diff mupdf-source/thirdparty/leptonica/src/seedfill.c @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/leptonica/src/seedfill.c	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,3400 @@
+/*====================================================================*
+ -  Copyright (C) 2001 Leptonica.  All rights reserved.
+ -
+ -  Redistribution and use in source and binary forms, with or without
+ -  modification, are permitted provided that the following conditions
+ -  are met:
+ -  1. Redistributions of source code must retain the above copyright
+ -     notice, this list of conditions and the following disclaimer.
+ -  2. Redistributions in binary form must reproduce the above
+ -     copyright notice, this list of conditions and the following
+ -     disclaimer in the documentation and/or other materials
+ -     provided with the distribution.
+ -
+ -  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ -  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ -  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ -  A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ANY
+ -  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ -  EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ -  PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ -  PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ -  OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ -  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ -  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *====================================================================*/
+
+/*!
+ * \file seedfill.c
+ * <pre>
+ *
+ *      Binary seedfill (source: Luc Vincent)
+ *               PIX         *pixSeedfillBinary()
+ *               PIX         *pixSeedfillBinaryRestricted()
+ *               static void  seedfillBinaryLow()
+ *
+ *      Applications of binary seedfill to find and fill holes,
+ *      remove c.c. touching the border and fill bg from border:
+ *               PIX         *pixHolesByFilling()
+ *               PIX         *pixFillClosedBorders()
+ *               PIX         *pixExtractBorderConnComps()
+ *               PIX         *pixRemoveBorderConnComps()
+ *               PIX         *pixFillBgFromBorder()
+ *
+ *      Hole-filling of components to bounding rectangle
+ *               PIX         *pixFillHolesToBoundingRect()
+ *
+ *      Gray seedfill (source: Luc Vincent:fast-hybrid-grayscale-reconstruction)
+ *               l_int32      pixSeedfillGray()
+ *               l_int32      pixSeedfillGrayInv()
+ *               static void  seedfillGrayLow()
+ *               static void  seedfillGrayInvLow()
+
+ *
+ *      Gray seedfill (source: Luc Vincent: sequential-reconstruction algorithm)
+ *               l_int32      pixSeedfillGraySimple()
+ *               l_int32      pixSeedfillGrayInvSimple()
+ *               static void  seedfillGrayLowSimple()
+ *               static void  seedfillGrayInvLowSimple()
+ *
+ *      Gray seedfill variations
+ *               PIX         *pixSeedfillGrayBasin()
+ *
+ *      Distance function (source: Luc Vincent)
+ *               PIX         *pixDistanceFunction()
+ *               static void  distanceFunctionLow()
+ *
+ *      Seed spread (based on distance function)
+ *               PIX         *pixSeedspread()
+ *               static void  seedspreadLow()
+ *
+ *      Local extrema:
+ *               l_int32      pixLocalExtrema()
+ *            static l_int32  pixQualifyLocalMinima()
+ *               l_int32      pixSelectedLocalExtrema()
+ *               PIX         *pixFindEqualValues()
+ *
+ *      Selection of minima in mask of connected components
+ *               PTA         *pixSelectMinInConnComp()
+ *
+ *      Removal of seeded connected components from a mask
+ *               PIX         *pixRemoveSeededComponents()
+ *
+ *
+ *           ITERATIVE RASTER-ORDER SEEDFILL
+ *
+ *      The basic method in the Vincent seedfill (aka reconstruction)
+ *      algorithm is simple.  We describe here the situation for
+ *      binary seedfill.  Pixels are sampled in raster order in
+ *      the seed image.  If they are 4-connected to ON pixels
+ *      either directly above or to the left, and are not masked
+ *      out by the mask image, they are turned on (or remain on).
+ *      (Ditto for 8-connected, except you need to check 3 pixels
+ *      on the previous line as well as the pixel to the left
+ *      on the current line.  This is extra computational work
+ *      for relatively little gain, so it is preferable
+ *      in most situations to use the 4-connected version.)
+ *      The algorithm proceeds from UR to LL of the image, and
+ *      then reverses and sweeps up from LL to UR.
+ *      These double sweeps are iterated until there is no change.
+ *      At this point, the seed has entirely filled the region it
+ *      is allowed to, as delimited by the mask image.
+ *
+ *      The grayscale seedfill is a straightforward generalization
+ *      of the binary seedfill, and is described in seedfillLowGray().
+ *
+ *      For some applications, the filled seed will later be OR'd
+ *      with the negative of the mask.   This is used, for example,
+ *      when you flood fill into a 4-connected region of OFF pixels
+ *      and you want the result after those pixels are turned ON.
+ *
+ *      Note carefully that the mask we use delineates which pixels
+ *      are allowed to be ON as the seed is filled.  We will call this
+ *      a "filling mask".  As the seed expands, it is repeatedly
+ *      ANDed with the filling mask: s & fm.  The process can equivalently
+ *      be formulated using the inverse of the filling mask, which
+ *      we will call a "blocking mask": bm = ~fm.   As the seed
+ *      expands, the blocking mask is repeatedly used to prevent
+ *      the seed from expanding into the blocking mask.  This is done
+ *      by set subtracting the blocking mask from the expanded seed:
+ *      s - bm.  Set subtraction of the blocking mask is equivalent
+ *      to ANDing with the inverse of the blocking mask: s & (~bm).
+ *      But from the inverse relation between blocking and filling
+ *      masks, this is equal to s & fm, which proves the equivalence.
+ *
+ *      For efficiency, the pixels can be taken in larger units
+ *      for processing, but still in raster order.  It is natural
+ *      to take them in 32-bit words.  The outline of the work
+ *      to be done for 4-cc (not including special cases for boundary
+ *      words, such as the first line or the last word in each line)
+ *      is as follows.  Let the filling mask be m.  The
+ *      seed is to fill "under" the mask; i.e., limited by an AND
+ *      with the mask.  Let the current word be w, the word
+ *      in the line above be wa, and the previous word in the
+ *      current line be wp.   Let t be a temporary word that
+ *      is used in computation.  Note that masking is performed by
+ *      w & m.  (If we had instead used a "blocking" mask, we
+ *      would perform masking by the set subtraction operation,
+ *      w - m, which is defined to be w & ~m.)
+ *
+ *      The entire operation can be implemented with shifts,
+ *      logical operations and tests.  For each word in the seed image
+ *      there are two steps.  The first step is to OR the word with
+ *      the word above and with the rightmost pixel in wp (call it "x").
+ *      Because wp is shifted one pixel to its right, "x" is ORed
+ *      to the leftmost pixel of w.  We then clip to the ON pixels in
+ *      the mask.  The result is
+ *               t  <--  (w | wa | x000... ) & m
+ *      We've now finished taking data from above and to the left.
+ *      The second step is to allow filling to propagate horizontally
+ *      in t, always making sure that it is properly masked at each
+ *      step.  So if filling can be done (i.e., t is neither all 0s
+ *      nor all 1s), iteratively take:
+ *           t  <--  (t | (t >> 1) | (t << 1)) & m
+ *      until t stops changing.  Then write t back into w.
+ *
+ *      Finally, the boundary conditions require we note that in doing
+ *      the above steps:
+ *          (a) The words in the first row have no wa
+ *          (b) The first word in each row has no wp in that row
+ *          (c) The last word in each row must be masked so that
+ *              pixels don't propagate beyond the right edge of the
+ *              actual image.  (This is easily accomplished by
+ *              setting the out-of-bound pixels in m to OFF.)
+ * </pre>
+ */
+
+#ifdef HAVE_CONFIG_H
+#include <config_auto.h>
+#endif  /* HAVE_CONFIG_H */
+
+#include <math.h>
+#include "allheaders.h"
+
+struct L_Pixel
+{
+    l_int32    x;
+    l_int32    y;
+};
+typedef struct L_Pixel  L_PIXEL;
+
+static void seedfillBinaryLow(l_uint32 *datas, l_int32 hs, l_int32 wpls,
+                              l_uint32 *datam, l_int32 hm, l_int32 wplm,
+                              l_int32 connectivity);
+static void seedfillGrayLow(l_uint32 *datas, l_int32 w, l_int32 h,
+                            l_int32 wpls, l_uint32 *datam, l_int32 wplm,
+                            l_int32 connectivity);
+static void seedfillGrayInvLow(l_uint32 *datas, l_int32 w, l_int32 h,
+                               l_int32 wpls, l_uint32 *datam, l_int32 wplm,
+                               l_int32 connectivity);
+static void seedfillGrayLowSimple(l_uint32 *datas, l_int32 w, l_int32 h,
+                                  l_int32 wpls, l_uint32 *datam, l_int32 wplm,
+                                  l_int32 connectivity);
+static void seedfillGrayInvLowSimple(l_uint32 *datas, l_int32 w, l_int32 h,
+                                     l_int32 wpls, l_uint32 *datam,
+                                     l_int32 wplm, l_int32 connectivity);
+static void distanceFunctionLow(l_uint32 *datad, l_int32 w, l_int32 h,
+                                l_int32 d, l_int32 wpld, l_int32 connectivity);
+static void seedspreadLow(l_uint32 *datad, l_int32 w, l_int32 h, l_int32 wpld,
+                          l_uint32 *datat, l_int32 wplt, l_int32 connectivity);
+
+
+static l_int32 pixQualifyLocalMinima(PIX *pixs, PIX *pixm, l_int32 maxval);
+
+#ifndef  NO_CONSOLE_IO
+#define   DEBUG_PRINT_ITERS    0
+#endif  /* ~NO_CONSOLE_IO */
+
+  /* Two-way (UL --> LR, LR --> UL) sweep iterations; typically need only 4 */
+static const l_int32  MaxIters = 40;
+
+
+/*-----------------------------------------------------------------------*
+ *              Vincent's Iterative Binary Seedfill method               *
+ *-----------------------------------------------------------------------*/
+/*!
+ * \brief   pixSeedfillBinary()
+ *
+ * \param[in]    pixd          [optional]; can be null, equal to pixs,
+ *                             or different from pixs; 1 bpp
+ * \param[in]    pixs          1 bpp seed
+ * \param[in]    pixm          1 bpp filling mask
+ * \param[in]    connectivity  4 or 8
+ * \return  pixd always
+ *
+ * <pre>
+ * Notes:
+ *      (1) This is for binary seedfill (aka "binary reconstruction").
+ *      (2) There are 3 cases:
+ *            (a) pixd == null (make a new pixd)
+ *            (b) pixd == pixs (in-place)
+ *            (c) pixd != pixs
+ *      (3) If you know the case, use these patterns for clarity:
+ *            (a) pixd = pixSeedfillBinary(NULL, pixs, ...);
+ *            (b) pixSeedfillBinary(pixs, pixs, ...);
+ *            (c) pixSeedfillBinary(pixd, pixs, ...);
+ *      (4) The resulting pixd contains the filled seed.  For some
+ *          applications you want to OR it with the inverse of
+ *          the filling mask.
+ *      (5) The input seed and mask images can be different sizes, but
+ *          in typical use the difference, if any, would be only
+ *          a few pixels in each direction.  If the sizes differ,
+ *          the clipping is handled by the low-level function
+ *          seedfillBinaryLow().
+ * </pre>
+ */
+PIX *
+pixSeedfillBinary(PIX     *pixd,
+                  PIX     *pixs,
+                  PIX     *pixm,
+                  l_int32  connectivity)
+{
+l_int32    i, boolval;
+l_int32    hd, hm, wpld, wplm;
+l_uint32  *datad, *datam;
+PIX       *pixt;
+
+    if (!pixs || pixGetDepth(pixs) != 1)
+        return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, pixd);
+    if (!pixm || pixGetDepth(pixm) != 1)
+        return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", __func__, pixd);
+    if (connectivity != 4 && connectivity != 8)
+        return (PIX *)ERROR_PTR("connectivity not in {4,8}", __func__, pixd);
+
+        /* Prepare pixd as a copy of pixs if not identical */
+    if ((pixd = pixCopy(pixd, pixs)) == NULL)
+        return (PIX *)ERROR_PTR("pixd not made", __func__, NULL);
+    pixSetPadBits(pixd, 0);  /* be safe: */
+    pixSetPadBits(pixm, 0);  /* avoid using uninitialized memory */
+
+        /* pixt is used to test for completion */
+    if ((pixt = pixCreateTemplate(pixs)) == NULL)
+        return (PIX *)ERROR_PTR("pixt not made", __func__, pixd);
+
+    hd = pixGetHeight(pixd);
+    hm = pixGetHeight(pixm);  /* included so seedfillBinaryLow() can clip */
+    datad = pixGetData(pixd);
+    datam = pixGetData(pixm);
+    wpld = pixGetWpl(pixd);
+    wplm = pixGetWpl(pixm);
+
+
+    for (i = 0; i < MaxIters; i++) {
+        pixCopy(pixt, pixd);
+        seedfillBinaryLow(datad, hd, wpld, datam, hm, wplm, connectivity);
+        pixEqual(pixd, pixt, &boolval);
+        if (boolval == 1) {
+#if DEBUG_PRINT_ITERS
+            lept_stderr("Binary seed fill converged: %d iters\n", i + 1);
+#endif  /* DEBUG_PRINT_ITERS */
+            break;
+        }
+    }
+
+    pixDestroy(&pixt);
+    return pixd;
+}
+
+
+/*!
+ * \brief   pixSeedfillBinaryRestricted()
+ *
+ * \param[in]    pixd          [optional]; can be null, equal to pixs,
+ *                             or different from pixs; 1 bpp
+ * \param[in]    pixs          1 bpp seed
+ * \param[in]    pixm          1 bpp filling mask
+ * \param[in]    connectivity  4 or 8
+ * \param[in]    xmax          max distance in x direction of fill into mask
+ * \param[in]    ymax          max distance in y direction of fill into mask
+ * \return  pixd always
+ *
+ * <pre>
+ * Notes:
+ *      (1) See usage for pixSeedfillBinary(), which has unrestricted fill.
+ *          In pixSeedfillBinary(), the filling distance is unrestricted
+ *          and can be larger than pixs, depending on the topology of
+ *          th mask.
+ *      (2) There are occasions where it is useful not to permit the
+ *          fill to go more than a certain distance into the mask.
+ *          %xmax specifies the maximum horizontal distance allowed
+ *          in the fill; %ymax does likewise in the vertical direction.
+ *      (3) Operationally, the max "distance" allowed for the fill
+ *          is a linear distance from the original seed, independent
+ *          of the actual mask topology.
+ *      (4) Another formulation of this problem, not implemented,
+ *          would use the manhattan distance from the seed, as
+ *          determined by a breadth-first search starting at the seed
+ *          boundaries and working outward where the mask fg allows.
+ *          How this might use the constraints of separate xmax and ymax
+ *          is not clear.
+ * </pre>
+ */
+PIX *
+pixSeedfillBinaryRestricted(PIX     *pixd,
+                            PIX     *pixs,
+                            PIX     *pixm,
+                            l_int32  connectivity,
+                            l_int32  xmax,
+                            l_int32  ymax)
+{
+l_int32  w, h;
+PIX     *pix1, *pix2;
+
+    if (!pixs || pixGetDepth(pixs) != 1)
+        return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, pixd);
+    if (!pixm || pixGetDepth(pixm) != 1)
+        return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", __func__, pixd);
+    if (connectivity != 4 && connectivity != 8)
+        return (PIX *)ERROR_PTR("connectivity not in {4,8}", __func__, pixd);
+    if (xmax == 0 && ymax == 0)  /* no filling permitted */
+        return pixClone(pixs);
+    if (xmax < 0 || ymax < 0) {
+        L_ERROR("xmax and ymax must be non-negative", __func__);
+        return pixClone(pixs);
+    }
+
+        /* Full fill from the seed into the mask. */
+    if ((pix1 = pixSeedfillBinary(NULL, pixs, pixm, connectivity)) == NULL)
+        return (PIX *)ERROR_PTR("pix1 not made", __func__, pixd);
+
+        /* Dilate the seed.  This gives the maximal region where changes
+         * are permitted.  Invert to get the region where pixs is
+         * not allowed to change.  */
+    pix2 = pixDilateCompBrick(NULL, pixs, 2 * xmax + 1, 2 * ymax + 1);
+    pixInvert(pix2, pix2);
+
+        /* Blank the region of pix1 specified by the fg of pix2.
+         * This is not yet the final result, because it may have fg pixels
+         * that are not accessible from the seed in the restricted distance.
+         * For example, such pixels may be connected to the original seed,
+         * but through a path that goes outside the permitted region. */
+    pixGetDimensions(pixs, &w, &h, NULL);
+    pixRasterop(pix1, 0, 0, w, h, PIX_DST & PIX_NOT(PIX_SRC), pix2, 0, 0);
+
+        /* To get the accessible pixels in the restricted region, do
+         * a second seedfill from the original seed, using pix1 as
+         * a mask.  The result, in pixd, will not have any bad fg
+         * pixels that were in pix1. */
+    pixd = pixSeedfillBinary(pixd, pixs, pix1, connectivity);
+
+    pixDestroy(&pix1);
+    pixDestroy(&pix2);
+    return pixd;
+}
+
+
+/*!
+ * \brief   seedfillBinaryLow()
+ *
+ *  Notes:
+ *      (1) This is an in-place fill, where the seed image is
+ *          filled, clipping to the filling mask, in one full
+ *          cycle of UL -> LR and LR -> UL raster scans.
+ *      (2) Assume the mask is a filling mask, not a blocking mask.
+ *      (3) Assume that the RHS pad bits of the mask
+ *          are properly set to 0.
+ *      (4) Clip to the smallest dimensions to avoid invalid reads.
+ */
+static void
+seedfillBinaryLow(l_uint32  *datas,
+                  l_int32    hs,
+                  l_int32    wpls,
+                  l_uint32  *datam,
+                  l_int32    hm,
+                  l_int32    wplm,
+                  l_int32    connectivity)
+{
+l_int32    i, j, h, wpl;
+l_uint32   word, mask;
+l_uint32   wordabove, wordleft, wordbelow, wordright;
+l_uint32   wordprev;  /* test against this in previous iteration */
+l_uint32  *lines, *linem;
+
+    h = L_MIN(hs, hm);
+    wpl = L_MIN(wpls, wplm);
+
+    switch (connectivity)
+    {
+    case 4:
+            /* UL --> LR scan */
+        for (i = 0; i < h; i++) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = 0; j < wpl; j++) {
+                word = *(lines + j);
+                mask = *(linem + j);
+
+                    /* OR from word above and from word to left; mask */
+                if (i > 0) {
+                    wordabove = *(lines - wpls + j);
+                    word |= wordabove;
+                }
+                if (j > 0) {
+                    wordleft = *(lines + j - 1);
+                    word |= wordleft << 31;
+                }
+                word &= mask;
+
+                    /* No need to fill horizontally? */
+                if (!word || !(~word)) {
+                    *(lines + j) = word;
+                    continue;
+                }
+
+                while (1) {
+                    wordprev = word;
+                    word = (word | (word >> 1) | (word << 1)) & mask;
+                    if ((word ^ wordprev) == 0) {
+                        *(lines + j) = word;
+                        break;
+                    }
+                }
+            }
+        }
+
+            /* LR --> UL scan */
+        for (i = h - 1; i >= 0; i--) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = wpl - 1; j >= 0; j--) {
+                word = *(lines + j);
+                mask = *(linem + j);
+
+                    /* OR from word below and from word to right; mask */
+                if (i < h - 1) {
+                    wordbelow = *(lines + wpls + j);
+                    word |= wordbelow;
+                }
+                if (j < wpl - 1) {
+                    wordright = *(lines + j + 1);
+                    word |= wordright >> 31;
+                }
+                word &= mask;
+
+                    /* No need to fill horizontally? */
+                if (!word || !(~word)) {
+                    *(lines + j) = word;
+                    continue;
+                }
+
+                while (1) {
+                    wordprev = word;
+                    word = (word | (word >> 1) | (word << 1)) & mask;
+                    if ((word ^ wordprev) == 0) {
+                        *(lines + j) = word;
+                        break;
+                    }
+                }
+            }
+        }
+        break;
+
+    case 8:
+            /* UL --> LR scan */
+        for (i = 0; i < h; i++) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = 0; j < wpl; j++) {
+                word = *(lines + j);
+                mask = *(linem + j);
+
+                    /* OR from words above and from word to left; mask */
+                if (i > 0) {
+                    wordabove = *(lines - wpls + j);
+                    word |= (wordabove | (wordabove << 1) | (wordabove >> 1));
+                    if (j > 0)
+                        word |= (*(lines - wpls + j - 1)) << 31;
+                    if (j < wpl - 1)
+                        word |= (*(lines - wpls + j + 1)) >> 31;
+                }
+                if (j > 0) {
+                    wordleft = *(lines + j - 1);
+                    word |= wordleft << 31;
+                }
+                word &= mask;
+
+                    /* No need to fill horizontally? */
+                if (!word || !(~word)) {
+                    *(lines + j) = word;
+                    continue;
+                }
+
+                while (1) {
+                    wordprev = word;
+                    word = (word | (word >> 1) | (word << 1)) & mask;
+                    if ((word ^ wordprev) == 0) {
+                        *(lines + j) = word;
+                        break;
+                    }
+                }
+            }
+        }
+
+            /* LR --> UL scan */
+        for (i = h - 1; i >= 0; i--) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = wpl - 1; j >= 0; j--) {
+                word = *(lines + j);
+                mask = *(linem + j);
+
+                    /* OR from words below and from word to right; mask */
+                if (i < h - 1) {
+                    wordbelow = *(lines + wpls + j);
+                    word |= (wordbelow | (wordbelow << 1) | (wordbelow >> 1));
+                    if (j > 0)
+                        word |= (*(lines + wpls + j - 1)) << 31;
+                    if (j < wpl - 1)
+                        word |= (*(lines + wpls + j + 1)) >> 31;
+                }
+                if (j < wpl - 1) {
+                    wordright = *(lines + j + 1);
+                    word |= wordright >> 31;
+                }
+                word &= mask;
+
+                    /* No need to fill horizontally? */
+                if (!word || !(~word)) {
+                    *(lines + j) = word;
+                    continue;
+                }
+
+                while (1) {
+                    wordprev = word;
+                    word = (word | (word >> 1) | (word << 1)) & mask;
+                    if ((word ^ wordprev) == 0) {
+                        *(lines + j) = word;
+                        break;
+                    }
+                }
+            }
+        }
+        break;
+
+    default:
+        L_ERROR("connectivity must be 4 or 8\n", __func__);
+    }
+}
+
+
+/*!
+ * \brief   pixHolesByFilling()
+ *
+ * \param[in]    pixs           1 bpp
+ * \param[in]    connectivity   4 or 8
+ * \return  pixd  inverted image of all holes, or NULL on error
+ *
+ * Action:
+ *     1 Start with 1-pixel black border on otherwise white pixd
+ *     2 Use the inverted pixs as the filling mask to fill in
+ *         all the pixels from the border to the pixs foreground
+ *     3 OR the result with pixs to have an image with all
+ *         ON pixels except for the holes.
+ *     4 Invert the result to get the holes as foreground
+ *
+ * <pre>
+ * Notes:
+ *     (1) To get 4-c.c. holes of the 8-c.c. as foreground, use
+ *         4-connected filling; to get 8-c.c. holes of the 4-c.c.
+ *         as foreground, use 8-connected filling.
+ * </pre>
+ */
+PIX *
+pixHolesByFilling(PIX     *pixs,
+                  l_int32  connectivity)
+{
+PIX  *pixsi, *pixd;
+
+    if (!pixs || pixGetDepth(pixs) != 1)
+        return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL);
+    if (connectivity != 4 && connectivity != 8)
+        return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL);
+
+    if ((pixd = pixCreateTemplate(pixs)) == NULL)
+        return (PIX *)ERROR_PTR("pixd not made", __func__, NULL);
+    if ((pixsi = pixInvert(NULL, pixs)) == NULL) {
+        pixDestroy(&pixd);
+        return (PIX *)ERROR_PTR("pixsi not made", __func__, NULL);
+    }
+
+    pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET);
+    pixSeedfillBinary(pixd, pixd, pixsi, connectivity);
+    pixOr(pixd, pixd, pixs);
+    pixInvert(pixd, pixd);
+    pixDestroy(&pixsi);
+    return pixd;
+}
+
+
+/*!
+ * \brief   pixFillClosedBorders()
+ *
+ * \param[in]    pixs           1 bpp
+ * \param[in]    connectivity   filling connectivity 4 or 8
+ * \return  pixd  all topologically outer closed borders are filled
+ *                     as connected comonents, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) Start with 1-pixel black border on otherwise white pixd
+ *      (2) Subtract input pixs to remove border pixels that were
+ *          also on the closed border
+ *      (3) Use the inverted pixs as the filling mask to fill in
+ *          all the pixels from the outer border to the closed border
+ *          on pixs
+ *      (4) Invert the result to get the filled component, including
+ *          the input border
+ *      (5) If the borders are 4-c.c., use 8-c.c. filling, and v.v.
+ *      (6) Closed borders within c.c. that represent holes, etc., are filled.
+ * </pre>
+ */
+PIX *
+pixFillClosedBorders(PIX     *pixs,
+                     l_int32  connectivity)
+{
+PIX  *pixsi, *pixd;
+
+    if (!pixs || pixGetDepth(pixs) != 1)
+        return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL);
+    if (connectivity != 4 && connectivity != 8)
+        return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL);
+
+    if ((pixd = pixCreateTemplate(pixs)) == NULL)
+        return (PIX *)ERROR_PTR("pixd not made", __func__, NULL);
+    pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET);
+    pixSubtract(pixd, pixd, pixs);
+    if ((pixsi = pixInvert(NULL, pixs)) == NULL) {
+        pixDestroy(&pixd);
+        return (PIX *)ERROR_PTR("pixsi not made", __func__, NULL);
+    }
+
+    pixSeedfillBinary(pixd, pixd, pixsi, connectivity);
+    pixInvert(pixd, pixd);
+    pixDestroy(&pixsi);
+
+    return pixd;
+}
+
+
+/*!
+ * \brief   pixExtractBorderConnComps()
+ *
+ * \param[in]    pixs           1 bpp
+ * \param[in]    connectivity   filling connectivity 4 or 8
+ * \return  pixd  all pixels in the src that are in connected
+ *                components touching the border, or NULL on error
+ */
+PIX *
+pixExtractBorderConnComps(PIX     *pixs,
+                          l_int32  connectivity)
+{
+PIX  *pixd;
+
+    if (!pixs || pixGetDepth(pixs) != 1)
+        return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL);
+    if (connectivity != 4 && connectivity != 8)
+        return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL);
+
+        /* Start with 1 pixel wide black border as seed in pixd */
+    if ((pixd = pixCreateTemplate(pixs)) == NULL)
+        return (PIX *)ERROR_PTR("pixd not made", __func__, NULL);
+    pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET);
+
+       /* Fill in pixd from the seed, using pixs as the filling mask.
+        * This fills all components from pixs that are touching the border. */
+    pixSeedfillBinary(pixd, pixd, pixs, connectivity);
+
+    return pixd;
+}
+
+
+/*!
+ * \brief   pixRemoveBorderConnComps()
+ *
+ * \param[in]    pixs           1 bpp
+ * \param[in]    connectivity   filling connectivity 4 or 8
+ * \return  pixd  all pixels in the src that are not touching the
+ *                border or NULL on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This removes all fg components touching the border.
+ * </pre>
+ */
+PIX *
+pixRemoveBorderConnComps(PIX     *pixs,
+                         l_int32  connectivity)
+{
+PIX  *pixd;
+
+    if (!pixs || pixGetDepth(pixs) != 1)
+        return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL);
+    if (connectivity != 4 && connectivity != 8)
+        return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL);
+
+       /* Fill from a 1 pixel wide seed at the border into all components
+        * in pixs (the filling mask) that are touching the border */
+    pixd = pixExtractBorderConnComps(pixs, connectivity);
+
+       /* Save in pixd only those components in pixs not touching the border */
+    pixXor(pixd, pixd, pixs);
+    return pixd;
+}
+
+
+/*!
+ * \brief   pixFillBgFromBorder()
+ *
+ * \param[in]    pixs           1 bpp
+ * \param[in]    connectivity   filling connectivity 4 or 8
+ * \return  pixd with the background c.c. touching the border
+ *               filled to foreground, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This fills all bg components touching the border to fg.
+ *          It is the photometric inverse of pixRemoveBorderConnComps().
+ *      (2) Invert the result to get the "holes" left after this fill.
+ *          This can be done multiple times, extracting holes within
+ *          holes after each pair of fillings.  Specifically, this code
+ *          peels away n successive embeddings of components:
+ * \code
+ *              pix1 = <initial image>
+ *              for (i = 0; i < 2 * n; i++) {
+ *                   pix2 = pixFillBgFromBorder(pix1, 8);
+ *                   pixInvert(pix2, pix2);
+ *                   pixDestroy(&pix1);
+ *                   pix1 = pix2;
+ *              }
+ * \endcode
+ * </pre>
+ */
+PIX *
+pixFillBgFromBorder(PIX     *pixs,
+                    l_int32  connectivity)
+{
+PIX  *pixd;
+
+    if (!pixs || pixGetDepth(pixs) != 1)
+        return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL);
+    if (connectivity != 4 && connectivity != 8)
+        return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL);
+
+       /* Invert to turn bg touching the border to a fg component.
+        * Extract this by filling from a 1 pixel wide seed at the border. */
+    pixInvert(pixs, pixs);
+    pixd = pixExtractBorderConnComps(pixs, connectivity);
+    pixInvert(pixs, pixs);  /* restore pixs */
+
+       /* Bit-or the filled bg component with pixs */
+    pixOr(pixd, pixd, pixs);
+    return pixd;
+}
+
+
+/*-----------------------------------------------------------------------*
+ *            Hole-filling of components to bounding rectangle           *
+ *-----------------------------------------------------------------------*/
+/*!
+ * \brief   pixFillHolesToBoundingRect()
+ *
+ * \param[in]    pixs         1 bpp
+ * \param[in]    minsize      min number of pixels in the hole
+ * \param[in]    maxhfract    max hole area as fraction of fg pixels in the cc
+ * \param[in]    minfgfract   min fg area as fraction of bounding rectangle
+ * \return  pixd   with some holes possibly filled and some c.c. possibly
+ *                 expanded to their bounding rects, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This does not fill holes that are smaller in area than 'minsize'.
+ *          Use %minsize = 0 and %maxhfract = 1.0 to fill all holes.
+ *      (2) This does not fill holes with an area larger than
+ *          %maxhfract times the fg area of the c.c.
+ *          Use 1.0 to fill all holes.
+ *      (3) This does not expand the fg of the c.c. to bounding rect if
+ *          the fg area is less than %minfgfract times the area of the
+ *          bounding rect.  Use 1.0 to skip expanding to the bounding rect.
+ *      (4) The decisions are made as follows:
+ *           ~ Decide if we are filling the holes; if so, when using
+ *             the fg area, include the filled holes.
+ *           ~ Decide based on the fg area if we are filling to a bounding rect.
+ *             If so, do it.
+ *             If not, fill the holes if the condition is satisfied.
+ *      (5) The choice of %minsize depends on the resolution.
+ *      (6) For solidifying image mask regions on printed materials,
+ *          which tend to be rectangular, values for %maxhfract
+ *          and %minfgfract around 0.5 are reasonable.
+ * </pre>
+ */
+PIX *
+pixFillHolesToBoundingRect(PIX       *pixs,
+                           l_int32    minsize,
+                           l_float32  maxhfract,
+                           l_float32  minfgfract)
+{
+l_int32    i, x, y, w, h, n, nfg, nh, ntot, area;
+l_int32   *tab;
+l_float32  hfract;  /* measured hole fraction */
+l_float32  fgfract;  /* measured fg fraction */
+BOXA      *boxa;
+PIX       *pixd, *pixfg, *pixh;
+PIXA      *pixa;
+
+    if (!pixs || pixGetDepth(pixs) != 1)
+        return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL);
+    maxhfract = L_MIN(L_MAX(maxhfract, 0.0), 1.0);
+    minfgfract = L_MIN(L_MAX(minfgfract, 0.0), 1.0);
+
+    pixd = pixCopy(NULL, pixs);
+    boxa = pixConnComp(pixd, &pixa, 8);
+    n = boxaGetCount(boxa);
+    tab = makePixelSumTab8();
+    for (i = 0; i < n; i++) {
+        boxaGetBoxGeometry(boxa, i, &x, &y, &w, &h);
+        area = w * h;
+        if (area < minsize)
+            continue;
+        pixfg = pixaGetPix(pixa, i, L_COPY);
+        pixh = pixHolesByFilling(pixfg, 4);  /* holes only */
+        pixCountPixels(pixfg, &nfg, tab);
+        pixCountPixels(pixh, &nh, tab);
+        hfract = (l_float32)nh / (l_float32)nfg;
+        ntot = nfg;
+        if (hfract <= maxhfract)  /* we will fill the holes (at least) */
+            ntot = nfg + nh;
+        fgfract = (l_float32)ntot / (l_float32)area;
+        if (fgfract >= minfgfract) {  /* fill to bounding rect */
+            pixSetAll(pixfg);
+            pixRasterop(pixd, x, y, w, h, PIX_SRC, pixfg, 0, 0);
+        } else if (hfract <= maxhfract) {  /* fill just the holes */
+            pixRasterop(pixd, x, y, w, h, PIX_DST | PIX_SRC , pixh, 0, 0);
+        }
+        pixDestroy(&pixfg);
+        pixDestroy(&pixh);
+    }
+    boxaDestroy(&boxa);
+    pixaDestroy(&pixa);
+    LEPT_FREE(tab);
+    return pixd;
+}
+
+
+/*-----------------------------------------------------------------------*
+ *               Vincent's hybrid Grayscale Seedfill method              *
+ *-----------------------------------------------------------------------*/
+/*!
+ * \brief   pixSeedfillGray()
+ *
+ * \param[in]    pixs           8 bpp seed; filled in place
+ * \param[in]    pixm           8 bpp filling mask
+ * \param[in]    connectivity   4 or 8
+ * \return  0 if OK, 1 on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This is an in-place filling operation on the seed, pixs,
+ *          where the clipping mask is always above or at the level
+ *          of the seed as it is filled.
+ *      (2) For details of the operation, see the description in
+ *          seedfillGrayLow() and the code there.
+ *      (3) As an example of use, see the description in pixHDome().
+ *          There, the seed is an image where each pixel is a fixed
+ *          amount smaller than the corresponding mask pixel.
+ *      (4) Reference paper :
+ *            L. Vincent, Morphological grayscale reconstruction in image
+ *            analysis: applications and efficient algorithms, IEEE Transactions
+ *            on  Image Processing, vol. 2, no. 2, pp. 176-201, 1993.
+ * </pre>
+ */
+l_ok
+pixSeedfillGray(PIX     *pixs,
+                PIX     *pixm,
+                l_int32  connectivity)
+{
+l_int32    h, w, wpls, wplm;
+l_uint32  *datas, *datam;
+
+    if (!pixs || pixGetDepth(pixs) != 8)
+        return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1);
+    if (!pixm || pixGetDepth(pixm) != 8)
+        return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1);
+    if (connectivity != 4 && connectivity != 8)
+        return ERROR_INT("connectivity not in {4,8}", __func__, 1);
+
+        /* Make sure the sizes of seed and mask images are the same */
+    if (pixSizesEqual(pixs, pixm) == 0)
+        return ERROR_INT("pixs and pixm sizes differ", __func__, 1);
+
+    datas = pixGetData(pixs);
+    datam = pixGetData(pixm);
+    wpls = pixGetWpl(pixs);
+    wplm = pixGetWpl(pixm);
+    pixGetDimensions(pixs, &w, &h, NULL);
+    seedfillGrayLow(datas, w, h, wpls, datam, wplm, connectivity);
+
+    return 0;
+}
+
+
+/*!
+ * \brief   pixSeedfillGrayInv()
+ *
+ * \param[in]    pixs           8 bpp seed; filled in place
+ * \param[in]    pixm           8 bpp filling mask
+ * \param[in]    connectivity   4 or 8
+ * \return  0 if OK, 1 on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This is an in-place filling operation on the seed, pixs,
+ *          where the clipping mask is always below or at the level
+ *          of the seed as it is filled.  Think of filling up a basin
+ *          to a particular level, given by the maximum seed value
+ *          in the basin.  Outside the filled region, the mask
+ *          is above the filling level.
+ *      (2) Contrast this with pixSeedfillGray(), where the clipping mask
+ *          is always above or at the level of the fill.  An example
+ *          of its use is the hdome fill, where the seed is an image
+ *          where each pixel is a fixed amount smaller than the
+ *          corresponding mask pixel.
+ *      (3) The basin fill, pixSeedfillGrayBasin(), is a special case
+ *          where the seed pixel values are generated from the mask,
+ *          and where the implementation uses pixSeedfillGray() by
+ *          inverting both the seed and mask.
+ * </pre>
+ */
+l_ok
+pixSeedfillGrayInv(PIX     *pixs,
+                   PIX     *pixm,
+                   l_int32  connectivity)
+{
+l_int32    h, w, wpls, wplm;
+l_uint32  *datas, *datam;
+
+    if (!pixs || pixGetDepth(pixs) != 8)
+        return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1);
+    if (!pixm || pixGetDepth(pixm) != 8)
+        return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1);
+    if (connectivity != 4 && connectivity != 8)
+        return ERROR_INT("connectivity not in {4,8}", __func__, 1);
+
+        /* Make sure the sizes of seed and mask images are the same */
+    if (pixSizesEqual(pixs, pixm) == 0)
+        return ERROR_INT("pixs and pixm sizes differ", __func__, 1);
+
+    datas = pixGetData(pixs);
+    datam = pixGetData(pixm);
+    wpls = pixGetWpl(pixs);
+    wplm = pixGetWpl(pixm);
+    pixGetDimensions(pixs, &w, &h, NULL);
+    seedfillGrayInvLow(datas, w, h, wpls, datam, wplm, connectivity);
+
+    return 0;
+}
+
+
+/*!
+ * \brief   seedfillGrayLow()
+ *
+ *  Notes:
+ *      (1) The pixels are numbered as follows:
+ *              1  2  3
+ *              4  x  5
+ *              6  7  8
+ *          This low-level filling operation consists of two scans,
+ *          raster and anti-raster, covering the entire seed image.
+ *          This is followed by a breadth-first propagation operation to
+ *          complete the fill.
+ *          During the anti-raster scan, every pixel p whose current value
+ *          could still be propagated after the anti-raster scan is put into
+ *          the FIFO queue.
+ *          The propagation step is a breadth-first fill to completion.
+ *          Unlike the simple grayscale seedfill pixSeedfillGraySimple(),
+ *          where at least two full raster/anti-raster iterations are required
+ *          for completion and verification, the hybrid method uses only a
+ *          single raster/anti-raster set of scans.
+ *      (2) The filling action can be visualized from the following example.
+ *          Suppose the mask, which clips the fill, is a sombrero-shaped
+ *          surface, where the highest point is 200 and the low pixels
+ *          around the rim are 30.  Beyond the rim, the mask goes up a bit.
+ *          Suppose the seed, which is filled, consists of a single point
+ *          of height 150, located below the max of the mask, with
+ *          the rest 0.  Then in the raster scan, nothing happens until
+ *          the high seed point is encountered, and then this value is
+ *          propagated right and down, until it hits the side of the
+ *          sombrero.   The seed can never exceed the mask, so it fills
+ *          to the rim, going lower along the mask surface.  When it
+ *          passes the rim, the seed continues to fill at the rim
+ *          height to the edge of the seed image.  Then on the
+ *          anti-raster scan, the seed fills flat inside the
+ *          sombrero to the upper and left, and then out from the
+ *          rim as before.  The final result has a seed that is
+ *          flat outside the rim, and inside it fills the sombrero
+ *          but only up to 150.  If the rim height varies, the
+ *          filled seed outside the rim will be at the highest
+ *          point on the rim, which is a saddle point on the rim.
+ *      (3) Reference paper :
+ *            L. Vincent, Morphological grayscale reconstruction in image
+ *            analysis: applications and efficient algorithms, IEEE Transactions
+ *            on  Image Processing, vol. 2, no. 2, pp. 176-201, 1993.
+ */
+static void
+seedfillGrayLow(l_uint32  *datas,
+                l_int32    w,
+                l_int32    h,
+                l_int32    wpls,
+                l_uint32  *datam,
+                l_int32    wplm,
+                l_int32    connectivity)
+{
+l_uint8    val1, val2, val3, val4, val5, val6, val7, val8;
+l_uint8    val, maxval, maskval, boolval;
+l_int32    i, j, imax, jmax, queue_size;
+l_uint32  *lines, *linem;
+L_PIXEL *pixel;
+L_QUEUE  *lq_pixel;
+
+    if (connectivity != 4 && connectivity != 8) {
+        L_ERROR("connectivity must be 4 or 8\n", __func__);
+        return;
+    }
+
+    imax = h - 1;
+    jmax = w - 1;
+
+        /* In the worst case, most of the pixels could be pushed
+         * onto the FIFO queue during anti-raster scan.  However this
+         * will rarely happen, and we initialize the queue ptr size to
+         * the image perimeter. */
+    lq_pixel = lqueueCreate(2 * (w + h));
+
+    switch (connectivity)
+    {
+    case 4:
+            /* UL --> LR scan  (Raster Order)
+             * If I : mask image
+             *    J : marker image
+             * Let p be the currect pixel;
+             * J(p) <- (max{J(p) union J(p) neighbors in raster order})
+             *          intersection I(p) */
+        for (i = 0; i < h; i++) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = 0; j < w; j++) {
+                if ((maskval = GET_DATA_BYTE(linem, j)) > 0) {
+                    maxval = 0;
+                    if (i > 0)
+                        maxval = GET_DATA_BYTE(lines - wpls, j);
+                    if (j > 0) {
+                        val4 = GET_DATA_BYTE(lines, j - 1);
+                        maxval = L_MAX(maxval, val4);
+                    }
+                    val = GET_DATA_BYTE(lines, j);
+                    maxval = L_MAX(maxval, val);
+                    val = L_MIN(maxval, maskval);
+                    SET_DATA_BYTE(lines, j, val);
+                }
+            }
+        }
+
+            /* LR --> UL scan (anti-raster order)
+             * Let p be the currect pixel;
+             * J(p) <- (max{J(p) union J(p) neighbors in anti-raster order})
+             *          intersection I(p) */
+        for (i = imax; i >= 0; i--) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = jmax; j >= 0; j--) {
+                boolval = FALSE;
+                if ((maskval = GET_DATA_BYTE(linem, j)) > 0) {
+                    maxval = 0;
+                    if (i < imax)
+                        maxval = GET_DATA_BYTE(lines + wpls, j);
+                    if (j < jmax) {
+                        val5 = GET_DATA_BYTE(lines, j + 1);
+                        maxval = L_MAX(maxval, val5);
+                    }
+                    val = GET_DATA_BYTE(lines, j);
+                    maxval = L_MAX(maxval, val);
+                    val = L_MIN(maxval, maskval);
+                    SET_DATA_BYTE(lines, j, val);
+
+                        /*
+                         * If there exists a point (q) which belongs to J(p)
+                         * neighbors in anti-raster order such that J(q) < J(p)
+                         * and J(q) < I(q) then
+                         * fifo_add(p) */
+                    if (i < imax) {
+                        val7 = GET_DATA_BYTE(lines + wpls, j);
+                        if ((val7 < val) &&
+                            (val7 < GET_DATA_BYTE(linem + wplm, j))) {
+                            boolval = TRUE;
+                        }
+                    }
+                    if (j < jmax) {
+                        val5 = GET_DATA_BYTE(lines, j + 1);
+                        if (!boolval && (val5 < val) &&
+                            (val5 < GET_DATA_BYTE(linem, j + 1))) {
+                            boolval = TRUE;
+                        }
+                    }
+                    if (boolval) {
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i;
+                        pixel->y = j;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+            }
+        }
+
+            /* Propagation step:
+             *        while fifo_empty = false
+             *          p <- fifo_first()
+             *          for every pixel (q) belong to neighbors of (p)
+             *            if J(q) < J(p) and I(q) != J(q)
+             *              J(q) <- min(J(p), I(q));
+             *              fifo_add(q);
+             *            end
+             *          end
+             *        end */
+        queue_size = lqueueGetCount(lq_pixel);
+        while (queue_size) {
+            pixel = (L_PIXEL *)lqueueRemove(lq_pixel);
+            i = pixel->x;
+            j = pixel->y;
+            LEPT_FREE(pixel);
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+
+            if ((val = GET_DATA_BYTE(lines, j)) > 0) {
+                if (i > 0) {
+                    val2 = GET_DATA_BYTE(lines - wpls, j);
+                    maskval = GET_DATA_BYTE(linem - wplm, j);
+                    if (val > val2 && val2 != maskval) {
+                        SET_DATA_BYTE(lines - wpls, j, L_MIN(val, maskval));
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i - 1;
+                        pixel->y = j;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+
+                }
+                if (j > 0) {
+                    val4 = GET_DATA_BYTE(lines, j - 1);
+                    maskval = GET_DATA_BYTE(linem, j - 1);
+                    if (val > val4 && val4 != maskval) {
+                        SET_DATA_BYTE(lines, j - 1, L_MIN(val, maskval));
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i;
+                        pixel->y = j - 1;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+                if (i < imax) {
+                    val7 = GET_DATA_BYTE(lines + wpls, j);
+                    maskval = GET_DATA_BYTE(linem + wplm, j);
+                    if (val > val7 && val7 != maskval) {
+                        SET_DATA_BYTE(lines + wpls, j, L_MIN(val, maskval));
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i + 1;
+                        pixel->y = j;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+                if (j < jmax) {
+                    val5 = GET_DATA_BYTE(lines, j + 1);
+                    maskval = GET_DATA_BYTE(linem, j + 1);
+                    if (val > val5 && val5 != maskval) {
+                        SET_DATA_BYTE(lines, j + 1, L_MIN(val, maskval));
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i;
+                        pixel->y = j + 1;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+            }
+
+            queue_size = lqueueGetCount(lq_pixel);
+        }
+        break;
+
+    case 8:
+            /* UL --> LR scan  (Raster Order)
+             * If I : mask image
+             *    J : marker image
+             * Let p be the currect pixel;
+             * J(p) <- (max{J(p) union J(p) neighbors in raster order})
+             *          intersection I(p) */
+        for (i = 0; i < h; i++) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = 0; j < w; j++) {
+                if ((maskval = GET_DATA_BYTE(linem, j)) > 0) {
+                    maxval = 0;
+                    if (i > 0) {
+                        if (j > 0)
+                            maxval = GET_DATA_BYTE(lines - wpls, j - 1);
+                        if (j < jmax) {
+                            val3 = GET_DATA_BYTE(lines - wpls, j + 1);
+                            maxval = L_MAX(maxval, val3);
+                        }
+                        val2 = GET_DATA_BYTE(lines - wpls, j);
+                        maxval = L_MAX(maxval, val2);
+                    }
+                    if (j > 0) {
+                        val4 = GET_DATA_BYTE(lines, j - 1);
+                        maxval = L_MAX(maxval, val4);
+                    }
+                    val = GET_DATA_BYTE(lines, j);
+                    maxval = L_MAX(maxval, val);
+                    val = L_MIN(maxval, maskval);
+                    SET_DATA_BYTE(lines, j, val);
+                }
+            }
+        }
+
+            /* LR --> UL scan (anti-raster order)
+             * Let p be the currect pixel;
+             * J(p) <- (max{J(p) union J(p) neighbors in anti-raster order})
+             *          intersection I(p) */
+        for (i = imax; i >= 0; i--) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = jmax; j >= 0; j--) {
+                boolval = FALSE;
+                if ((maskval = GET_DATA_BYTE(linem, j)) > 0) {
+                    maxval = 0;
+                    if (i < imax) {
+                        if (j > 0) {
+                            maxval = GET_DATA_BYTE(lines + wpls, j - 1);
+                        }
+                        if (j < jmax) {
+                            val8 = GET_DATA_BYTE(lines + wpls, j + 1);
+                            maxval = L_MAX(maxval, val8);
+                        }
+                        val7 = GET_DATA_BYTE(lines + wpls, j);
+                        maxval = L_MAX(maxval, val7);
+                    }
+                    if (j < jmax) {
+                        val5 = GET_DATA_BYTE(lines, j + 1);
+                        maxval = L_MAX(maxval, val5);
+                    }
+                    val = GET_DATA_BYTE(lines, j);
+                    maxval = L_MAX(maxval, val);
+                    val = L_MIN(maxval, maskval);
+                    SET_DATA_BYTE(lines, j, val);
+
+                        /* If there exists a point (q) which belongs to J(p)
+                         * neighbors in anti-raster order such that J(q) < J(p)
+                         * and J(q) < I(q) then
+                         * fifo_add(p) */
+                    if (i < imax) {
+                        if (j > 0) {
+                            val6 = GET_DATA_BYTE(lines + wpls, j - 1);
+                            if ((val6 < val) &&
+                                (val6 < GET_DATA_BYTE(linem + wplm, j - 1))) {
+                                boolval = TRUE;
+                            }
+                        }
+                        if (j < jmax) {
+                            val8 = GET_DATA_BYTE(lines + wpls, j + 1);
+                            if (!boolval && (val8 < val) &&
+                                (val8 < GET_DATA_BYTE(linem + wplm, j + 1))) {
+                                boolval = TRUE;
+                            }
+                        }
+                        val7 = GET_DATA_BYTE(lines + wpls, j);
+                        if (!boolval && (val7 < val) &&
+                            (val7 < GET_DATA_BYTE(linem + wplm, j))) {
+                            boolval = TRUE;
+                        }
+                    }
+                    if (j < jmax) {
+                        val5 = GET_DATA_BYTE(lines, j + 1);
+                        if (!boolval && (val5 < val) &&
+                            (val5 < GET_DATA_BYTE(linem, j + 1))) {
+                            boolval = TRUE;
+                        }
+                    }
+                    if (boolval) {
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i;
+                        pixel->y = j;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+            }
+        }
+
+            /* Propagation step:
+             *        while fifo_empty = false
+             *          p <- fifo_first()
+             *          for every pixel (q) belong to neighbors of (p)
+             *            if J(q) < J(p) and I(q) != J(q)
+             *              J(q) <- min(J(p), I(q));
+             *              fifo_add(q);
+             *            end
+             *          end
+             *        end */
+        queue_size = lqueueGetCount(lq_pixel);
+        while (queue_size) {
+            pixel = (L_PIXEL *)lqueueRemove(lq_pixel);
+            i = pixel->x;
+            j = pixel->y;
+            LEPT_FREE(pixel);
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+
+            if ((val = GET_DATA_BYTE(lines, j)) > 0) {
+                if (i > 0) {
+                    if (j > 0) {
+                        val1 = GET_DATA_BYTE(lines - wpls, j - 1);
+                        maskval = GET_DATA_BYTE(linem - wplm, j - 1);
+                        if (val > val1 && val1 != maskval) {
+                            SET_DATA_BYTE(lines - wpls, j - 1,
+                                          L_MIN(val, maskval));
+                            pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                            pixel->x = i - 1;
+                            pixel->y = j - 1;
+                            lqueueAdd(lq_pixel, pixel);
+                        }
+                    }
+                    if (j < jmax) {
+                        val3 = GET_DATA_BYTE(lines - wpls, j + 1);
+                        maskval = GET_DATA_BYTE(linem - wplm, j + 1);
+                        if (val > val3 && val3 != maskval) {
+                            SET_DATA_BYTE(lines - wpls, j + 1,
+                                          L_MIN(val, maskval));
+                            pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                            pixel->x = i - 1;
+                            pixel->y = j + 1;
+                            lqueueAdd(lq_pixel, pixel);
+                        }
+                    }
+                    val2 = GET_DATA_BYTE(lines - wpls, j);
+                    maskval = GET_DATA_BYTE(linem - wplm, j);
+                    if (val > val2 && val2 != maskval) {
+                        SET_DATA_BYTE(lines - wpls, j, L_MIN(val, maskval));
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i - 1;
+                        pixel->y = j;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+
+                }
+                if (j > 0) {
+                    val4 = GET_DATA_BYTE(lines, j - 1);
+                    maskval = GET_DATA_BYTE(linem, j - 1);
+                    if (val > val4 && val4 != maskval) {
+                        SET_DATA_BYTE(lines, j - 1, L_MIN(val, maskval));
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i;
+                        pixel->y = j - 1;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+                if (i < imax) {
+                    if (j > 0) {
+                        val6 = GET_DATA_BYTE(lines + wpls, j - 1);
+                        maskval = GET_DATA_BYTE(linem + wplm, j - 1);
+                        if (val > val6 && val6 != maskval) {
+                            SET_DATA_BYTE(lines + wpls, j - 1,
+                                          L_MIN(val, maskval));
+                            pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                            pixel->x = i + 1;
+                            pixel->y = j - 1;
+                            lqueueAdd(lq_pixel, pixel);
+                        }
+                    }
+                    if (j < jmax) {
+                        val8 = GET_DATA_BYTE(lines + wpls, j + 1);
+                        maskval = GET_DATA_BYTE(linem + wplm, j + 1);
+                        if (val > val8 && val8 != maskval) {
+                            SET_DATA_BYTE(lines + wpls, j + 1,
+                                          L_MIN(val, maskval));
+                            pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                            pixel->x = i + 1;
+                            pixel->y = j + 1;
+                            lqueueAdd(lq_pixel, pixel);
+                        }
+                    }
+                    val7 = GET_DATA_BYTE(lines + wpls, j);
+                    maskval = GET_DATA_BYTE(linem + wplm, j);
+                    if (val > val7 && val7 != maskval) {
+                        SET_DATA_BYTE(lines + wpls, j, L_MIN(val, maskval));
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i + 1;
+                        pixel->y = j;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+                if (j < jmax) {
+                    val5 = GET_DATA_BYTE(lines, j + 1);
+                    maskval = GET_DATA_BYTE(linem, j + 1);
+                    if (val > val5 && val5 != maskval) {
+                        SET_DATA_BYTE(lines, j + 1, L_MIN(val, maskval));
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i;
+                        pixel->y = j + 1;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+            }
+
+            queue_size = lqueueGetCount(lq_pixel);
+        }
+        break;
+
+    default:
+        L_ERROR("shouldn't get here!\n", __func__);
+    }
+
+    lqueueDestroy(&lq_pixel, TRUE);
+}
+
+
+/*!
+ * \brief   seedfillGrayInvLow()
+ *
+ *  Notes:
+ *      (1) The pixels are numbered as follows:
+ *              1  2  3
+ *              4  x  5
+ *              6  7  8
+ *          This low-level filling operation consists of two scans,
+ *          raster and anti-raster, covering the entire seed image.
+ *          During the anti-raster scan, every pixel p such that its
+ *          current value could still be propagated during the next
+ *          raster scanning is put into the FIFO-queue.
+ *          Next step is the propagation step where where we update
+ *          and propagate the values using FIFO structure created in
+ *          anti-raster scan.
+ *      (2) The "Inv" signifies the fact that in this case, filling
+ *          of the seed only takes place when the seed value is
+ *          greater than the mask value.  The mask will act to stop
+ *          the fill when it is higher than the seed level.  (This is
+ *          in contrast to conventional grayscale filling where the
+ *          seed always fills below the mask.)
+ *      (3) An example of use is a basin, described by the mask (pixm),
+ *          where within the basin, the seed pix (pixs) gets filled to the
+ *          height of the highest seed pixel that is above its
+ *          corresponding max pixel.  Filling occurs while the
+ *          propagating seed pixels in pixs are larger than the
+ *          corresponding mask values in pixm.
+ *      (4) Reference paper :
+ *            L. Vincent, Morphological grayscale reconstruction in image
+ *            analysis: applications and efficient algorithms, IEEE Transactions
+ *            on  Image Processing, vol. 2, no. 2, pp. 176-201, 1993.
+ */
+static void
+seedfillGrayInvLow(l_uint32  *datas,
+                   l_int32    w,
+                   l_int32    h,
+                   l_int32    wpls,
+                   l_uint32  *datam,
+                   l_int32    wplm,
+                   l_int32    connectivity)
+{
+l_uint8    val1, val2, val3, val4, val5, val6, val7, val8;
+l_uint8    val, maxval, maskval, boolval;
+l_int32    i, j, imax, jmax, queue_size;
+l_uint32  *lines, *linem;
+L_PIXEL *pixel;
+L_QUEUE  *lq_pixel;
+
+    if (connectivity != 4 && connectivity != 8) {
+        L_ERROR("connectivity must be 4 or 8\n", __func__);
+        return;
+    }
+
+    imax = h - 1;
+    jmax = w - 1;
+
+        /* In the worst case, most of the pixels could be pushed
+         * onto the FIFO queue during anti-raster scan.  However this
+         * will rarely happen, and we initialize the queue ptr size to
+         * the image perimeter. */
+    lq_pixel = lqueueCreate(2 * (w + h));
+
+    switch (connectivity)
+    {
+    case 4:
+            /* UL --> LR scan  (Raster Order)
+             * If I : mask image
+             *    J : marker image
+             * Let p be the currect pixel;
+             * tmp <- max{J(p) union J(p) neighbors in raster order}
+             * if (tmp > I(p))
+             *   J(p) <- tmp
+             * end */
+        for (i = 0; i < h; i++) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = 0; j < w; j++) {
+                if ((maskval = GET_DATA_BYTE(linem, j)) < 255) {
+                    maxval = GET_DATA_BYTE(lines, j);
+                    if (i > 0) {
+                        val2 = GET_DATA_BYTE(lines - wpls, j);
+                        maxval = L_MAX(maxval, val2);
+                    }
+                    if (j > 0) {
+                        val4 = GET_DATA_BYTE(lines, j - 1);
+                        maxval = L_MAX(maxval, val4);
+                    }
+                    if (maxval > maskval)
+                        SET_DATA_BYTE(lines, j, maxval);
+                }
+            }
+        }
+
+            /* LR --> UL scan (anti-raster order)
+             * If I : mask image
+             *    J : marker image
+             * Let p be the currect pixel;
+             * tmp <- max{J(p) union J(p) neighbors in anti-raster order}
+             * if (tmp > I(p))
+             *   J(p) <- tmp
+             * end */
+        for (i = imax; i >= 0; i--) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = jmax; j >= 0; j--) {
+                boolval = FALSE;
+                if ((maskval = GET_DATA_BYTE(linem, j)) < 255) {
+                    val = maxval = GET_DATA_BYTE(lines, j);
+                    if (i < imax) {
+                        val7 = GET_DATA_BYTE(lines + wpls, j);
+                        maxval = L_MAX(maxval, val7);
+                    }
+                    if (j < jmax) {
+                        val5 = GET_DATA_BYTE(lines, j + 1);
+                        maxval = L_MAX(maxval, val5);
+                    }
+                    if (maxval > maskval)
+                        SET_DATA_BYTE(lines, j, maxval);
+                    val = GET_DATA_BYTE(lines, j);
+
+                        /*
+                         * If there exists a point (q) which belongs to J(p)
+                         * neighbors in anti-raster order such that J(q) < J(p)
+                         * and J(p) > I(q) then
+                         * fifo_add(p) */
+                    if (i < imax) {
+                        val7 = GET_DATA_BYTE(lines + wpls, j);
+                        if ((val7 < val) &&
+                            (val > GET_DATA_BYTE(linem + wplm, j))) {
+                            boolval = TRUE;
+                        }
+                    }
+                    if (j < jmax) {
+                        val5 = GET_DATA_BYTE(lines, j + 1);
+                        if (!boolval && (val5 < val) &&
+                            (val > GET_DATA_BYTE(linem, j + 1))) {
+                            boolval = TRUE;
+                        }
+                    }
+                    if (boolval) {
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i;
+                        pixel->y = j;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+            }
+        }
+
+            /* Propagation step:
+             *        while fifo_empty = false
+             *          p <- fifo_first()
+             *          for every pixel (q) belong to neighbors of (p)
+             *            if J(q) < J(p) and J(p) > I(q)
+             *              J(q) <- min(J(p), I(q));
+             *              fifo_add(q);
+             *            end
+             *          end
+             *        end */
+        queue_size = lqueueGetCount(lq_pixel);
+        while (queue_size) {
+            pixel = (L_PIXEL *)lqueueRemove(lq_pixel);
+            i = pixel->x;
+            j = pixel->y;
+            LEPT_FREE(pixel);
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+
+            if ((val = GET_DATA_BYTE(lines, j)) > 0) {
+                if (i > 0) {
+                    val2 = GET_DATA_BYTE(lines - wpls, j);
+                    maskval = GET_DATA_BYTE(linem - wplm, j);
+                    if (val > val2 && val > maskval) {
+                        SET_DATA_BYTE(lines - wpls, j, val);
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i - 1;
+                        pixel->y = j;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+
+                }
+                if (j > 0) {
+                    val4 = GET_DATA_BYTE(lines, j - 1);
+                    maskval = GET_DATA_BYTE(linem, j - 1);
+                    if (val > val4 && val > maskval) {
+                        SET_DATA_BYTE(lines, j - 1, val);
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i;
+                        pixel->y = j - 1;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+                if (i < imax) {
+                    val7 = GET_DATA_BYTE(lines + wpls, j);
+                    maskval = GET_DATA_BYTE(linem + wplm, j);
+                    if (val > val7 && val > maskval) {
+                        SET_DATA_BYTE(lines + wpls, j, val);
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i + 1;
+                        pixel->y = j;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+                if (j < jmax) {
+                    val5 = GET_DATA_BYTE(lines, j + 1);
+                    maskval = GET_DATA_BYTE(linem, j + 1);
+                    if (val > val5 && val > maskval) {
+                        SET_DATA_BYTE(lines, j + 1, val);
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i;
+                        pixel->y = j + 1;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+            }
+
+            queue_size = lqueueGetCount(lq_pixel);
+        }
+        break;
+
+    case 8:
+            /* UL --> LR scan  (Raster Order)
+             * If I : mask image
+             *    J : marker image
+             * Let p be the currect pixel;
+             * tmp <- max{J(p) union J(p) neighbors in raster order}
+             * if (tmp > I(p))
+             *   J(p) <- tmp
+             * end */
+        for (i = 0; i < h; i++) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = 0; j < w; j++) {
+                if ((maskval = GET_DATA_BYTE(linem, j)) < 255) {
+                    maxval = GET_DATA_BYTE(lines, j);
+                    if (i > 0) {
+                        if (j > 0) {
+                            val1 = GET_DATA_BYTE(lines - wpls, j - 1);
+                            maxval = L_MAX(maxval, val1);
+                        }
+                        if (j < jmax) {
+                            val3 = GET_DATA_BYTE(lines - wpls, j + 1);
+                            maxval = L_MAX(maxval, val3);
+                        }
+                        val2 = GET_DATA_BYTE(lines - wpls, j);
+                        maxval = L_MAX(maxval, val2);
+                    }
+                    if (j > 0) {
+                        val4 = GET_DATA_BYTE(lines, j - 1);
+                        maxval = L_MAX(maxval, val4);
+                    }
+                    if (maxval > maskval)
+                        SET_DATA_BYTE(lines, j, maxval);
+                }
+            }
+        }
+
+            /* LR --> UL scan (anti-raster order)
+             * If I : mask image
+             *    J : marker image
+             * Let p be the currect pixel;
+             * tmp <- max{J(p) union J(p) neighbors in anti-raster order}
+             * if (tmp > I(p))
+             *   J(p) <- tmp
+             * end */
+        for (i = imax; i >= 0; i--) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = jmax; j >= 0; j--) {
+                boolval = FALSE;
+                if ((maskval = GET_DATA_BYTE(linem, j)) < 255) {
+                    maxval = GET_DATA_BYTE(lines, j);
+                    if (i < imax) {
+                        if (j > 0) {
+                            val6 = GET_DATA_BYTE(lines + wpls, j - 1);
+                            maxval = L_MAX(maxval, val6);
+                        }
+                        if (j < jmax) {
+                            val8 = GET_DATA_BYTE(lines + wpls, j + 1);
+                            maxval = L_MAX(maxval, val8);
+                        }
+                        val7 = GET_DATA_BYTE(lines + wpls, j);
+                        maxval = L_MAX(maxval, val7);
+                    }
+                    if (j < jmax) {
+                        val5 = GET_DATA_BYTE(lines, j + 1);
+                        maxval = L_MAX(maxval, val5);
+                    }
+                    if (maxval > maskval)
+                        SET_DATA_BYTE(lines, j, maxval);
+                    val = GET_DATA_BYTE(lines, j);
+
+                        /*
+                         * If there exists a point (q) which belongs to J(p)
+                         * neighbors in anti-raster order such that J(q) < J(p)
+                         * and J(p) > I(q) then
+                         * fifo_add(p) */
+                    if (i < imax) {
+                        if (j > 0) {
+                            val6 = GET_DATA_BYTE(lines + wpls, j - 1);
+                            if ((val6 < val) &&
+                                (val > GET_DATA_BYTE(linem + wplm, j - 1))) {
+                                boolval = TRUE;
+                            }
+                        }
+                        if (j < jmax) {
+                            val8 = GET_DATA_BYTE(lines + wpls, j + 1);
+                            if (!boolval && (val8 < val) &&
+                                (val > GET_DATA_BYTE(linem + wplm, j + 1))) {
+                                boolval = TRUE;
+                            }
+                        }
+                        val7 = GET_DATA_BYTE(lines + wpls, j);
+                        if (!boolval && (val7 < val) &&
+                            (val > GET_DATA_BYTE(linem + wplm, j))) {
+                            boolval = TRUE;
+                        }
+                    }
+                    if (j < jmax) {
+                        val5 = GET_DATA_BYTE(lines, j + 1);
+                        if (!boolval && (val5 < val) &&
+                            (val > GET_DATA_BYTE(linem, j + 1))) {
+                            boolval = TRUE;
+                        }
+                    }
+                    if (boolval) {
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i;
+                        pixel->y = j;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+            }
+        }
+
+            /* Propagation step:
+             *        while fifo_empty = false
+             *          p <- fifo_first()
+             *          for every pixel (q) belong to neighbors of (p)
+             *            if J(q) < J(p) and J(p) > I(q)
+             *              J(q) <- min(J(p), I(q));
+             *              fifo_add(q);
+             *            end
+             *          end
+             *        end */
+        queue_size = lqueueGetCount(lq_pixel);
+        while (queue_size) {
+            pixel = (L_PIXEL *)lqueueRemove(lq_pixel);
+            i = pixel->x;
+            j = pixel->y;
+            LEPT_FREE(pixel);
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+
+            if ((val = GET_DATA_BYTE(lines, j)) > 0) {
+                if (i > 0) {
+                    if (j > 0) {
+                        val1 = GET_DATA_BYTE(lines - wpls, j - 1);
+                        maskval = GET_DATA_BYTE(linem - wplm, j - 1);
+                        if (val > val1 && val > maskval) {
+                            SET_DATA_BYTE(lines - wpls, j - 1, val);
+                            pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                            pixel->x = i - 1;
+                            pixel->y = j - 1;
+                            lqueueAdd(lq_pixel, pixel);
+                        }
+                    }
+                    if (j < jmax) {
+                        val3 = GET_DATA_BYTE(lines - wpls, j + 1);
+                        maskval = GET_DATA_BYTE(linem - wplm, j + 1);
+                        if (val > val3 && val > maskval) {
+                            SET_DATA_BYTE(lines - wpls, j + 1, val);
+                            pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                            pixel->x = i - 1;
+                            pixel->y = j + 1;
+                            lqueueAdd(lq_pixel, pixel);
+                        }
+                    }
+                    val2 = GET_DATA_BYTE(lines - wpls, j);
+                    maskval = GET_DATA_BYTE(linem - wplm, j);
+                    if (val > val2 && val > maskval) {
+                        SET_DATA_BYTE(lines - wpls, j, val);
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i - 1;
+                        pixel->y = j;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+
+                }
+                if (j > 0) {
+                    val4 = GET_DATA_BYTE(lines, j - 1);
+                    maskval = GET_DATA_BYTE(linem, j - 1);
+                    if (val > val4 && val > maskval) {
+                        SET_DATA_BYTE(lines, j - 1, val);
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i;
+                        pixel->y = j - 1;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+                if (i < imax) {
+                    if (j > 0) {
+                        val6 = GET_DATA_BYTE(lines + wpls, j - 1);
+                        maskval = GET_DATA_BYTE(linem + wplm, j - 1);
+                        if (val > val6 && val > maskval) {
+                            SET_DATA_BYTE(lines + wpls, j - 1, val);
+                            pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                            pixel->x = i + 1;
+                            pixel->y = j - 1;
+                            lqueueAdd(lq_pixel, pixel);
+                        }
+                    }
+                    if (j < jmax) {
+                        val8 = GET_DATA_BYTE(lines + wpls, j + 1);
+                        maskval = GET_DATA_BYTE(linem + wplm, j + 1);
+                        if (val > val8 && val > maskval) {
+                            SET_DATA_BYTE(lines + wpls, j + 1, val);
+                            pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                            pixel->x = i + 1;
+                            pixel->y = j + 1;
+                            lqueueAdd(lq_pixel, pixel);
+                        }
+                    }
+                    val7 = GET_DATA_BYTE(lines + wpls, j);
+                    maskval = GET_DATA_BYTE(linem + wplm, j);
+                    if (val > val7 && val > maskval) {
+                        SET_DATA_BYTE(lines + wpls, j, val);
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i + 1;
+                        pixel->y = j;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+                if (j < jmax) {
+                    val5 = GET_DATA_BYTE(lines, j + 1);
+                    maskval = GET_DATA_BYTE(linem, j + 1);
+                    if (val > val5 && val > maskval) {
+                        SET_DATA_BYTE(lines, j + 1, val);
+                        pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL));
+                        pixel->x = i;
+                        pixel->y = j + 1;
+                        lqueueAdd(lq_pixel, pixel);
+                    }
+                }
+            }
+
+            queue_size = lqueueGetCount(lq_pixel);
+        }
+        break;
+
+    default:
+        L_ERROR("shouldn't get here!\n", __func__);
+    }
+
+    lqueueDestroy(&lq_pixel, TRUE);
+}
+
+
+/*-----------------------------------------------------------------------*
+ *             Vincent's Iterative Grayscale Seedfill method             *
+ *-----------------------------------------------------------------------*/
+/*!
+ * \brief   pixSeedfillGraySimple()
+ *
+ * \param[in]    pixs           8 bpp seed; filled in place
+ * \param[in]    pixm           8 bpp filling mask
+ * \param[in]    connectivity   4 or 8
+ * \return  0 if OK, 1 on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This is an in-place filling operation on the seed, pixs,
+ *          where the clipping mask is always above or at the level
+ *          of the seed as it is filled.
+ *      (2) For details of the operation, see the description in
+ *          seedfillGrayLowSimple() and the code there.
+ *      (3) As an example of use, see the description in pixHDome().
+ *          There, the seed is an image where each pixel is a fixed
+ *          amount smaller than the corresponding mask pixel.
+ *      (4) Reference paper :
+ *            L. Vincent, Morphological grayscale reconstruction in image
+ *            analysis: applications and efficient algorithms, IEEE Transactions
+ *            on  Image Processing, vol. 2, no. 2, pp. 176-201, 1993.
+ * </pre>
+ */
+l_ok
+pixSeedfillGraySimple(PIX     *pixs,
+                      PIX     *pixm,
+                      l_int32  connectivity)
+{
+l_int32    i, h, w, wpls, wplm, boolval;
+l_uint32  *datas, *datam;
+PIX       *pixt;
+
+    if (!pixs || pixGetDepth(pixs) != 8)
+        return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1);
+    if (!pixm || pixGetDepth(pixm) != 8)
+        return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1);
+    if (connectivity != 4 && connectivity != 8)
+        return ERROR_INT("connectivity not in {4,8}", __func__, 1);
+
+        /* Make sure the sizes of seed and mask images are the same */
+    if (pixSizesEqual(pixs, pixm) == 0)
+        return ERROR_INT("pixs and pixm sizes differ", __func__, 1);
+
+        /* This is used to test for completion */
+    if ((pixt = pixCreateTemplate(pixs)) == NULL)
+        return ERROR_INT("pixt not made", __func__, 1);
+
+    datas = pixGetData(pixs);
+    datam = pixGetData(pixm);
+    wpls = pixGetWpl(pixs);
+    wplm = pixGetWpl(pixm);
+    pixGetDimensions(pixs, &w, &h, NULL);
+    for (i = 0; i < MaxIters; i++) {
+        pixCopy(pixt, pixs);
+        seedfillGrayLowSimple(datas, w, h, wpls, datam, wplm, connectivity);
+        pixEqual(pixs, pixt, &boolval);
+        if (boolval == 1) {
+#if DEBUG_PRINT_ITERS
+            L_INFO("Gray seed fill converged: %d iters\n", __func__, i + 1);
+#endif  /* DEBUG_PRINT_ITERS */
+            break;
+        }
+    }
+
+    pixDestroy(&pixt);
+    return 0;
+}
+
+
+/*!
+ * \brief   pixSeedfillGrayInvSimple()
+ *
+ * \param[in]    pixs           8 bpp seed; filled in place
+ * \param[in]    pixm           8 bpp filling mask
+ * \param[in]    connectivity   4 or 8
+ * \return  0 if OK, 1 on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This is an in-place filling operation on the seed, pixs,
+ *          where the clipping mask is always below or at the level
+ *          of the seed as it is filled.  Think of filling up a basin
+ *          to a particular level, given by the maximum seed value
+ *          in the basin.  Outside the filled region, the mask
+ *          is above the filling level.
+ *      (2) Contrast this with pixSeedfillGraySimple(), where the clipping mask
+ *          is always above or at the level of the fill.  An example
+ *          of its use is the hdome fill, where the seed is an image
+ *          where each pixel is a fixed amount smaller than the
+ *          corresponding mask pixel.
+ * </pre>
+ */
+l_ok
+pixSeedfillGrayInvSimple(PIX     *pixs,
+                         PIX     *pixm,
+                         l_int32  connectivity)
+{
+l_int32    i, h, w, wpls, wplm, boolval;
+l_uint32  *datas, *datam;
+PIX       *pixt;
+
+    if (!pixs || pixGetDepth(pixs) != 8)
+        return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1);
+    if (!pixm || pixGetDepth(pixm) != 8)
+        return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1);
+    if (connectivity != 4 && connectivity != 8)
+        return ERROR_INT("connectivity not in {4,8}", __func__, 1);
+
+        /* Make sure the sizes of seed and mask images are the same */
+    if (pixSizesEqual(pixs, pixm) == 0)
+        return ERROR_INT("pixs and pixm sizes differ", __func__, 1);
+
+        /* This is used to test for completion */
+    if ((pixt = pixCreateTemplate(pixs)) == NULL)
+        return ERROR_INT("pixt not made", __func__, 1);
+
+    datas = pixGetData(pixs);
+    datam = pixGetData(pixm);
+    wpls = pixGetWpl(pixs);
+    wplm = pixGetWpl(pixm);
+    pixGetDimensions(pixs, &w, &h, NULL);
+    for (i = 0; i < MaxIters; i++) {
+        pixCopy(pixt, pixs);
+        seedfillGrayInvLowSimple(datas, w, h, wpls, datam, wplm, connectivity);
+        pixEqual(pixs, pixt, &boolval);
+        if (boolval == 1) {
+#if DEBUG_PRINT_ITERS
+            L_INFO("Gray seed fill converged: %d iters\n", __func__, i + 1);
+#endif  /* DEBUG_PRINT_ITERS */
+            break;
+        }
+    }
+
+    pixDestroy(&pixt);
+    return 0;
+}
+
+
+/*!
+ * \brief   seedfillGrayLowSimple()
+ *
+ *  Notes:
+ *      (1) The pixels are numbered as follows:
+ *              1  2  3
+ *              4  x  5
+ *              6  7  8
+ *          This low-level filling operation consists of two scans,
+ *          raster and anti-raster, covering the entire seed image.
+ *          The caller typically iterates until the filling is
+ *          complete.
+ *      (2) The filling action can be visualized from the following example.
+ *          Suppose the mask, which clips the fill, is a sombrero-shaped
+ *          surface, where the highest point is 200 and the low pixels
+ *          around the rim are 30.  Beyond the rim, the mask goes up a bit.
+ *          Suppose the seed, which is filled, consists of a single point
+ *          of height 150, located below the max of the mask, with
+ *          the rest 0.  Then in the raster scan, nothing happens until
+ *          the high seed point is encountered, and then this value is
+ *          propagated right and down, until it hits the side of the
+ *          sombrero.   The seed can never exceed the mask, so it fills
+ *          to the rim, going lower along the mask surface.  When it
+ *          passes the rim, the seed continues to fill at the rim
+ *          height to the edge of the seed image.  Then on the
+ *          anti-raster scan, the seed fills flat inside the
+ *          sombrero to the upper and left, and then out from the
+ *          rim as before.  The final result has a seed that is
+ *          flat outside the rim, and inside it fills the sombrero
+ *          but only up to 150.  If the rim height varies, the
+ *          filled seed outside the rim will be at the highest
+ *          point on the rim, which is a saddle point on the rim.
+ */
+static void
+seedfillGrayLowSimple(l_uint32  *datas,
+                      l_int32    w,
+                      l_int32    h,
+                      l_int32    wpls,
+                      l_uint32  *datam,
+                      l_int32    wplm,
+                      l_int32    connectivity)
+{
+l_uint8    val2, val3, val4, val5, val7, val8;
+l_uint8    val, maxval, maskval;
+l_int32    i, j, imax, jmax;
+l_uint32  *lines, *linem;
+
+    imax = h - 1;
+    jmax = w - 1;
+
+    switch (connectivity)
+    {
+    case 4:
+            /* UL --> LR scan */
+        for (i = 0; i < h; i++) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = 0; j < w; j++) {
+                if ((maskval = GET_DATA_BYTE(linem, j)) > 0) {
+                    maxval = 0;
+                    if (i > 0)
+                        maxval = GET_DATA_BYTE(lines - wpls, j);
+                    if (j > 0) {
+                        val4 = GET_DATA_BYTE(lines, j - 1);
+                        maxval = L_MAX(maxval, val4);
+                    }
+                    val = GET_DATA_BYTE(lines, j);
+                    maxval = L_MAX(maxval, val);
+                    val = L_MIN(maxval, maskval);
+                    SET_DATA_BYTE(lines, j, val);
+                }
+            }
+        }
+
+            /* LR --> UL scan */
+        for (i = imax; i >= 0; i--) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = jmax; j >= 0; j--) {
+                if ((maskval = GET_DATA_BYTE(linem, j)) > 0) {
+                    maxval = 0;
+                    if (i < imax)
+                        maxval = GET_DATA_BYTE(lines + wpls, j);
+                    if (j < jmax) {
+                        val5 = GET_DATA_BYTE(lines, j + 1);
+                        maxval = L_MAX(maxval, val5);
+                    }
+                    val = GET_DATA_BYTE(lines, j);
+                    maxval = L_MAX(maxval, val);
+                    val = L_MIN(maxval, maskval);
+                    SET_DATA_BYTE(lines, j, val);
+                }
+            }
+        }
+        break;
+
+    case 8:
+            /* UL --> LR scan */
+        for (i = 0; i < h; i++) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = 0; j < w; j++) {
+                if ((maskval = GET_DATA_BYTE(linem, j)) > 0) {
+                    maxval = 0;
+                    if (i > 0) {
+                        if (j > 0)
+                            maxval = GET_DATA_BYTE(lines - wpls, j - 1);
+                        if (j < jmax) {
+                            val2 = GET_DATA_BYTE(lines - wpls, j + 1);
+                            maxval = L_MAX(maxval, val2);
+                        }
+                        val3 = GET_DATA_BYTE(lines - wpls, j);
+                        maxval = L_MAX(maxval, val3);
+                    }
+                    if (j > 0) {
+                        val4 = GET_DATA_BYTE(lines, j - 1);
+                        maxval = L_MAX(maxval, val4);
+                    }
+                    val = GET_DATA_BYTE(lines, j);
+                    maxval = L_MAX(maxval, val);
+                    val = L_MIN(maxval, maskval);
+                    SET_DATA_BYTE(lines, j, val);
+                }
+            }
+        }
+
+            /* LR --> UL scan */
+        for (i = imax; i >= 0; i--) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = jmax; j >= 0; j--) {
+                if ((maskval = GET_DATA_BYTE(linem, j)) > 0) {
+                    maxval = 0;
+                    if (i < imax) {
+                        if (j > 0)
+                            maxval = GET_DATA_BYTE(lines + wpls, j - 1);
+                        if (j < jmax) {
+                            val8 = GET_DATA_BYTE(lines + wpls, j + 1);
+                            maxval = L_MAX(maxval, val8);
+                        }
+                        val7 = GET_DATA_BYTE(lines + wpls, j);
+                        maxval = L_MAX(maxval, val7);
+                    }
+                    if (j < jmax) {
+                        val5 = GET_DATA_BYTE(lines, j + 1);
+                        maxval = L_MAX(maxval, val5);
+                    }
+                    val = GET_DATA_BYTE(lines, j);
+                    maxval = L_MAX(maxval, val);
+                    val = L_MIN(maxval, maskval);
+                    SET_DATA_BYTE(lines, j, val);
+                }
+            }
+        }
+        break;
+
+    default:
+        L_ERROR("connectivity must be 4 or 8\n", __func__);
+    }
+}
+
+
+/*!
+ * \brief   seedfillGrayInvLowSimple()
+ *
+ *  Notes:
+ *      (1) The pixels are numbered as follows:
+ *              1  2  3
+ *              4  x  5
+ *              6  7  8
+ *          This low-level filling operation consists of two scans,
+ *          raster and anti-raster, covering the entire seed image.
+ *          The caller typically iterates until the filling is
+ *          complete.
+ *      (2) The "Inv" signifies the fact that in this case, filling
+ *          of the seed only takes place when the seed value is
+ *          greater than the mask value.  The mask will act to stop
+ *          the fill when it is higher than the seed level.  (This is
+ *          in contrast to conventional grayscale filling where the
+ *          seed always fills below the mask.)
+ *      (3) An example of use is a basin, described by the mask (pixm),
+ *          where within the basin, the seed pix (pixs) gets filled to the
+ *          height of the highest seed pixel that is above its
+ *          corresponding max pixel.  Filling occurs while the
+ *          propagating seed pixels in pixs are larger than the
+ *          corresponding mask values in pixm.
+ */
+static void
+seedfillGrayInvLowSimple(l_uint32  *datas,
+                         l_int32    w,
+                         l_int32    h,
+                         l_int32    wpls,
+                         l_uint32  *datam,
+                         l_int32    wplm,
+                         l_int32    connectivity)
+{
+l_uint8    val1, val2, val3, val4, val5, val6, val7, val8;
+l_uint8    maxval, maskval;
+l_int32    i, j, imax, jmax;
+l_uint32  *lines, *linem;
+
+    imax = h - 1;
+    jmax = w - 1;
+
+    switch (connectivity)
+    {
+    case 4:
+            /* UL --> LR scan */
+        for (i = 0; i < h; i++) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = 0; j < w; j++) {
+                if ((maskval = GET_DATA_BYTE(linem, j)) < 255) {
+                    maxval = GET_DATA_BYTE(lines, j);
+                    if (i > 0) {
+                        val2 = GET_DATA_BYTE(lines - wpls, j);
+                        maxval = L_MAX(maxval, val2);
+                    }
+                    if (j > 0) {
+                        val4 = GET_DATA_BYTE(lines, j - 1);
+                        maxval = L_MAX(maxval, val4);
+                    }
+                    if (maxval > maskval)
+                        SET_DATA_BYTE(lines, j, maxval);
+                }
+            }
+        }
+
+            /* LR --> UL scan */
+        for (i = imax; i >= 0; i--) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = jmax; j >= 0; j--) {
+                if ((maskval = GET_DATA_BYTE(linem, j)) < 255) {
+                    maxval = GET_DATA_BYTE(lines, j);
+                    if (i < imax) {
+                        val7 = GET_DATA_BYTE(lines + wpls, j);
+                        maxval = L_MAX(maxval, val7);
+                    }
+                    if (j < jmax) {
+                        val5 = GET_DATA_BYTE(lines, j + 1);
+                        maxval = L_MAX(maxval, val5);
+                    }
+                    if (maxval > maskval)
+                        SET_DATA_BYTE(lines, j, maxval);
+                }
+            }
+        }
+        break;
+
+    case 8:
+            /* UL --> LR scan */
+        for (i = 0; i < h; i++) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = 0; j < w; j++) {
+                if ((maskval = GET_DATA_BYTE(linem, j)) < 255) {
+                    maxval = GET_DATA_BYTE(lines, j);
+                    if (i > 0) {
+                        if (j > 0) {
+                            val1 = GET_DATA_BYTE(lines - wpls, j - 1);
+                            maxval = L_MAX(maxval, val1);
+                        }
+                        if (j < jmax) {
+                            val2 = GET_DATA_BYTE(lines - wpls, j + 1);
+                            maxval = L_MAX(maxval, val2);
+                        }
+                        val3 = GET_DATA_BYTE(lines - wpls, j);
+                        maxval = L_MAX(maxval, val3);
+                    }
+                    if (j > 0) {
+                        val4 = GET_DATA_BYTE(lines, j - 1);
+                        maxval = L_MAX(maxval, val4);
+                    }
+                    if (maxval > maskval)
+                        SET_DATA_BYTE(lines, j, maxval);
+                }
+            }
+        }
+
+            /* LR --> UL scan */
+        for (i = imax; i >= 0; i--) {
+            lines = datas + i * wpls;
+            linem = datam + i * wplm;
+            for (j = jmax; j >= 0; j--) {
+                if ((maskval = GET_DATA_BYTE(linem, j)) < 255) {
+                    maxval = GET_DATA_BYTE(lines, j);
+                    if (i < imax) {
+                        if (j > 0) {
+                            val6 = GET_DATA_BYTE(lines + wpls, j - 1);
+                            maxval = L_MAX(maxval, val6);
+                        }
+                        if (j < jmax) {
+                            val8 = GET_DATA_BYTE(lines + wpls, j + 1);
+                            maxval = L_MAX(maxval, val8);
+                        }
+                        val7 = GET_DATA_BYTE(lines + wpls, j);
+                        maxval = L_MAX(maxval, val7);
+                    }
+                    if (j < jmax) {
+                        val5 = GET_DATA_BYTE(lines, j + 1);
+                        maxval = L_MAX(maxval, val5);
+                    }
+                    if (maxval > maskval)
+                        SET_DATA_BYTE(lines, j, maxval);
+                }
+            }
+        }
+        break;
+
+    default:
+        L_ERROR("connectivity must be 4 or 8\n", __func__);
+    }
+}
+
+
+/*-----------------------------------------------------------------------*
+ *                         Gray seedfill variations                      *
+ *-----------------------------------------------------------------------*/
+/*!
+ * \brief   pixSeedfillGrayBasin()
+ *
+ * \param[in]    pixb           binary mask giving seed locations
+ * \param[in]    pixm           8 bpp basin-type filling mask
+ * \param[in]    delta          amount of seed value above mask
+ * \param[in]    connectivity   4 or 8
+ * \return  pixd filled seed if OK, NULL on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This fills from a seed within basins defined by a filling mask.
+ *          The seed value(s) are greater than the corresponding
+ *          filling mask value, and the result has the bottoms of
+ *          the basins raised by the initial seed value.
+ *      (2) The seed has value 255 except where pixb has fg (1), which
+ *          are the seed 'locations'.  At the seed locations, the seed
+ *          value is the corresponding value of the mask pixel in pixm
+ *          plus %delta.  If %delta == 0, we return a copy of pixm.
+ *      (3) The actual filling is done using the standard grayscale filling
+ *          operation on the inverse of the mask and using the inverse
+ *          of the seed image.  After filling, we return the inverse of
+ *          the filled seed.
+ *      (4) As an example of use: pixm can describe a grayscale image
+ *          of text, where the (dark) text pixels are basins of
+ *          low values; pixb can identify the local minima in pixm (say, at
+ *          the bottom of the basins); and delta is the amount that we wish
+ *          to raise (lighten) the basins.  We construct the seed
+ *          (a.k.a marker) image from pixb, pixm and %delta.
+ * </pre>
+ */
+PIX *
+pixSeedfillGrayBasin(PIX     *pixb,
+                     PIX     *pixm,
+                     l_int32  delta,
+                     l_int32  connectivity)
+{
+PIX  *pixbi, *pixmi, *pixsd;
+
+    if (!pixb || pixGetDepth(pixb) != 1)
+        return (PIX *)ERROR_PTR("pixb undefined or not 1 bpp", __func__, NULL);
+    if (!pixm || pixGetDepth(pixm) != 8)
+        return (PIX *)ERROR_PTR("pixm undefined or not 8 bpp", __func__, NULL);
+    if (connectivity != 4 && connectivity != 8)
+        return (PIX *)ERROR_PTR("connectivity not in {4,8}", __func__, NULL);
+
+    if (delta <= 0) {
+        L_WARNING("delta <= 0; returning a copy of pixm\n", __func__);
+        return pixCopy(NULL, pixm);
+    }
+
+        /* Add delta to every pixel in pixm */
+    pixsd = pixCopy(NULL, pixm);
+    pixAddConstantGray(pixsd, delta);
+
+        /* Prepare the seed.  Write 255 in all pixels of
+         * ([pixm] + delta) where pixb is 0. */
+    pixbi = pixInvert(NULL, pixb);
+    pixSetMasked(pixsd, pixbi, 255);
+
+        /* Fill the inverse seed, using the inverse clipping mask */
+    pixmi = pixInvert(NULL, pixm);
+    pixInvert(pixsd, pixsd);
+    pixSeedfillGray(pixsd, pixmi, connectivity);
+
+        /* Re-invert the filled seed */
+    pixInvert(pixsd, pixsd);
+
+    pixDestroy(&pixbi);
+    pixDestroy(&pixmi);
+    return pixsd;
+}
+
+
+/*-----------------------------------------------------------------------*
+ *                   Vincent's Distance Function method                  *
+ *-----------------------------------------------------------------------*/
+/*!
+ * \brief   pixDistanceFunction()
+ *
+ * \param[in]    pixs           1 bpp
+ * \param[in]    connectivity   4 or 8
+ * \param[in]    outdepth       8 or 16 bits for pixd
+ * \param[in]    boundcond      L_BOUNDARY_BG, L_BOUNDARY_FG
+ * \return  pixd, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This computes the distance of each pixel from the nearest
+ *          background pixel.  All bg pixels therefore have a distance of 0,
+ *          and the fg pixel distances increase linearly from 1 at the
+ *          boundary.  It can also be used to compute the distance of
+ *          each pixel from the nearest fg pixel, by inverting the input
+ *          image before calling this function.  Then all fg pixels have
+ *          a distance 0 and the bg pixel distances increase linearly
+ *          from 1 at the boundary.
+ *      (2) The algorithm, described in Leptonica on the page on seed
+ *          filling and connected components, is due to Luc Vincent.
+ *          In brief, we generate an 8 or 16 bpp image, initialized
+ *          with the fg pixels of the input pix set to 1 and the
+ *          1-boundary pixels (i.e., the boundary pixels of width 1 on
+ *          the four sides set as either:
+ *            * L_BOUNDARY_BG: 0
+ *            * L_BOUNDARY_FG:  max
+ *          where max = 0xff for 8 bpp and 0xffff for 16 bpp.
+ *          Then do raster/anti-raster sweeps over all pixels interior
+ *          to the 1-boundary, where the value of each new pixel is
+ *          taken to be 1 more than the minimum of the previously-seen
+ *          connected pixels (using either 4 or 8 connectivity).
+ *          Finally, set the 1-boundary pixels using the mirrored method;
+ *          this removes the max values there.
+ *      (3) Using L_BOUNDARY_BG clamps the distance to 0 at the
+ *          boundary.  Using L_BOUNDARY_FG allows the distance
+ *          at the image boundary to "float".
+ *      (4) For 4-connected, one could initialize only the left and top
+ *          1-boundary pixels, and go all the way to the right
+ *          and bottom; then coming back reset left and top.  But we
+ *          instead use a method that works for both 4- and 8-connected.
+ * </pre>
+ */
+PIX *
+pixDistanceFunction(PIX     *pixs,
+                    l_int32  connectivity,
+                    l_int32  outdepth,
+                    l_int32  boundcond)
+{
+l_int32    w, h, wpld;
+l_uint32  *datad;
+PIX       *pixd;
+
+    if (!pixs || pixGetDepth(pixs) != 1)
+        return (PIX *)ERROR_PTR("!pixs or pixs not 1 bpp", __func__, NULL);
+    if (connectivity != 4 && connectivity != 8)
+        return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL);
+    if (outdepth != 8 && outdepth != 16)
+        return (PIX *)ERROR_PTR("outdepth not 8 or 16 bpp", __func__, NULL);
+    if (boundcond != L_BOUNDARY_BG && boundcond != L_BOUNDARY_FG)
+        return (PIX *)ERROR_PTR("invalid boundcond", __func__, NULL);
+
+    pixGetDimensions(pixs, &w, &h, NULL);
+    if ((pixd = pixCreate(w, h, outdepth)) == NULL)
+        return (PIX *)ERROR_PTR("pixd not made", __func__, NULL);
+    datad = pixGetData(pixd);
+    wpld = pixGetWpl(pixd);
+
+        /* Initialize the fg pixels to 1 and the bg pixels to 0 */
+    pixSetMasked(pixd, pixs, 1);
+
+    if (boundcond == L_BOUNDARY_BG) {
+        distanceFunctionLow(datad, w, h, outdepth, wpld, connectivity);
+    } else {  /* L_BOUNDARY_FG: set boundary pixels to max val */
+        pixRasterop(pixd, 0, 0, w, 1, PIX_SET, NULL, 0, 0);   /* top */
+        pixRasterop(pixd, 0, h - 1, w, 1, PIX_SET, NULL, 0, 0);   /* bot */
+        pixRasterop(pixd, 0, 0, 1, h, PIX_SET, NULL, 0, 0);   /* left */
+        pixRasterop(pixd, w - 1, 0, 1, h, PIX_SET, NULL, 0, 0);   /* right */
+
+        distanceFunctionLow(datad, w, h, outdepth, wpld, connectivity);
+
+            /* Set each boundary pixel equal to the pixel next to it */
+        pixSetMirroredBorder(pixd, 1, 1, 1, 1);
+    }
+
+    return pixd;
+}
+
+
+/*!
+ * \brief   distanceFunctionLow()
+ */
+static void
+distanceFunctionLow(l_uint32  *datad,
+                    l_int32    w,
+                    l_int32    h,
+                    l_int32    d,
+                    l_int32    wpld,
+                    l_int32    connectivity)
+{
+l_int32    val1, val2, val3, val4, val5, val6, val7, val8, minval, val;
+l_int32    i, j, imax, jmax;
+l_uint32  *lined;
+
+        /* One raster scan followed by one anti-raster scan.
+         * This does not re-set the 1-boundary of pixels that
+         * were initialized to either 0 or maxval. */
+    imax = h - 1;
+    jmax = w - 1;
+    switch (connectivity)
+    {
+    case 4:
+        if (d == 8) {
+                /* UL --> LR scan */
+            for (i = 1; i < imax; i++) {
+                lined = datad + i * wpld;
+                for (j = 1; j < jmax; j++) {
+                    if ((val = GET_DATA_BYTE(lined, j)) > 0) {
+                        val2 = GET_DATA_BYTE(lined - wpld, j);
+                        val4 = GET_DATA_BYTE(lined, j - 1);
+                        minval = L_MIN(val2, val4);
+                        minval = L_MIN(minval, 254);
+                        SET_DATA_BYTE(lined, j, minval + 1);
+                    }
+                }
+            }
+
+                /* LR --> UL scan */
+            for (i = imax - 1; i > 0; i--) {
+                lined = datad + i * wpld;
+                for (j = jmax - 1; j > 0; j--) {
+                    if ((val = GET_DATA_BYTE(lined, j)) > 0) {
+                        val7 = GET_DATA_BYTE(lined + wpld, j);
+                        val5 = GET_DATA_BYTE(lined, j + 1);
+                        minval = L_MIN(val5, val7);
+                        minval = L_MIN(minval + 1, val);
+                        SET_DATA_BYTE(lined, j, minval);
+                    }
+                }
+            }
+        } else {  /* d == 16 */
+                /* UL --> LR scan */
+            for (i = 1; i < imax; i++) {
+                lined = datad + i * wpld;
+                for (j = 1; j < jmax; j++) {
+                    if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) {
+                        val2 = GET_DATA_TWO_BYTES(lined - wpld, j);
+                        val4 = GET_DATA_TWO_BYTES(lined, j - 1);
+                        minval = L_MIN(val2, val4);
+                        minval = L_MIN(minval, 0xfffe);
+                        SET_DATA_TWO_BYTES(lined, j, minval + 1);
+                    }
+                }
+            }
+
+                /* LR --> UL scan */
+            for (i = imax - 1; i > 0; i--) {
+                lined = datad + i * wpld;
+                for (j = jmax - 1; j > 0; j--) {
+                    if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) {
+                        val7 = GET_DATA_TWO_BYTES(lined + wpld, j);
+                        val5 = GET_DATA_TWO_BYTES(lined, j + 1);
+                        minval = L_MIN(val5, val7);
+                        minval = L_MIN(minval + 1, val);
+                        SET_DATA_TWO_BYTES(lined, j, minval);
+                    }
+                }
+            }
+        }
+        break;
+
+    case 8:
+        if (d == 8) {
+                /* UL --> LR scan */
+            for (i = 1; i < imax; i++) {
+                lined = datad + i * wpld;
+                for (j = 1; j < jmax; j++) {
+                    if ((val = GET_DATA_BYTE(lined, j)) > 0) {
+                        val1 = GET_DATA_BYTE(lined - wpld, j - 1);
+                        val2 = GET_DATA_BYTE(lined - wpld, j);
+                        val3 = GET_DATA_BYTE(lined - wpld, j + 1);
+                        val4 = GET_DATA_BYTE(lined, j - 1);
+                        minval = L_MIN(val1, val2);
+                        minval = L_MIN(minval, val3);
+                        minval = L_MIN(minval, val4);
+                        minval = L_MIN(minval, 254);
+                        SET_DATA_BYTE(lined, j, minval + 1);
+                    }
+                }
+            }
+
+                /* LR --> UL scan */
+            for (i = imax - 1; i > 0; i--) {
+                lined = datad + i * wpld;
+                for (j = jmax - 1; j > 0; j--) {
+                    if ((val = GET_DATA_BYTE(lined, j)) > 0) {
+                        val8 = GET_DATA_BYTE(lined + wpld, j + 1);
+                        val7 = GET_DATA_BYTE(lined + wpld, j);
+                        val6 = GET_DATA_BYTE(lined + wpld, j - 1);
+                        val5 = GET_DATA_BYTE(lined, j + 1);
+                        minval = L_MIN(val8, val7);
+                        minval = L_MIN(minval, val6);
+                        minval = L_MIN(minval, val5);
+                        minval = L_MIN(minval + 1, val);
+                        SET_DATA_BYTE(lined, j, minval);
+                    }
+                }
+            }
+        } else {  /* d == 16 */
+                /* UL --> LR scan */
+            for (i = 1; i < imax; i++) {
+                lined = datad + i * wpld;
+                for (j = 1; j < jmax; j++) {
+                    if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) {
+                        val1 = GET_DATA_TWO_BYTES(lined - wpld, j - 1);
+                        val2 = GET_DATA_TWO_BYTES(lined - wpld, j);
+                        val3 = GET_DATA_TWO_BYTES(lined - wpld, j + 1);
+                        val4 = GET_DATA_TWO_BYTES(lined, j - 1);
+                        minval = L_MIN(val1, val2);
+                        minval = L_MIN(minval, val3);
+                        minval = L_MIN(minval, val4);
+                        minval = L_MIN(minval, 0xfffe);
+                        SET_DATA_TWO_BYTES(lined, j, minval + 1);
+                    }
+                }
+            }
+
+                /* LR --> UL scan */
+            for (i = imax - 1; i > 0; i--) {
+                lined = datad + i * wpld;
+                for (j = jmax - 1; j > 0; j--) {
+                    if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) {
+                        val8 = GET_DATA_TWO_BYTES(lined + wpld, j + 1);
+                        val7 = GET_DATA_TWO_BYTES(lined + wpld, j);
+                        val6 = GET_DATA_TWO_BYTES(lined + wpld, j - 1);
+                        val5 = GET_DATA_TWO_BYTES(lined, j + 1);
+                        minval = L_MIN(val8, val7);
+                        minval = L_MIN(minval, val6);
+                        minval = L_MIN(minval, val5);
+                        minval = L_MIN(minval + 1, val);
+                        SET_DATA_TWO_BYTES(lined, j, minval);
+                    }
+                }
+            }
+        }
+        break;
+
+    default:
+        L_ERROR("connectivity must be 4 or 8\n", __func__);
+    }
+}
+
+
+/*-----------------------------------------------------------------------*
+ *                Seed spread (based on distance function)               *
+ *-----------------------------------------------------------------------*/
+/*!
+ * \brief   pixSeedspread()
+ *
+ * \param[in]    pixs           8 bpp
+ * \param[in]    connectivity   4 or 8
+ * \return  pixd, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) The raster/anti-raster method for implementing this filling
+ *          operation was suggested by Ray Smith.
+ *      (2) This takes an arbitrary set of nonzero pixels in pixs, which
+ *          can be sparse, and spreads (extrapolates) the values to
+ *          fill all the pixels in pixd with the nonzero value it is
+ *          closest to in pixs.  This is similar (though not completely
+ *          equivalent) to doing a Voronoi tiling of the image, with a
+ *          tile surrounding each pixel that has a nonzero value.
+ *          All pixels within a tile are then closer to its "central"
+ *          pixel than to any others.  Then assign the value of the
+ *          "central" pixel to each pixel in the tile.
+ *      (3) This is implemented by computing a distance function in parallel
+ *          with the fill.  The distance function uses free boundary
+ *          conditions (assumed maxval outside), and it controls the
+ *          propagation of the pixels in pixd away from the nonzero
+ *          (seed) values.  This is done in 2 traversals (raster/antiraster).
+ *          In the raster direction, whenever the distance function
+ *          is nonzero, the spread pixel takes on the value of its
+ *          predecessor that has the minimum distance value.  In the
+ *          antiraster direction, whenever the distance function is nonzero
+ *          and its value is replaced by a smaller value, the spread
+ *          pixel takes the value of the predecessor with the minimum
+ *          distance value.
+ *      (4) At boundaries where a pixel is equidistant from two
+ *          nearest nonzero (seed) pixels, the decision of which value
+ *          to use is arbitrary (greedy in search for minimum distance).
+ *          This can give rise to strange-looking results, particularly
+ *          for 4-connectivity where the L1 distance is computed from
+ *          steps in N,S,E and W directions (no diagonals).
+ * </pre>
+ */
+PIX *
+pixSeedspread(PIX     *pixs,
+              l_int32  connectivity)
+{
+l_int32    w, h, wplt, wplg;
+l_uint32  *datat, *datag;
+PIX       *pixm, *pixt, *pixg, *pixd;
+
+    if (!pixs || pixGetDepth(pixs) != 8)
+        return (PIX *)ERROR_PTR("!pixs or pixs not 8 bpp", __func__, NULL);
+    if (connectivity != 4 && connectivity != 8)
+        return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL);
+
+        /* Add a 4 byte border to pixs.  This simplifies the computation. */
+    pixg = pixAddBorder(pixs, 4, 0);
+    pixGetDimensions(pixg, &w, &h, NULL);
+
+        /* Initialize distance function pixt.  Threshold pixs to get
+         * a 0 at the seed points where the pixs pixel is nonzero, and
+         * a 1 at all points that need to be filled.  Use this as a
+         * mask to set a 1 in pixt at all non-seed points.  Also, set all
+         * pixt pixels in an interior boundary of width 1 to the
+         * maximum value.   For debugging, to view the distance function,
+         * use pixConvert16To8(pixt, L_LS_BYTE) on small images.  */
+    pixm = pixThresholdToBinary(pixg, 1);
+    pixt = pixCreate(w, h, 16);
+    pixSetMasked(pixt, pixm, 1);
+    pixRasterop(pixt, 0, 0, w, 1, PIX_SET, NULL, 0, 0);   /* top */
+    pixRasterop(pixt, 0, h - 1, w, 1, PIX_SET, NULL, 0, 0);   /* bot */
+    pixRasterop(pixt, 0, 0, 1, h, PIX_SET, NULL, 0, 0);   /* left */
+    pixRasterop(pixt, w - 1, 0, 1, h, PIX_SET, NULL, 0, 0);   /* right */
+    datat = pixGetData(pixt);
+    wplt = pixGetWpl(pixt);
+
+        /* Do the interpolation and remove the border. */
+    datag = pixGetData(pixg);
+    wplg = pixGetWpl(pixg);
+    seedspreadLow(datag, w, h, wplg, datat, wplt, connectivity);
+    pixd = pixRemoveBorder(pixg, 4);
+
+    pixDestroy(&pixm);
+    pixDestroy(&pixg);
+    pixDestroy(&pixt);
+    return pixd;
+}
+
+
+/*!
+ * \brief   seedspreadLow()
+ *
+ *    See pixSeedspread() for a brief description of the algorithm here.
+ */
+static void
+seedspreadLow(l_uint32  *datad,
+              l_int32    w,
+              l_int32    h,
+              l_int32    wpld,
+              l_uint32  *datat,
+              l_int32    wplt,
+              l_int32    connectivity)
+{
+l_int32    val1t, val2t, val3t, val4t, val5t, val6t, val7t, val8t;
+l_int32    i, j, imax, jmax, minval, valt, vald;
+l_uint32  *linet, *lined;
+
+        /* One raster scan followed by one anti-raster scan.
+         * pixt is initialized to have 0 on pixels where the
+         * input is specified in pixd, and to have 1 on all
+         * other pixels.  We only change pixels in pixt and pixd
+         * that are non-zero in pixt. */
+    imax = h - 1;
+    jmax = w - 1;
+    switch (connectivity)
+    {
+    case 4:
+            /* UL --> LR scan */
+        for (i = 1; i < h; i++) {
+            linet = datat + i * wplt;
+            lined = datad + i * wpld;
+            for (j = 1; j < jmax; j++) {
+                if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) {
+                    val2t = GET_DATA_TWO_BYTES(linet - wplt, j);
+                    val4t = GET_DATA_TWO_BYTES(linet, j - 1);
+                    minval = L_MIN(val2t, val4t);
+                    minval = L_MIN(minval, 0xfffe);
+                    SET_DATA_TWO_BYTES(linet, j, minval + 1);
+                    if (val2t < val4t)
+                        vald = GET_DATA_BYTE(lined - wpld, j);
+                    else
+                        vald = GET_DATA_BYTE(lined, j - 1);
+                    SET_DATA_BYTE(lined, j, vald);
+                }
+            }
+        }
+
+            /* LR --> UL scan */
+        for (i = imax - 1; i > 0; i--) {
+            linet = datat + i * wplt;
+            lined = datad + i * wpld;
+            for (j = jmax - 1; j > 0; j--) {
+                if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) {
+                    val7t = GET_DATA_TWO_BYTES(linet + wplt, j);
+                    val5t = GET_DATA_TWO_BYTES(linet, j + 1);
+                    minval = L_MIN(val5t, val7t);
+                    minval = L_MIN(minval + 1, valt);
+                    if (valt > minval) {  /* replace */
+                        SET_DATA_TWO_BYTES(linet, j, minval);
+                        if (val5t < val7t)
+                            vald = GET_DATA_BYTE(lined, j + 1);
+                        else
+                            vald = GET_DATA_BYTE(lined + wplt, j);
+                        SET_DATA_BYTE(lined, j, vald);
+                    }
+                }
+            }
+        }
+        break;
+    case 8:
+            /* UL --> LR scan */
+        for (i = 1; i < h; i++) {
+            linet = datat + i * wplt;
+            lined = datad + i * wpld;
+            for (j = 1; j < jmax; j++) {
+                if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) {
+                    val1t = GET_DATA_TWO_BYTES(linet - wplt, j - 1);
+                    val2t = GET_DATA_TWO_BYTES(linet - wplt, j);
+                    val3t = GET_DATA_TWO_BYTES(linet - wplt, j + 1);
+                    val4t = GET_DATA_TWO_BYTES(linet, j - 1);
+                    minval = L_MIN(val1t, val2t);
+                    minval = L_MIN(minval, val3t);
+                    minval = L_MIN(minval, val4t);
+                    minval = L_MIN(minval, 0xfffe);
+                    SET_DATA_TWO_BYTES(linet, j, minval + 1);
+                    if (minval == val1t)
+                        vald = GET_DATA_BYTE(lined - wpld, j - 1);
+                    else if (minval == val2t)
+                        vald = GET_DATA_BYTE(lined - wpld, j);
+                    else if (minval == val3t)
+                        vald = GET_DATA_BYTE(lined - wpld, j + 1);
+                    else  /* minval == val4t */
+                        vald = GET_DATA_BYTE(lined, j - 1);
+                    SET_DATA_BYTE(lined, j, vald);
+                }
+            }
+        }
+
+            /* LR --> UL scan */
+        for (i = imax - 1; i > 0; i--) {
+            linet = datat + i * wplt;
+            lined = datad + i * wpld;
+            for (j = jmax - 1; j > 0; j--) {
+                if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) {
+                    val8t = GET_DATA_TWO_BYTES(linet + wplt, j + 1);
+                    val7t = GET_DATA_TWO_BYTES(linet + wplt, j);
+                    val6t = GET_DATA_TWO_BYTES(linet + wplt, j - 1);
+                    val5t = GET_DATA_TWO_BYTES(linet, j + 1);
+                    minval = L_MIN(val8t, val7t);
+                    minval = L_MIN(minval, val6t);
+                    minval = L_MIN(minval, val5t);
+                    minval = L_MIN(minval + 1, valt);
+                    if (valt > minval) {  /* replace */
+                        SET_DATA_TWO_BYTES(linet, j, minval);
+                        if (minval == val5t + 1)
+                            vald = GET_DATA_BYTE(lined, j + 1);
+                        else if (minval == val6t + 1)
+                            vald = GET_DATA_BYTE(lined + wpld, j - 1);
+                        else if (minval == val7t + 1)
+                            vald = GET_DATA_BYTE(lined + wpld, j);
+                        else  /* minval == val8t + 1 */
+                            vald = GET_DATA_BYTE(lined + wpld, j + 1);
+                        SET_DATA_BYTE(lined, j, vald);
+                    }
+                }
+            }
+        }
+        break;
+    default:
+        L_ERROR("connectivity must be 4 or 8\n", __func__);
+        break;
+    }
+}
+
+
+/*-----------------------------------------------------------------------*
+ *                              Local extrema                            *
+ *-----------------------------------------------------------------------*/
+/*!
+ * \brief   pixLocalExtrema()
+ *
+ * \param[in]    pixs       8 bpp
+ * \param[in]    maxmin     max allowed for the min in a 3x3 neighborhood;
+ *                          use 0 for default which is to have no upper bound
+ * \param[in]    minmax     min allowed for the max in a 3x3 neighborhood;
+ *                          use 0 for default which is to have no lower bound
+ * \param[out]   ppixmin    [optional] mask of local minima
+ * \param[out]   ppixmax    [optional] mask of local maxima
+ * \return  0 if OK, 1 on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This gives the actual local minima and maxima.
+ *          A local minimum is a pixel whose surrounding pixels all
+ *          have values at least as large, and likewise for a local
+ *          maximum.  For the local minima, %maxmin is the upper
+ *          bound for the value of pixs.  Likewise, for the local maxima,
+ *          %minmax is the lower bound for the value of pixs.
+ *      (2) The minima are found by starting with the erosion-and-equality
+ *          approach of pixSelectedLocalExtrema().  This is followed
+ *          by a qualification step, where each c.c. in the resulting
+ *          minimum mask is extracted, the pixels bordering it are
+ *          located, and they are queried.  If all of those pixels
+ *          are larger than the value of that minimum, it is a true
+ *          minimum and its c.c. is saved; otherwise the c.c. is
+ *          rejected.  Note that if a bordering pixel has the
+ *          same value as the minimum, it must then have a
+ *          neighbor that is smaller, so the component is not a
+ *          true minimum.
+ *      (3) The maxima are found by inverting the image and looking
+ *          for the minima there.
+ *      (4) The generated masks can be used as markers for
+ *          further operations.
+ * </pre>
+ */
+l_ok
+pixLocalExtrema(PIX     *pixs,
+                l_int32  maxmin,
+                l_int32  minmax,
+                PIX    **ppixmin,
+                PIX    **ppixmax)
+{
+PIX  *pixmin, *pixmax, *pixt1, *pixt2;
+
+    if (!pixs || pixGetDepth(pixs) != 8)
+        return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1);
+    if (!ppixmin && !ppixmax)
+        return ERROR_INT("neither &pixmin, &pixmax are defined", __func__, 1);
+    if (maxmin <= 0) maxmin = 254;
+    if (minmax <= 0) minmax = 1;
+
+    if (ppixmin) {
+        pixt1 = pixErodeGray(pixs, 3, 3);
+        pixmin = pixFindEqualValues(pixs, pixt1);
+        pixDestroy(&pixt1);
+        pixQualifyLocalMinima(pixs, pixmin, maxmin);
+        *ppixmin = pixmin;
+    }
+
+    if (ppixmax) {
+        pixt1 = pixInvert(NULL, pixs);
+        pixt2 = pixErodeGray(pixt1, 3, 3);
+        pixmax = pixFindEqualValues(pixt1, pixt2);
+        pixDestroy(&pixt2);
+        pixQualifyLocalMinima(pixt1, pixmax, 255 - minmax);
+        *ppixmax = pixmax;
+        pixDestroy(&pixt1);
+    }
+
+    return 0;
+}
+
+
+/*!
+ * \brief   pixQualifyLocalMinima()
+ *
+ * \param[in]    pixs     8 bpp image from which pixm has been extracted
+ * \param[in]    pixm     1 bpp mask of values equal to min in 3x3 neighborhood
+ * \param[in]    maxval   max allowed for the min in a 3x3 neighborhood;
+ *                        use 0 for default which is to have no upper bound
+ * \return  0 if OK, 1 on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This function acts in-place to remove all c.c. in pixm
+ *          that are not true local minima in pixs.  As seen in
+ *          pixLocalExtrema(), the input pixm are found by selecting those
+ *          pixels of pixs whose values do not change with a 3x3
+ *          grayscale erosion.  Here, we require that for each c.c.
+ *          in pixm, all pixels in pixs that correspond to the exterior
+ *          boundary pixels of the c.c. have values that are greater
+ *          than the value within the c.c.
+ *      (2) The maximum allowed value for each local minimum can be
+ *          bounded with %maxval.  Use 0 for default, which is to have
+ *          no upper bound (equivalent to maxval == 254).
+ * </pre>
+ */
+static l_int32
+pixQualifyLocalMinima(PIX     *pixs,
+                      PIX     *pixm,
+                      l_int32  maxval)
+{
+l_int32    n, i, j, k, x, y, w, h, xc, yc, wc, hc, xon, yon;
+l_int32    vals, wpls, wplc, ismin;
+l_uint32   val;
+l_uint32  *datas, *datac, *lines, *linec;
+BOXA      *boxa;
+PIX       *pix1, *pix2, *pix3;
+PIXA      *pixa;
+
+    if (!pixs || pixGetDepth(pixs) != 8)
+        return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1);
+    if (!pixm || pixGetDepth(pixm) != 1)
+        return ERROR_INT("pixm not defined or not 1 bpp", __func__, 1);
+    if (maxval <= 0) maxval = 254;
+
+    pixGetDimensions(pixs, &w, &h, NULL);
+    datas = pixGetData(pixs);
+    wpls = pixGetWpl(pixs);
+    boxa = pixConnComp(pixm, &pixa, 8);
+    n = pixaGetCount(pixa);
+    for (k = 0; k < n; k++) {
+        boxaGetBoxGeometry(boxa, k, &xc, &yc, &wc, &hc);
+        pix1 = pixaGetPix(pixa, k, L_COPY);
+        pix2 = pixAddBorder(pix1, 1, 0);
+        pix3 = pixDilateBrick(NULL, pix2, 3, 3);
+        pixXor(pix3, pix3, pix2);  /* exterior boundary pixels */
+        datac = pixGetData(pix3);
+        wplc = pixGetWpl(pix3);
+        nextOnPixelInRaster(pix1, 0, 0, &xon, &yon);
+        pixGetPixel(pixs, xc + xon, yc + yon, &val);
+        if (val > maxval) {  /* too large; erase */
+            pixRasterop(pixm, xc, yc, wc, hc, PIX_XOR, pix1, 0, 0);
+            pixDestroy(&pix1);
+            pixDestroy(&pix2);
+            pixDestroy(&pix3);
+            continue;
+        }
+        ismin = TRUE;
+
+            /* Check all values in pixs that correspond to the exterior
+             * boundary pixels of the c.c. in pixm.  Verify that the
+             * value in the c.c. is always less. */
+        for (i = 0, y = yc - 1; i < hc + 2 && y >= 0 && y < h; i++, y++) {
+            lines = datas + y * wpls;
+            linec = datac + i * wplc;
+            for (j = 0, x = xc - 1; j < wc + 2 && x >= 0 && x < w; j++, x++) {
+                if (GET_DATA_BIT(linec, j)) {
+                    vals = GET_DATA_BYTE(lines, x);
+                    if (vals <= val) {  /* not a minimum! */
+                        ismin = FALSE;
+                        break;
+                    }
+                }
+            }
+            if (!ismin)
+                break;
+        }
+        if (!ismin)  /* erase it */
+            pixRasterop(pixm, xc, yc, wc, hc, PIX_XOR, pix1, 0, 0);
+        pixDestroy(&pix1);
+        pixDestroy(&pix2);
+        pixDestroy(&pix3);
+    }
+
+    boxaDestroy(&boxa);
+    pixaDestroy(&pixa);
+    return 0;
+}
+
+
+/*!
+ * \brief   pixSelectedLocalExtrema()
+ *
+ * \param[in]    pixs       8 bpp
+ * \param[in]    mindist    -1 for keeping all pixels; >= 0 specifies distance
+ * \param[out]   ppixmin    mask of local minima
+ * \param[out]   ppixmax    mask of local maxima
+ * \return  0 if OK, 1 on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This selects those local 3x3 minima that are at least a
+ *          specified distance from the nearest local 3x3 maxima, and v.v.
+ *          for the selected set of local 3x3 maxima.
+ *          The local 3x3 minima is the set of pixels whose value equals
+ *          the value after a 3x3 brick erosion, and the local 3x3 maxima
+ *          is the set of pixels whose value equals the value after
+ *          a 3x3 brick dilation.
+ *      (2) mindist is the minimum distance allowed between
+ *          local 3x3 minima and local 3x3 maxima, in an 8-connected sense.
+ *          mindist == 1 keeps all pixels found in step 1.
+ *          mindist == 0 removes all pixels from each mask that are
+ *          both a local 3x3 minimum and a local 3x3 maximum.
+ *          mindist == 1 removes any local 3x3 minimum pixel that touches a
+ *          local 3x3 maximum pixel, and likewise for the local maxima.
+ *          To make the decision, visualize each local 3x3 minimum pixel
+ *          as being surrounded by a square of size (2 * mindist + 1)
+ *          on each side, such that no local 3x3 maximum pixel is within
+ *          that square; and v.v.
+ *      (3) The generated masks can be used as markers for further operations.
+ * </pre>
+ */
+l_ok
+pixSelectedLocalExtrema(PIX     *pixs,
+                        l_int32  mindist,
+                        PIX    **ppixmin,
+                        PIX    **ppixmax)
+{
+PIX  *pixmin, *pixmax, *pixt, *pixtmin, *pixtmax;
+
+    if (!pixs || pixGetDepth(pixs) != 8)
+        return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1);
+    if (!ppixmin || !ppixmax)
+        return ERROR_INT("&pixmin and &pixmax not both defined", __func__, 1);
+
+    pixt = pixErodeGray(pixs, 3, 3);
+    pixmin = pixFindEqualValues(pixs, pixt);
+    pixDestroy(&pixt);
+    pixt = pixDilateGray(pixs, 3, 3);
+    pixmax = pixFindEqualValues(pixs, pixt);
+    pixDestroy(&pixt);
+
+        /* Remove all points that are within the prescribed distance
+         * from each other. */
+    if (mindist < 0) {  /* remove no points */
+        *ppixmin = pixmin;
+        *ppixmax = pixmax;
+    } else if (mindist == 0) {  /* remove points belonging to both sets */
+        pixt = pixAnd(NULL, pixmin, pixmax);
+        *ppixmin = pixSubtract(pixmin, pixmin, pixt);
+        *ppixmax = pixSubtract(pixmax, pixmax, pixt);
+        pixDestroy(&pixt);
+    } else {
+        pixtmin = pixDilateBrick(NULL, pixmin,
+                                 2 * mindist + 1, 2 * mindist + 1);
+        pixtmax = pixDilateBrick(NULL, pixmax,
+                                 2 * mindist + 1, 2 * mindist + 1);
+        *ppixmin = pixSubtract(pixmin, pixmin, pixtmax);
+        *ppixmax = pixSubtract(pixmax, pixmax, pixtmin);
+        pixDestroy(&pixtmin);
+        pixDestroy(&pixtmax);
+    }
+    return 0;
+}
+
+
+/*!
+ * \brief   pixFindEqualValues()
+ *
+ * \param[in]    pixs1    8 bpp
+ * \param[in]    pixs2    8 bpp
+ * \return  pixd 1 bpp mask, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) The two images are aligned at the UL corner, and the returned
+ *          image has ON pixels where the pixels in pixs1 and pixs2
+ *          have equal values.
+ * </pre>
+ */
+PIX *
+pixFindEqualValues(PIX  *pixs1,
+                   PIX  *pixs2)
+{
+l_int32    w1, h1, w2, h2, w, h;
+l_int32    i, j, val1, val2, wpls1, wpls2, wpld;
+l_uint32  *datas1, *datas2, *datad, *lines1, *lines2, *lined;
+PIX       *pixd;
+
+    if (!pixs1 || pixGetDepth(pixs1) != 8)
+        return (PIX *)ERROR_PTR("pixs1 undefined or not 8 bpp", __func__, NULL);
+    if (!pixs2 || pixGetDepth(pixs2) != 8)
+        return (PIX *)ERROR_PTR("pixs2 undefined or not 8 bpp", __func__, NULL);
+    pixGetDimensions(pixs1, &w1, &h1, NULL);
+    pixGetDimensions(pixs2, &w2, &h2, NULL);
+    w = L_MIN(w1, w2);
+    h = L_MIN(h1, h2);
+    pixd = pixCreate(w, h, 1);
+    datas1 = pixGetData(pixs1);
+    datas2 = pixGetData(pixs2);
+    datad = pixGetData(pixd);
+    wpls1 = pixGetWpl(pixs1);
+    wpls2 = pixGetWpl(pixs2);
+    wpld = pixGetWpl(pixd);
+
+    for (i = 0; i < h; i++) {
+        lines1 = datas1 + i * wpls1;
+        lines2 = datas2 + i * wpls2;
+        lined = datad + i * wpld;
+        for (j = 0; j < w; j++) {
+            val1 = GET_DATA_BYTE(lines1, j);
+            val2 = GET_DATA_BYTE(lines2, j);
+            if (val1 == val2)
+                SET_DATA_BIT(lined, j);
+        }
+    }
+
+    return pixd;
+}
+
+
+/*-----------------------------------------------------------------------*
+ *             Selection of minima in mask connected components          *
+ *-----------------------------------------------------------------------*/
+/*!
+ * \brief   pixSelectMinInConnComp()
+ *
+ * \param[in]    pixs    8 bpp
+ * \param[in]    pixm    1 bpp
+ * \param[out]   ppta    pta of min pixel locations
+ * \param[out]   pnav    [optional] numa of minima values
+ * \return  0 if OK, 1 on error.
+ *
+ * <pre>
+ * Notes:
+ *      (1) For each 8 connected component in pixm, this finds
+ *          a pixel in pixs that has the lowest value, and saves
+ *          it in a Pta.  If several pixels in pixs have the same
+ *          minimum value, it picks the first one found.
+ *      (2) For a mask pixm of true local minima, all pixels in each
+ *          connected component have the same value in pixs, so it is
+ *          fastest to select one of them using a special seedfill
+ *          operation.  Not yet implemented.
+ * </pre>
+ */
+l_ok
+pixSelectMinInConnComp(PIX    *pixs,
+                       PIX    *pixm,
+                       PTA   **ppta,
+                       NUMA  **pnav)
+{
+l_int32    bx, by, bw, bh, i, j, c, n;
+l_int32    xs, ys, minx, miny, wpls, wplt, val, minval;
+l_uint32  *datas, *datat, *lines, *linet;
+BOXA      *boxa;
+NUMA      *nav;
+PIX       *pixt, *pixs2, *pixm2;
+PIXA      *pixa;
+PTA       *pta;
+
+    if (!ppta)
+        return ERROR_INT("&pta not defined", __func__, 1);
+    *ppta = NULL;
+    if (pnav) *pnav = NULL;
+    if (!pixs || pixGetDepth(pixs) != 8)
+        return ERROR_INT("pixs undefined or not 8 bpp", __func__, 1);
+    if (!pixm || pixGetDepth(pixm) != 1)
+        return ERROR_INT("pixm undefined or not 1 bpp", __func__, 1);
+
+        /* Crop to the min size if necessary */
+    if (pixCropToMatch(pixs, pixm, &pixs2, &pixm2)) {
+        pixDestroy(&pixs2);
+        pixDestroy(&pixm2);
+        return ERROR_INT("cropping failure", __func__, 1);
+    }
+
+        /* Find value and location of min value pixel in each component */
+    boxa = pixConnComp(pixm2, &pixa, 8);
+    n = boxaGetCount(boxa);
+    pta = ptaCreate(n);
+    *ppta = pta;
+    nav = numaCreate(n);
+    datas = pixGetData(pixs2);
+    wpls = pixGetWpl(pixs2);
+    for (c = 0; c < n; c++) {
+        pixt = pixaGetPix(pixa, c, L_CLONE);
+        boxaGetBoxGeometry(boxa, c, &bx, &by, &bw, &bh);
+        if (bw == 1 && bh == 1) {
+            ptaAddPt(pta, bx, by);
+            numaAddNumber(nav, GET_DATA_BYTE(datas + by * wpls, bx));
+            pixDestroy(&pixt);
+            continue;
+        }
+        datat = pixGetData(pixt);
+        wplt = pixGetWpl(pixt);
+        minx = miny = 1000000;
+        minval = 256;
+        for (i = 0; i < bh; i++) {
+            ys = by + i;
+            lines = datas + ys * wpls;
+            linet = datat + i * wplt;
+            for (j = 0; j < bw; j++) {
+                xs = bx + j;
+                if (GET_DATA_BIT(linet, j)) {
+                    val = GET_DATA_BYTE(lines, xs);
+                    if (val < minval) {
+                        minval = val;
+                        minx = xs;
+                        miny = ys;
+                    }
+                }
+            }
+        }
+        ptaAddPt(pta, minx, miny);
+        numaAddNumber(nav, GET_DATA_BYTE(datas + miny * wpls, minx));
+        pixDestroy(&pixt);
+    }
+
+    boxaDestroy(&boxa);
+    pixaDestroy(&pixa);
+    if (pnav)
+        *pnav = nav;
+    else
+        numaDestroy(&nav);
+    pixDestroy(&pixs2);
+    pixDestroy(&pixm2);
+    return 0;
+}
+
+
+/*-----------------------------------------------------------------------*
+ *            Removal of seeded connected components from a mask         *
+ *-----------------------------------------------------------------------*/
+/*!
+ * \brief   pixRemoveSeededComponents()
+ *
+ * \param[in]    pixd          [optional]; can be null or equal to pixm; 1 bpp
+ * \param[in]    pixs          1 bpp seed
+ * \param[in]    pixm          1 bpp filling mask
+ * \param[in]    connectivity  4 or 8
+ * \param[in]    bordersize    amount of border clearing
+ * \return  pixd, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This removes each component in pixm for which there is
+ *          at least one seed in pixs.  If pixd == NULL, this returns
+ *          the result in a new pixd.  Otherwise, it is an in-place
+ *          operation on pixm.  In no situation is pixs altered,
+ *          because we do the filling with a copy of pixs.
+ *      (2) If bordersize > 0, it also clears all pixels within a
+ *          distance %bordersize of the edge of pixd.  This is here
+ *          because pixLocalExtrema() typically finds local minima
+ *          at the border.  Use %bordersize >= 2 to remove these.
+ * </pre>
+ */
+PIX *
+pixRemoveSeededComponents(PIX     *pixd,
+                          PIX     *pixs,
+                          PIX     *pixm,
+                          l_int32  connectivity,
+                          l_int32  bordersize)
+{
+PIX  *pixt;
+
+    if (!pixs || pixGetDepth(pixs) != 1)
+        return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, pixd);
+    if (!pixm || pixGetDepth(pixm) != 1)
+        return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", __func__, pixd);
+    if (pixd && pixd != pixm)
+        return (PIX *)ERROR_PTR("operation not inplace", __func__, pixd);
+
+    pixt = pixCopy(NULL, pixs);
+    pixSeedfillBinary(pixt, pixt, pixm, connectivity);
+    pixd = pixXor(pixd, pixm, pixt);
+    if (bordersize > 0)
+        pixSetOrClearBorder(pixd, bordersize, bordersize, bordersize,
+                            bordersize, PIX_CLR);
+    pixDestroy(&pixt);
+    return pixd;
+}