, val6, val7, val8, minval, val; +l_int32 i, j, imax, jmax; +l_uint32 *lined; + + /* One raster scan followed by one anti-raster scan. + * This does not re-set the 1-boundary of pixels that + * were initialized to either 0 or maxval. */ + imax = h - 1; + jmax = w - 1; + switch (connectivity) + { + case 4: + if (d == 8) { + /* UL --> LR scan */ + for (i = 1; i < imax; i++) { + lined = datad + i * wpld; + for (j = 1; j < jmax; j++) { + if ((val = GET_DATA_BYTE(lined, j)) > 0) { + val2 = GET_DATA_BYTE(lined - wpld, j); + val4 = GET_DATA_BYTE(lined, j - 1); + minval = L_MIN(val2, val4); + minval = L_MIN(minval, 254); + SET_DATA_BYTE(lined, j, minval + 1); + } + } + } + + /* LR --> UL scan */ + for (i = imax - 1; i > 0; i--) { + lined = datad + i * wpld; + for (j = jmax - 1; j > 0; j--) { + if ((val = GET_DATA_BYTE(lined, j)) > 0) { + val7 = GET_DATA_BYTE(lined + wpld, j); + val5 = GET_DATA_BYTE(lined, j + 1); + minval = L_MIN(val5, val7); + minval = L_MIN(minval + 1, val); + SET_DATA_BYTE(lined, j, minval); + } + } + } + } else { /* d == 16 */ + /* UL --> LR scan */ + for (i = 1; i < imax; i++) { + lined = datad + i * wpld; + for (j = 1; j < jmax; j++) { + if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { + val2 = GET_DATA_TWO_BYTES(lined - wpld, j); + val4 = GET_DATA_TWO_BYTES(lined, j - 1); + minval = L_MIN(val2, val4); + minval = L_MIN(minval, 0xfffe); + SET_DATA_TWO_BYTES(lined, j, minval + 1); + } + } + } + + /* LR --> UL scan */ + for (i = imax - 1; i > 0; i--) { + lined = datad + i * wpld; + for (j = jmax - 1; j > 0; j--) { + if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { + val7 = GET_DATA_TWO_BYTES(lined + wpld, j); + val5 = GET_DATA_TWO_BYTES(lined, j + 1); + minval = L_MIN(val5, val7); + minval = L_MIN(minval + 1, val); + SET_DATA_TWO_BYTES(lined, j, minval); + } + } + } + } + break; + + case 8: + if (d == 8) { + /* UL --> LR scan */ + for (i = 1; i < imax; i++) { + lined = datad + i * wpld; + for (j = 1; j < jmax; j++) { + if ((val = GET_DATA_BYTE(lined, j)) > 0) { + val1 = GET_DATA_BYTE(lined - wpld, j - 1); + val2 = GET_DATA_BYTE(lined - wpld, j); + val3 = GET_DATA_BYTE(lined - wpld, j + 1); + val4 = GET_DATA_BYTE(lined, j - 1); + minval = L_MIN(val1, val2); + minval = L_MIN(minval, val3); + minval = L_MIN(minval, val4); + minval = L_MIN(minval, 254); + SET_DATA_BYTE(lined, j, minval + 1); + } + } + } + + /* LR --> UL scan */ + for (i = imax - 1; i > 0; i--) { + lined = datad + i * wpld; + for (j = jmax - 1; j > 0; j--) { + if ((val = GET_DATA_BYTE(lined, j)) > 0) { + val8 = GET_DATA_BYTE(lined + wpld, j + 1); + val7 = GET_DATA_BYTE(lined + wpld, j); + val6 = GET_DATA_BYTE(lined + wpld, j - 1); + val5 = GET_DATA_BYTE(lined, j + 1); + minval = L_MIN(val8, val7); + minval = L_MIN(minval, val6); + minval = L_MIN(minval, val5); + minval = L_MIN(minval + 1, val); + SET_DATA_BYTE(lined, j, minval); + } + } + } + } else { /* d == 16 */ + /* UL --> LR scan */ + for (i = 1; i < imax; i++) { + lined = datad + i * wpld; + for (j = 1; j < jmax; j++) { + if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { + val1 = GET_DATA_TWO_BYTES(lined - wpld, j - 1); + val2 = GET_DATA_TWO_BYTES(lined - wpld, j); + val3 = GET_DATA_TWO_BYTES(lined - wpld, j + 1); + val4 = GET_DATA_TWO_BYTES(lined, j - 1); + minval = L_MIN(val1, val2); + minval = L_MIN(minval, val3); + minval = L_MIN(minval, val4); + minval = L_MIN(minval, 0xfffe); + SET_DATA_TWO_BYTES(lined, j, minval + 1); + } + } + } + + /* LR --> UL scan */ + for (i = imax - 1; i > 0; i--) { + lined = datad + i * wpld; + for (j = jmax - 1; j > 0; j--) { + if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { + val8 = GET_DATA_TWO_BYTES(lined + wpld, j + 1); + val7 = GET_DATA_TWO_BYTES(lined + wpld, j); + val6 = GET_DATA_TWO_BYTES(lined + wpld, j - 1); + val5 = GET_DATA_TWO_BYTES(lined, j + 1); + minval = L_MIN(val8, val7); + minval = L_MIN(minval, val6); + minval = L_MIN(minval, val5); + minval = L_MIN(minval + 1, val); + SET_DATA_TWO_BYTES(lined, j, minval); + } + } + } + } + break; + + default: + L_ERROR("connectivity must be 4 or 8\n", __func__); + } +} + + +/*-----------------------------------------------------------------------* + * Seed spread (based on distance function) * + *-----------------------------------------------------------------------*/ +/*! + * \brief pixSeedspread() + * + * \param[in] pixs 8 bpp + * \param[in] connectivity 4 or 8 + * \return pixd, or NULL on error + * + * <pre> + * Notes: + * (1) The raster/anti-raster method for implementing this filling + * operation was suggested by Ray Smith. + * (2) This takes an arbitrary set of nonzero pixels in pixs, which + * can be sparse, and spreads (extrapolates) the values to + * fill all the pixels in pixd with the nonzero value it is + * closest to in pixs. This is similar (though not completely + * equivalent) to doing a Voronoi tiling of the image, with a + * tile surrounding each pixel that has a nonzero value. + * All pixels within a tile are then closer to its "central" + * pixel than to any others. Then assign the value of the + * "central" pixel to each pixel in the tile. + * (3) This is implemented by computing a distance function in parallel + * with the fill. The distance function uses free boundary + * conditions (assumed maxval outside), and it controls the + * propagation of the pixels in pixd away from the nonzero + * (seed) values. This is done in 2 traversals (raster/antiraster). + * In the raster direction, whenever the distance function + * is nonzero, the spread pixel takes on the value of its + * predecessor that has the minimum distance value. In the + * antiraster direction, whenever the distance function is nonzero + * and its value is replaced by a smaller value, the spread + * pixel takes the value of the predecessor with the minimum + * distance value. + * (4) At boundaries where a pixel is equidistant from two + * nearest nonzero (seed) pixels, the decision of which value + * to use is arbitrary (greedy in search for minimum distance). + * This can give rise to strange-looking results, particularly + * for 4-connectivity where the L1 distance is computed from + * steps in N,S,E and W directions (no diagonals). + * </pre> + */ +PIX * +pixSeedspread(PIX *pixs, + l_int32 connectivity) +{ +l_int32 w, h, wplt, wplg; +l_uint32 *datat, *datag; +PIX *pixm, *pixt, *pixg, *pixd; + + if (!pixs || pixGetDepth(pixs) != 8) + return (PIX *)ERROR_PTR("!pixs or pixs not 8 bpp", __func__, NULL); + if (connectivity != 4 && connectivity != 8) + return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); + + /* Add a 4 byte border to pixs. This simplifies the computation. */ + pixg = pixAddBorder(pixs, 4, 0); + pixGetDimensions(pixg, &w, &h, NULL); + + /* Initialize distance function pixt. Threshold pixs to get + * a 0 at the seed points where the pixs pixel is nonzero, and + * a 1 at all points that need to be filled. Use this as a + * mask to set a 1 in pixt at all non-seed points. Also, set all + * pixt pixels in an interior boundary of width 1 to the + * maximum value. For debugging, to view the distance function, + * use pixConvert16To8(pixt, L_LS_BYTE) on small images. */ + pixm = pixThresholdToBinary(pixg, 1); + pixt = pixCreate(w, h, 16); + pixSetMasked(pixt, pixm, 1); + pixRasterop(pixt, 0, 0, w, 1, PIX_SET, NULL, 0, 0); /* top */ + pixRasterop(pixt, 0, h - 1, w, 1, PIX_SET, NULL, 0, 0); /* bot */ + pixRasterop(pixt, 0, 0, 1, h, PIX_SET, NULL, 0, 0); /* left */ + pixRasterop(pixt, w - 1, 0, 1, h, PIX_SET, NULL, 0, 0); /* right */ + datat = pixGetData(pixt); + wplt = pixGetWpl(pixt); + + /* Do the interpolation and remove the border. */ + datag = pixGetData(pixg); + wplg = pixGetWpl(pixg); + seedspreadLow(datag, w, h, wplg, datat, wplt, connectivity); + pixd = pixRemoveBorder(pixg, 4); + + pixDestroy(&pixm); + pixDestroy(&pixg); + pixDestroy(&pixt); + return pixd; +} + + +/*! + * \brief seedspreadLow() + * + * See pixSeedspread() for a brief description of the algorithm here. + */ +static void +seedspreadLow(l_uint32 *datad, + l_int32 w, + l_int32 h, + l_int32 wpld, + l_uint32 *datat, + l_int32 wplt, + l_int32 connectivity) +{ +l_int32 val1t, val2t, val3t, val4t, val5t, val6t, val7t, val8t; +l_int32 i, j, imax, jmax, minval, valt, vald; +l_uint32 *linet, *lined; + + /* One raster scan followed by one anti-raster scan. + * pixt is initialized to have 0 on pixels where the + * input is specified in pixd, and to have 1 on all + * other pixels. We only change pixels in pixt and pixd + * that are non-zero in pixt. */ + imax = h - 1; + jmax = w - 1; + switch (connectivity) + { + case 4: + /* UL --> LR scan */ + for (i = 1; i < h; i++) { + linet = datat + i * wplt; + lined = datad + i * wpld; + for (j = 1; j < jmax; j++) { + if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { + val2t = GET_DATA_TWO_BYTES(linet - wplt, j); + val4t = GET_DATA_TWO_BYTES(linet, j - 1); + minval = L_MIN(val2t, val4t); + minval = L_MIN(minval, 0xfffe); + SET_DATA_TWO_BYTES(linet, j, minval + 1); + if (val2t < val4t) + vald = GET_DATA_BYTE(lined - wpld, j); + else + vald = GET_DATA_BYTE(lined, j - 1); + SET_DATA_BYTE(lined, j, vald); + } + } + } + + /* LR --> UL scan */ + for (i = imax - 1; i > 0; i--) { + linet = datat + i * wplt; + lined = datad + i * wpld; + for (j = jmax - 1; j > 0; j--) { + if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { + val7t = GET_DATA_TWO_BYTES(linet + wplt, j); + val5t = GET_DATA_TWO_BYTES(linet, j + 1); + minval = L_MIN(val5t, val7t); + minval = L_MIN(minval + 1, valt); + if (valt > minval) { /* replace */ + SET_DATA_TWO_BYTES(linet, j, minval); + if (val5t < val7t) + vald = GET_DATA_BYTE(lined, j + 1); + else + vald = GET_DATA_BYTE(lined + wplt, j); + SET_DATA_BYTE(lined, j, vald); + } + } + } + } + break; + case 8: + /* UL --> LR scan */ + for (i = 1; i < h; i++) { + linet = datat + i * wplt; + lined = datad + i * wpld; + for (j = 1; j < jmax; j++) { + if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { + val1t = GET_DATA_TWO_BYTES(linet - wplt, j - 1); + val2t = GET_DATA_TWO_BYTES(linet - wplt, j); + val3t = GET_DATA_TWO_BYTES(linet - wplt, j + 1); + val4t = GET_DATA_TWO_BYTES(linet, j - 1); + minval = L_MIN(val1t, val2t); + minval = L_MIN(minval, val3t); + minval = L_MIN(minval, val4t); + minval = L_MIN(minval, 0xfffe); + SET_DATA_TWO_BYTES(linet, j, minval + 1); + if (minval == val1t) + vald = GET_DATA_BYTE(lined - wpld, j - 1); + else if (minval == val2t) + vald = GET_DATA_BYTE(lined - wpld, j); + else if (minval == val3t) + vald = GET_DATA_BYTE(lined - wpld, j + 1); + else /* minval == val4t */ + vald = GET_DATA_BYTE(lined, j - 1); + SET_DATA_BYTE(lined, j, vald); + } + } + } + + /* LR --> UL scan */ + for (i = imax - 1; i > 0; i--) { + linet = datat + i * wplt; + lined = datad + i * wpld; + for (j = jmax - 1; j > 0; j--) { + if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { + val8t = GET_DATA_TWO_BYTES(linet + wplt, j + 1); + val7t = GET_DATA_TWO_BYTES(linet + wplt, j); + val6t = GET_DATA_TWO_BYTES(linet + wplt, j - 1); + val5t = GET_DATA_TWO_BYTES(linet, j + 1); + minval = L_MIN(val8t, val7t); + minval = L_MIN(minval, val6t); + minval = L_MIN(minval, val5t); + minval = L_MIN(minval + 1, valt); + if (valt > minval) { /* replace */ + SET_DATA_TWO_BYTES(linet, j, minval); + if (minval == val5t + 1) + vald = GET_DATA_BYTE(lined, j + 1); + else if (minval == val6t + 1) + vald = GET_DATA_BYTE(lined + wpld, j - 1); + else if (minval == val7t + 1) + vald = GET_DATA_BYTE(lined + wpld, j); + else /* minval == val8t + 1 */ + vald = GET_DATA_BYTE(lined + wpld, j + 1); + SET_DATA_BYTE(lined, j, vald); + } + } + } + } + break; + default: + L_ERROR("connectivity must be 4 or 8\n", __func__); + break; + } +} + + +/*-----------------------------------------------------------------------* + * Local extrema * + *-----------------------------------------------------------------------*/ +/*! + * \brief pixLocalExtrema() + * + * \param[in] pixs 8 bpp + * \param[in] maxmin max allowed for the min in a 3x3 neighborhood; + * use 0 for default which is to have no upper bound + * \param[in] minmax min allowed for the max in a 3x3 neighborhood; + * use 0 for default which is to have no lower bound + * \param[out] ppixmin [optional] mask of local minima + * \param[out] ppixmax [optional] mask of local maxima + * \return 0 if OK, 1 on error + * + * <pre> + * Notes: + * (1) This gives the actual local minima and maxima. + * A local minimum is a pixel whose surrounding pixels all + * have values at least as large, and likewise for a local + * maximum. For the local minima, %maxmin is the upper + * bound for the value of pixs. Likewise, for the local maxima, + * %minmax is the lower bound for the value of pixs. + * (2) The minima are found by starting with the erosion-and-equality + * approach of pixSelectedLocalExtrema(). This is followed + * by a qualification step, where each c.c. in the resulting + * minimum mask is extracted, the pixels bordering it are + * located, and they are queried. If all of those pixels + * are larger than the value of that minimum, it is a true + * minimum and its c.c. is saved; otherwise the c.c. is + * rejected. Note that if a bordering pixel has the + * same value as the minimum, it must then have a + * neighbor that is smaller, so the component is not a + * true minimum. + * (3) The maxima are found by inverting the image and looking + * for the minima there. + * (4) The generated masks can be used as markers for + * further operations. + * </pre> + */ +l_ok +pixLocalExtrema(PIX *pixs, + l_int32 maxmin, + l_int32 minmax, + PIX **ppixmin, + PIX **ppixmax) +{ +PIX *pixmin, *pixmax, *pixt1, *pixt2; + + if (!pixs || pixGetDepth(pixs) != 8) + return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); + if (!ppixmin && !ppixmax) + return ERROR_INT("neither &pixmin, &pixmax are defined", __func__, 1); + if (maxmin <= 0) maxmin = 254; + if (minmax <= 0) minmax = 1; + + if (ppixmin) { + pixt1 = pixErodeGray(pixs, 3, 3); + pixmin = pixFindEqualValues(pixs, pixt1); + pixDestroy(&pixt1); + pixQualifyLocalMinima(pixs, pixmin, maxmin); + *ppixmin = pixmin; + } + + if (ppixmax) { + pixt1 = pixInvert(NULL, pixs); + pixt2 = pixErodeGray(pixt1, 3, 3); + pixmax = pixFindEqualValues(pixt1, pixt2); + pixDestroy(&pixt2); + pixQualifyLocalMinima(pixt1, pixmax, 255 - minmax); + *ppixmax = pixmax; + pixDestroy(&pixt1); + } + + return 0; +} + + +/*! + * \brief pixQualifyLocalMinima() + * + * \param[in] pixs 8 bpp image from which pixm has been extracted + * \param[in] pixm 1 bpp mask of values equal to min in 3x3 neighborhood + * \param[in] maxval max allowed for the min in a 3x3 neighborhood; + * use 0 for default which is to have no upper bound + * \return 0 if OK, 1 on error + * + * <pre> + * Notes: + * (1) This function acts in-place to remove all c.c. in pixm + * that are not true local minima in pixs. As seen in + * pixLocalExtrema(), the input pixm are found by selecting those + * pixels of pixs whose values do not change with a 3x3 + * grayscale erosion. Here, we require that for each c.c. + * in pixm, all pixels in pixs that correspond to the exterior + * boundary pixels of the c.c. have values that are greater + * than the value within the c.c. + * (2) The maximum allowed value for each local minimum can be + * bounded with %maxval. Use 0 for default, which is to have + * no upper bound (equivalent to maxval == 254). + * </pre> + */ +static l_int32 +pixQualifyLocalMinima(PIX *pixs, + PIX *pixm, + l_int32 maxval) +{ +l_int32 n, i, j, k, x, y, w, h, xc, yc, wc, hc, xon, yon; +l_int32 vals, wpls, wplc, ismin; +l_uint32 val; +l_uint32 *datas, *datac, *lines, *linec; +BOXA *boxa; +PIX *pix1, *pix2, *pix3; +PIXA *pixa; + + if (!pixs || pixGetDepth(pixs) != 8) + return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); + if (!pixm || pixGetDepth(pixm) != 1) + return ERROR_INT("pixm not defined or not 1 bpp", __func__, 1); + if (maxval <= 0) maxval = 254; + + pixGetDimensions(pixs, &w, &h, NULL); + datas = pixGetData(pixs); + wpls = pixGetWpl(pixs); + boxa = pixConnComp(pixm, &pixa, 8); + n = pixaGetCount(pixa); + for (k = 0; k < n; k++) { + boxaGetBoxGeometry(boxa, k, &xc, &yc, &wc, &hc); + pix1 = pixaGetPix(pixa, k, L_COPY); + pix2 = pixAddBorder(pix1, 1, 0); + pix3 = pixDilateBrick(NULL, pix2, 3, 3); + pixXor(pix3, pix3, pix2); /* exterior boundary pixels */ + datac = pixGetData(pix3); + wplc = pixGetWpl(pix3); + nextOnPixelInRaster(pix1, 0, 0, &xon, &yon); + pixGetPixel(pixs, xc + xon, yc + yon, &val); + if (val > maxval) { /* too large; erase */ + pixRasterop(pixm, xc, yc, wc, hc, PIX_XOR, pix1, 0, 0); + pixDestroy(&pix1); + pixDestroy(&pix2); + pixDestroy(&pix3); + continue; + } + ismin = TRUE; + + /* Check all values in pixs that correspond to the exterior + * boundary pixels of the c.c. in pixm. Verify that the + * value in the c.c. is always less. */ + for (i = 0, y = yc - 1; i < hc + 2 && y >= 0 && y < h; i++, y++) { + lines = datas + y * wpls; + linec = datac + i * wplc; + for (j = 0, x = xc - 1; j < wc + 2 && x >= 0 && x < w; j++, x++) { + if (GET_DATA_BIT(linec, j)) { + vals = GET_DATA_BYTE(lines, x); + if (vals <= val) { /* not a minimum! */ + ismin = FALSE; + break; + } + } + } + if (!ismin) + break; + } + if (!ismin) /* erase it */ + pixRasterop(pixm, xc, yc, wc, hc, PIX_XOR, pix1, 0, 0); + pixDestroy(&pix1); + pixDestroy(&pix2); + pixDestroy(&pix3); + } + + boxaDestroy(&boxa); + pixaDestroy(&pixa); + return 0; +} + + +/*! + * \brief pixSelectedLocalExtrema() + * + * \param[in] pixs 8 bpp + * \param[in] mindist -1 for keeping all pixels; >= 0 specifies distance + * \param[out] ppixmin mask of local minima + * \param[out] ppixmax mask of local maxima + * \return 0 if OK, 1 on error + * + * <pre> + * Notes: + * (1) This selects those local 3x3 minima that are at least a + * specified distance from the nearest local 3x3 maxima, and v.v. + * for the selected set of local 3x3 maxima. + * The local 3x3 minima is the set of pixels whose value equals + * the value after a 3x3 brick erosion, and the local 3x3 maxima + * is the set of pixels whose value equals the value after + * a 3x3 brick dilation. + * (2) mindist is the minimum distance allowed between + * local 3x3 minima and local 3x3 maxima, in an 8-connected sense. + * mindist == 1 keeps all pixels found in step 1. + * mindist == 0 removes all pixels from each mask that are + * both a local 3x3 minimum and a local 3x3 maximum. + * mindist == 1 removes any local 3x3 minimum pixel that touches a + * local 3x3 maximum pixel, and likewise for the local maxima. + * To make the decision, visualize each local 3x3 minimum pixel + * as being surrounded by a square of size (2 * mindist + 1) + * on each side, such that no local 3x3 maximum pixel is within + * that square; and v.v. + * (3) The generated masks can be used as markers for further operations. + * </pre> + */ +l_ok +pixSelectedLocalExtrema(PIX *pixs, + l_int32 mindist, + PIX **ppixmin, + PIX **ppixmax) +{ +PIX *pixmin, *pixmax, *pixt, *pixtmin, *pixtmax; + + if (!pixs || pixGetDepth(pixs) != 8) + return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); + if (!ppixmin || !ppixmax) + return ERROR_INT("&pixmin and &pixmax not both defined", __func__, 1); + + pixt = pixErodeGray(pixs, 3, 3); + pixmin = pixFindEqualValues(pixs, pixt); + pixDestroy(&pixt); + pixt = pixDilateGray(pixs, 3, 3); + pixmax = pixFindEqualValues(pixs, pixt); + pixDestroy(&pixt); + + /* Remove all points that are within the prescribed distance + * from each other. */ + if (mindist < 0) { /* remove no points */ + *ppixmin = pixmin; + *ppixmax = pixmax; + } else if (mindist == 0) { /* remove points belonging to both sets */ + pixt = pixAnd(NULL, pixmin, pixmax); + *ppixmin = pixSubtract(pixmin, pixmin, pixt); + *ppixmax = pixSubtract(pixmax, pixmax, pixt); + pixDestroy(&pixt); + } else { + pixtmin = pixDilateBrick(NULL, pixmin, + 2 * mindist + 1, 2 * mindist + 1); + pixtmax = pixDilateBrick(NULL, pixmax, + 2 * mindist + 1, 2 * mindist + 1); + *ppixmin = pixSubtract(pixmin, pixmin, pixtmax); + *ppixmax = pixSubtract(pixmax, pixmax, pixtmin); + pixDestroy(&pixtmin); + pixDestroy(&pixtmax); + } + return 0; +} + + +/*! + * \brief pixFindEqualValues() + * + * \param[in] pixs1 8 bpp + * \param[in] pixs2 8 bpp + * \return pixd 1 bpp mask, or NULL on error + * + * <pre> + * Notes: + * (1) The two images are aligned at the UL corner, and the returned + * image has ON pixels where the pixels in pixs1 and pixs2 + * have equal values. + * </pre> + */ +PIX * +pixFindEqualValues(PIX *pixs1, + PIX *pixs2) +{ +l_int32 w1, h1, w2, h2, w, h; +l_int32 i, j, val1, val2, wpls1, wpls2, wpld; +l_uint32 *datas1, *datas2, *datad, *lines1, *lines2, *lined; +PIX *pixd; + + if (!pixs1 || pixGetDepth(pixs1) != 8) + return (PIX *)ERROR_PTR("pixs1 undefined or not 8 bpp", __func__, NULL); + if (!pixs2 || pixGetDepth(pixs2) != 8) + return (PIX *)ERROR_PTR("pixs2 undefined or not 8 bpp", __func__, NULL); + pixGetDimensions(pixs1, &w1, &h1, NULL); + pixGetDimensions(pixs2, &w2, &h2, NULL); + w = L_MIN(w1, w2); + h = L_MIN(h1, h2); + pixd = pixCreate(w, h, 1); + datas1 = pixGetData(pixs1); + datas2 = pixGetData(pixs2); + datad = pixGetData(pixd); + wpls1 = pixGetWpl(pixs1); + wpls2 = pixGetWpl(pixs2); + wpld = pixGetWpl(pixd); + + for (i = 0; i < h; i++) { + lines1 = datas1 + i * wpls1; + lines2 = datas2 + i * wpls2; + lined = datad + i * wpld; + for (j = 0; j < w; j++) { + val1 = GET_DATA_BYTE(lines1, j); + val2 = GET_DATA_BYTE(lines2, j); + if (val1 == val2) + SET_DATA_BIT(lined, j); + } + } + + return pixd; +} + + +/*-----------------------------------------------------------------------* + * Selection of minima in mask connected components * + *-----------------------------------------------------------------------*/ +/*! + * \brief pixSelectMinInConnComp() + * + * \param[in] pixs 8 bpp + * \param[in] pixm 1 bpp + * \param[out] ppta pta of min pixel locations + * \param[out] pnav [optional] numa of minima values + * \return 0 if OK, 1 on error. + * + * <pre> + * Notes: + * (1) For each 8 connected component in pixm, this finds + * a pixel in pixs that has the lowest value, and saves + * it in a Pta. If several pixels in pixs have the same + * minimum value, it picks the first one found. + * (2) For a mask pixm of true local minima, all pixels in each + * connected component have the same value in pixs, so it is + * fastest to select one of them using a special seedfill + * operation. Not yet implemented. + * </pre> + */ +l_ok +pixSelectMinInConnComp(PIX *pixs, + PIX *pixm, + PTA **ppta, + NUMA **pnav) +{ +l_int32 bx, by, bw, bh, i, j, c, n; +l_int32 xs, ys, minx, miny, wpls, wplt, val, minval; +l_uint32 *datas, *datat, *lines, *linet; +BOXA *boxa; +NUMA *nav; +PIX *pixt, *pixs2, *pixm2; +PIXA *pixa; +PTA *pta; + + if (!ppta) + return ERROR_INT("&pta not defined", __func__, 1); + *ppta = NULL; + if (pnav) *pnav = NULL; + if (!pixs || pixGetDepth(pixs) != 8) + return ERROR_INT("pixs undefined or not 8 bpp", __func__, 1); + if (!pixm || pixGetDepth(pixm) != 1) + return ERROR_INT("pixm undefined or not 1 bpp", __func__, 1); + + /* Crop to the min size if necessary */ + if (pixCropToMatch(pixs, pixm, &pixs2, &pixm2)) { + pixDestroy(&pixs2); + pixDestroy(&pixm2); + return ERROR_INT("cropping failure", __func__, 1); + } + + /* Find value and location of min value pixel in each component */ + boxa = pixConnComp(pixm2, &pixa, 8); + n = boxaGetCount(boxa); + pta = ptaCreate(n); + *ppta = pta; + nav = numaCreate(n); + datas = pixGetData(pixs2); + wpls = pixGetWpl(pixs2); + for (c = 0; c < n; c++) { + pixt = pixaGetPix(pixa, c, L_CLONE); + boxaGetBoxGeometry(boxa, c, &bx, &by, &bw, &bh); + if (bw == 1 && bh == 1) { + ptaAddPt(pta, bx, by); + numaAddNumber(nav, GET_DATA_BYTE(datas + by * wpls, bx)); + pixDestroy(&pixt); + continue; + } + datat = pixGetData(pixt); + wplt = pixGetWpl(pixt); + minx = miny = 1000000; + minval = 256; + for (i = 0; i < bh; i++) { + ys = by + i; + lines = datas + ys * wpls; + linet = datat + i * wplt; + for (j = 0; j < bw; j++) { + xs = bx + j; + if (GET_DATA_BIT(linet, j)) { + val = GET_DATA_BYTE(lines, xs); + if (val < minval) { + minval = val; + minx = xs; + miny = ys; + } + } + } + } + ptaAddPt(pta, minx, miny); + numaAddNumber(nav, GET_DATA_BYTE(datas + miny * wpls, minx)); + pixDestroy(&pixt); + } + + boxaDestroy(&boxa); + pixaDestroy(&pixa); + if (pnav) + *pnav = nav; + else + numaDestroy(&nav); + pixDestroy(&pixs2); + pixDestroy(&pixm2); + return 0; +} + + +/*-----------------------------------------------------------------------* + * Removal of seeded connected components from a mask * + *-----------------------------------------------------------------------*/ +/*! + * \brief pixRemoveSeededComponents() + * + * \param[in] pixd [optional]; can be null or equal to pixm; 1 bpp + * \param[in] pixs 1 bpp seed + * \param[in] pixm 1 bpp filling mask + * \param[in] connectivity 4 or 8 + * \param[in] bordersize amount of border clearing + * \return pixd, or NULL on error + * + * <pre> + * Notes: + * (1) This removes each component in pixm for which there is + * at least one seed in pixs. If pixd == NULL, this returns + * the result in a new pixd. Otherwise, it is an in-place + * operation on pixm. In no situation is pixs altered, + * because we do the filling with a copy of pixs. + * (2) If bordersize > 0, it also clears all pixels within a + * distance %bordersize of the edge of pixd. This is here + * because pixLocalExtrema() typically finds local minima + * at the border. Use %bordersize >= 2 to remove these. + * </pre> + */ +PIX * +pixRemoveSeededComponents(PIX *pixd, + PIX *pixs, + PIX *pixm, + l_int32 connectivity, + l_int32 bordersize) +{ +PIX *pixt; + + if (!pixs || pixGetDepth(pixs) != 1) + return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, pixd); + if (!pixm || pixGetDepth(pixm) != 1) + return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", __func__, pixd); + if (pixd && pixd != pixm) + return (PIX *)ERROR_PTR("operation not inplace", __func__, pixd); + + pixt = pixCopy(NULL, pixs); + pixSeedfillBinary(pixt, pixt, pixm, connectivity); + pixd = pixXor(pixd, pixm, pixt); + if (bordersize > 0) + pixSetOrClearBorder(pixd, bordersize, bordersize, bordersize, + bordersize, PIX_CLR); + pixDestroy(&pixt); + return pixd; +}
