Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/leptonica/src/seedfill.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /*====================================================================* | |
| 2 - Copyright (C) 2001 Leptonica. All rights reserved. | |
| 3 - | |
| 4 - Redistribution and use in source and binary forms, with or without | |
| 5 - modification, are permitted provided that the following conditions | |
| 6 - are met: | |
| 7 - 1. Redistributions of source code must retain the above copyright | |
| 8 - notice, this list of conditions and the following disclaimer. | |
| 9 - 2. Redistributions in binary form must reproduce the above | |
| 10 - copyright notice, this list of conditions and the following | |
| 11 - disclaimer in the documentation and/or other materials | |
| 12 - provided with the distribution. | |
| 13 - | |
| 14 - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 15 - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 16 - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| 17 - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY | |
| 18 - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
| 19 - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
| 20 - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
| 21 - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
| 22 - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
| 23 - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
| 24 - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 25 *====================================================================*/ | |
| 26 | |
| 27 /*! | |
| 28 * \file seedfill.c | |
| 29 * <pre> | |
| 30 * | |
| 31 * Binary seedfill (source: Luc Vincent) | |
| 32 * PIX *pixSeedfillBinary() | |
| 33 * PIX *pixSeedfillBinaryRestricted() | |
| 34 * static void seedfillBinaryLow() | |
| 35 * | |
| 36 * Applications of binary seedfill to find and fill holes, | |
| 37 * remove c.c. touching the border and fill bg from border: | |
| 38 * PIX *pixHolesByFilling() | |
| 39 * PIX *pixFillClosedBorders() | |
| 40 * PIX *pixExtractBorderConnComps() | |
| 41 * PIX *pixRemoveBorderConnComps() | |
| 42 * PIX *pixFillBgFromBorder() | |
| 43 * | |
| 44 * Hole-filling of components to bounding rectangle | |
| 45 * PIX *pixFillHolesToBoundingRect() | |
| 46 * | |
| 47 * Gray seedfill (source: Luc Vincent:fast-hybrid-grayscale-reconstruction) | |
| 48 * l_int32 pixSeedfillGray() | |
| 49 * l_int32 pixSeedfillGrayInv() | |
| 50 * static void seedfillGrayLow() | |
| 51 * static void seedfillGrayInvLow() | |
| 52 | |
| 53 * | |
| 54 * Gray seedfill (source: Luc Vincent: sequential-reconstruction algorithm) | |
| 55 * l_int32 pixSeedfillGraySimple() | |
| 56 * l_int32 pixSeedfillGrayInvSimple() | |
| 57 * static void seedfillGrayLowSimple() | |
| 58 * static void seedfillGrayInvLowSimple() | |
| 59 * | |
| 60 * Gray seedfill variations | |
| 61 * PIX *pixSeedfillGrayBasin() | |
| 62 * | |
| 63 * Distance function (source: Luc Vincent) | |
| 64 * PIX *pixDistanceFunction() | |
| 65 * static void distanceFunctionLow() | |
| 66 * | |
| 67 * Seed spread (based on distance function) | |
| 68 * PIX *pixSeedspread() | |
| 69 * static void seedspreadLow() | |
| 70 * | |
| 71 * Local extrema: | |
| 72 * l_int32 pixLocalExtrema() | |
| 73 * static l_int32 pixQualifyLocalMinima() | |
| 74 * l_int32 pixSelectedLocalExtrema() | |
| 75 * PIX *pixFindEqualValues() | |
| 76 * | |
| 77 * Selection of minima in mask of connected components | |
| 78 * PTA *pixSelectMinInConnComp() | |
| 79 * | |
| 80 * Removal of seeded connected components from a mask | |
| 81 * PIX *pixRemoveSeededComponents() | |
| 82 * | |
| 83 * | |
| 84 * ITERATIVE RASTER-ORDER SEEDFILL | |
| 85 * | |
| 86 * The basic method in the Vincent seedfill (aka reconstruction) | |
| 87 * algorithm is simple. We describe here the situation for | |
| 88 * binary seedfill. Pixels are sampled in raster order in | |
| 89 * the seed image. If they are 4-connected to ON pixels | |
| 90 * either directly above or to the left, and are not masked | |
| 91 * out by the mask image, they are turned on (or remain on). | |
| 92 * (Ditto for 8-connected, except you need to check 3 pixels | |
| 93 * on the previous line as well as the pixel to the left | |
| 94 * on the current line. This is extra computational work | |
| 95 * for relatively little gain, so it is preferable | |
| 96 * in most situations to use the 4-connected version.) | |
| 97 * The algorithm proceeds from UR to LL of the image, and | |
| 98 * then reverses and sweeps up from LL to UR. | |
| 99 * These double sweeps are iterated until there is no change. | |
| 100 * At this point, the seed has entirely filled the region it | |
| 101 * is allowed to, as delimited by the mask image. | |
| 102 * | |
| 103 * The grayscale seedfill is a straightforward generalization | |
| 104 * of the binary seedfill, and is described in seedfillLowGray(). | |
| 105 * | |
| 106 * For some applications, the filled seed will later be OR'd | |
| 107 * with the negative of the mask. This is used, for example, | |
| 108 * when you flood fill into a 4-connected region of OFF pixels | |
| 109 * and you want the result after those pixels are turned ON. | |
| 110 * | |
| 111 * Note carefully that the mask we use delineates which pixels | |
| 112 * are allowed to be ON as the seed is filled. We will call this | |
| 113 * a "filling mask". As the seed expands, it is repeatedly | |
| 114 * ANDed with the filling mask: s & fm. The process can equivalently | |
| 115 * be formulated using the inverse of the filling mask, which | |
| 116 * we will call a "blocking mask": bm = ~fm. As the seed | |
| 117 * expands, the blocking mask is repeatedly used to prevent | |
| 118 * the seed from expanding into the blocking mask. This is done | |
| 119 * by set subtracting the blocking mask from the expanded seed: | |
| 120 * s - bm. Set subtraction of the blocking mask is equivalent | |
| 121 * to ANDing with the inverse of the blocking mask: s & (~bm). | |
| 122 * But from the inverse relation between blocking and filling | |
| 123 * masks, this is equal to s & fm, which proves the equivalence. | |
| 124 * | |
| 125 * For efficiency, the pixels can be taken in larger units | |
| 126 * for processing, but still in raster order. It is natural | |
| 127 * to take them in 32-bit words. The outline of the work | |
| 128 * to be done for 4-cc (not including special cases for boundary | |
| 129 * words, such as the first line or the last word in each line) | |
| 130 * is as follows. Let the filling mask be m. The | |
| 131 * seed is to fill "under" the mask; i.e., limited by an AND | |
| 132 * with the mask. Let the current word be w, the word | |
| 133 * in the line above be wa, and the previous word in the | |
| 134 * current line be wp. Let t be a temporary word that | |
| 135 * is used in computation. Note that masking is performed by | |
| 136 * w & m. (If we had instead used a "blocking" mask, we | |
| 137 * would perform masking by the set subtraction operation, | |
| 138 * w - m, which is defined to be w & ~m.) | |
| 139 * | |
| 140 * The entire operation can be implemented with shifts, | |
| 141 * logical operations and tests. For each word in the seed image | |
| 142 * there are two steps. The first step is to OR the word with | |
| 143 * the word above and with the rightmost pixel in wp (call it "x"). | |
| 144 * Because wp is shifted one pixel to its right, "x" is ORed | |
| 145 * to the leftmost pixel of w. We then clip to the ON pixels in | |
| 146 * the mask. The result is | |
| 147 * t <-- (w | wa | x000... ) & m | |
| 148 * We've now finished taking data from above and to the left. | |
| 149 * The second step is to allow filling to propagate horizontally | |
| 150 * in t, always making sure that it is properly masked at each | |
| 151 * step. So if filling can be done (i.e., t is neither all 0s | |
| 152 * nor all 1s), iteratively take: | |
| 153 * t <-- (t | (t >> 1) | (t << 1)) & m | |
| 154 * until t stops changing. Then write t back into w. | |
| 155 * | |
| 156 * Finally, the boundary conditions require we note that in doing | |
| 157 * the above steps: | |
| 158 * (a) The words in the first row have no wa | |
| 159 * (b) The first word in each row has no wp in that row | |
| 160 * (c) The last word in each row must be masked so that | |
| 161 * pixels don't propagate beyond the right edge of the | |
| 162 * actual image. (This is easily accomplished by | |
| 163 * setting the out-of-bound pixels in m to OFF.) | |
| 164 * </pre> | |
| 165 */ | |
| 166 | |
| 167 #ifdef HAVE_CONFIG_H | |
| 168 #include <config_auto.h> | |
| 169 #endif /* HAVE_CONFIG_H */ | |
| 170 | |
| 171 #include <math.h> | |
| 172 #include "allheaders.h" | |
| 173 | |
| 174 struct L_Pixel | |
| 175 { | |
| 176 l_int32 x; | |
| 177 l_int32 y; | |
| 178 }; | |
| 179 typedef struct L_Pixel L_PIXEL; | |
| 180 | |
| 181 static void seedfillBinaryLow(l_uint32 *datas, l_int32 hs, l_int32 wpls, | |
| 182 l_uint32 *datam, l_int32 hm, l_int32 wplm, | |
| 183 l_int32 connectivity); | |
| 184 static void seedfillGrayLow(l_uint32 *datas, l_int32 w, l_int32 h, | |
| 185 l_int32 wpls, l_uint32 *datam, l_int32 wplm, | |
| 186 l_int32 connectivity); | |
| 187 static void seedfillGrayInvLow(l_uint32 *datas, l_int32 w, l_int32 h, | |
| 188 l_int32 wpls, l_uint32 *datam, l_int32 wplm, | |
| 189 l_int32 connectivity); | |
| 190 static void seedfillGrayLowSimple(l_uint32 *datas, l_int32 w, l_int32 h, | |
| 191 l_int32 wpls, l_uint32 *datam, l_int32 wplm, | |
| 192 l_int32 connectivity); | |
| 193 static void seedfillGrayInvLowSimple(l_uint32 *datas, l_int32 w, l_int32 h, | |
| 194 l_int32 wpls, l_uint32 *datam, | |
| 195 l_int32 wplm, l_int32 connectivity); | |
| 196 static void distanceFunctionLow(l_uint32 *datad, l_int32 w, l_int32 h, | |
| 197 l_int32 d, l_int32 wpld, l_int32 connectivity); | |
| 198 static void seedspreadLow(l_uint32 *datad, l_int32 w, l_int32 h, l_int32 wpld, | |
| 199 l_uint32 *datat, l_int32 wplt, l_int32 connectivity); | |
| 200 | |
| 201 | |
| 202 static l_int32 pixQualifyLocalMinima(PIX *pixs, PIX *pixm, l_int32 maxval); | |
| 203 | |
| 204 #ifndef NO_CONSOLE_IO | |
| 205 #define DEBUG_PRINT_ITERS 0 | |
| 206 #endif /* ~NO_CONSOLE_IO */ | |
| 207 | |
| 208 /* Two-way (UL --> LR, LR --> UL) sweep iterations; typically need only 4 */ | |
| 209 static const l_int32 MaxIters = 40; | |
| 210 | |
| 211 | |
| 212 /*-----------------------------------------------------------------------* | |
| 213 * Vincent's Iterative Binary Seedfill method * | |
| 214 *-----------------------------------------------------------------------*/ | |
| 215 /*! | |
| 216 * \brief pixSeedfillBinary() | |
| 217 * | |
| 218 * \param[in] pixd [optional]; can be null, equal to pixs, | |
| 219 * or different from pixs; 1 bpp | |
| 220 * \param[in] pixs 1 bpp seed | |
| 221 * \param[in] pixm 1 bpp filling mask | |
| 222 * \param[in] connectivity 4 or 8 | |
| 223 * \return pixd always | |
| 224 * | |
| 225 * <pre> | |
| 226 * Notes: | |
| 227 * (1) This is for binary seedfill (aka "binary reconstruction"). | |
| 228 * (2) There are 3 cases: | |
| 229 * (a) pixd == null (make a new pixd) | |
| 230 * (b) pixd == pixs (in-place) | |
| 231 * (c) pixd != pixs | |
| 232 * (3) If you know the case, use these patterns for clarity: | |
| 233 * (a) pixd = pixSeedfillBinary(NULL, pixs, ...); | |
| 234 * (b) pixSeedfillBinary(pixs, pixs, ...); | |
| 235 * (c) pixSeedfillBinary(pixd, pixs, ...); | |
| 236 * (4) The resulting pixd contains the filled seed. For some | |
| 237 * applications you want to OR it with the inverse of | |
| 238 * the filling mask. | |
| 239 * (5) The input seed and mask images can be different sizes, but | |
| 240 * in typical use the difference, if any, would be only | |
| 241 * a few pixels in each direction. If the sizes differ, | |
| 242 * the clipping is handled by the low-level function | |
| 243 * seedfillBinaryLow(). | |
| 244 * </pre> | |
| 245 */ | |
| 246 PIX * | |
| 247 pixSeedfillBinary(PIX *pixd, | |
| 248 PIX *pixs, | |
| 249 PIX *pixm, | |
| 250 l_int32 connectivity) | |
| 251 { | |
| 252 l_int32 i, boolval; | |
| 253 l_int32 hd, hm, wpld, wplm; | |
| 254 l_uint32 *datad, *datam; | |
| 255 PIX *pixt; | |
| 256 | |
| 257 if (!pixs || pixGetDepth(pixs) != 1) | |
| 258 return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, pixd); | |
| 259 if (!pixm || pixGetDepth(pixm) != 1) | |
| 260 return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", __func__, pixd); | |
| 261 if (connectivity != 4 && connectivity != 8) | |
| 262 return (PIX *)ERROR_PTR("connectivity not in {4,8}", __func__, pixd); | |
| 263 | |
| 264 /* Prepare pixd as a copy of pixs if not identical */ | |
| 265 if ((pixd = pixCopy(pixd, pixs)) == NULL) | |
| 266 return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); | |
| 267 pixSetPadBits(pixd, 0); /* be safe: */ | |
| 268 pixSetPadBits(pixm, 0); /* avoid using uninitialized memory */ | |
| 269 | |
| 270 /* pixt is used to test for completion */ | |
| 271 if ((pixt = pixCreateTemplate(pixs)) == NULL) | |
| 272 return (PIX *)ERROR_PTR("pixt not made", __func__, pixd); | |
| 273 | |
| 274 hd = pixGetHeight(pixd); | |
| 275 hm = pixGetHeight(pixm); /* included so seedfillBinaryLow() can clip */ | |
| 276 datad = pixGetData(pixd); | |
| 277 datam = pixGetData(pixm); | |
| 278 wpld = pixGetWpl(pixd); | |
| 279 wplm = pixGetWpl(pixm); | |
| 280 | |
| 281 | |
| 282 for (i = 0; i < MaxIters; i++) { | |
| 283 pixCopy(pixt, pixd); | |
| 284 seedfillBinaryLow(datad, hd, wpld, datam, hm, wplm, connectivity); | |
| 285 pixEqual(pixd, pixt, &boolval); | |
| 286 if (boolval == 1) { | |
| 287 #if DEBUG_PRINT_ITERS | |
| 288 lept_stderr("Binary seed fill converged: %d iters\n", i + 1); | |
| 289 #endif /* DEBUG_PRINT_ITERS */ | |
| 290 break; | |
| 291 } | |
| 292 } | |
| 293 | |
| 294 pixDestroy(&pixt); | |
| 295 return pixd; | |
| 296 } | |
| 297 | |
| 298 | |
| 299 /*! | |
| 300 * \brief pixSeedfillBinaryRestricted() | |
| 301 * | |
| 302 * \param[in] pixd [optional]; can be null, equal to pixs, | |
| 303 * or different from pixs; 1 bpp | |
| 304 * \param[in] pixs 1 bpp seed | |
| 305 * \param[in] pixm 1 bpp filling mask | |
| 306 * \param[in] connectivity 4 or 8 | |
| 307 * \param[in] xmax max distance in x direction of fill into mask | |
| 308 * \param[in] ymax max distance in y direction of fill into mask | |
| 309 * \return pixd always | |
| 310 * | |
| 311 * <pre> | |
| 312 * Notes: | |
| 313 * (1) See usage for pixSeedfillBinary(), which has unrestricted fill. | |
| 314 * In pixSeedfillBinary(), the filling distance is unrestricted | |
| 315 * and can be larger than pixs, depending on the topology of | |
| 316 * th mask. | |
| 317 * (2) There are occasions where it is useful not to permit the | |
| 318 * fill to go more than a certain distance into the mask. | |
| 319 * %xmax specifies the maximum horizontal distance allowed | |
| 320 * in the fill; %ymax does likewise in the vertical direction. | |
| 321 * (3) Operationally, the max "distance" allowed for the fill | |
| 322 * is a linear distance from the original seed, independent | |
| 323 * of the actual mask topology. | |
| 324 * (4) Another formulation of this problem, not implemented, | |
| 325 * would use the manhattan distance from the seed, as | |
| 326 * determined by a breadth-first search starting at the seed | |
| 327 * boundaries and working outward where the mask fg allows. | |
| 328 * How this might use the constraints of separate xmax and ymax | |
| 329 * is not clear. | |
| 330 * </pre> | |
| 331 */ | |
| 332 PIX * | |
| 333 pixSeedfillBinaryRestricted(PIX *pixd, | |
| 334 PIX *pixs, | |
| 335 PIX *pixm, | |
| 336 l_int32 connectivity, | |
| 337 l_int32 xmax, | |
| 338 l_int32 ymax) | |
| 339 { | |
| 340 l_int32 w, h; | |
| 341 PIX *pix1, *pix2; | |
| 342 | |
| 343 if (!pixs || pixGetDepth(pixs) != 1) | |
| 344 return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, pixd); | |
| 345 if (!pixm || pixGetDepth(pixm) != 1) | |
| 346 return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", __func__, pixd); | |
| 347 if (connectivity != 4 && connectivity != 8) | |
| 348 return (PIX *)ERROR_PTR("connectivity not in {4,8}", __func__, pixd); | |
| 349 if (xmax == 0 && ymax == 0) /* no filling permitted */ | |
| 350 return pixClone(pixs); | |
| 351 if (xmax < 0 || ymax < 0) { | |
| 352 L_ERROR("xmax and ymax must be non-negative", __func__); | |
| 353 return pixClone(pixs); | |
| 354 } | |
| 355 | |
| 356 /* Full fill from the seed into the mask. */ | |
| 357 if ((pix1 = pixSeedfillBinary(NULL, pixs, pixm, connectivity)) == NULL) | |
| 358 return (PIX *)ERROR_PTR("pix1 not made", __func__, pixd); | |
| 359 | |
| 360 /* Dilate the seed. This gives the maximal region where changes | |
| 361 * are permitted. Invert to get the region where pixs is | |
| 362 * not allowed to change. */ | |
| 363 pix2 = pixDilateCompBrick(NULL, pixs, 2 * xmax + 1, 2 * ymax + 1); | |
| 364 pixInvert(pix2, pix2); | |
| 365 | |
| 366 /* Blank the region of pix1 specified by the fg of pix2. | |
| 367 * This is not yet the final result, because it may have fg pixels | |
| 368 * that are not accessible from the seed in the restricted distance. | |
| 369 * For example, such pixels may be connected to the original seed, | |
| 370 * but through a path that goes outside the permitted region. */ | |
| 371 pixGetDimensions(pixs, &w, &h, NULL); | |
| 372 pixRasterop(pix1, 0, 0, w, h, PIX_DST & PIX_NOT(PIX_SRC), pix2, 0, 0); | |
| 373 | |
| 374 /* To get the accessible pixels in the restricted region, do | |
| 375 * a second seedfill from the original seed, using pix1 as | |
| 376 * a mask. The result, in pixd, will not have any bad fg | |
| 377 * pixels that were in pix1. */ | |
| 378 pixd = pixSeedfillBinary(pixd, pixs, pix1, connectivity); | |
| 379 | |
| 380 pixDestroy(&pix1); | |
| 381 pixDestroy(&pix2); | |
| 382 return pixd; | |
| 383 } | |
| 384 | |
| 385 | |
| 386 /*! | |
| 387 * \brief seedfillBinaryLow() | |
| 388 * | |
| 389 * Notes: | |
| 390 * (1) This is an in-place fill, where the seed image is | |
| 391 * filled, clipping to the filling mask, in one full | |
| 392 * cycle of UL -> LR and LR -> UL raster scans. | |
| 393 * (2) Assume the mask is a filling mask, not a blocking mask. | |
| 394 * (3) Assume that the RHS pad bits of the mask | |
| 395 * are properly set to 0. | |
| 396 * (4) Clip to the smallest dimensions to avoid invalid reads. | |
| 397 */ | |
| 398 static void | |
| 399 seedfillBinaryLow(l_uint32 *datas, | |
| 400 l_int32 hs, | |
| 401 l_int32 wpls, | |
| 402 l_uint32 *datam, | |
| 403 l_int32 hm, | |
| 404 l_int32 wplm, | |
| 405 l_int32 connectivity) | |
| 406 { | |
| 407 l_int32 i, j, h, wpl; | |
| 408 l_uint32 word, mask; | |
| 409 l_uint32 wordabove, wordleft, wordbelow, wordright; | |
| 410 l_uint32 wordprev; /* test against this in previous iteration */ | |
| 411 l_uint32 *lines, *linem; | |
| 412 | |
| 413 h = L_MIN(hs, hm); | |
| 414 wpl = L_MIN(wpls, wplm); | |
| 415 | |
| 416 switch (connectivity) | |
| 417 { | |
| 418 case 4: | |
| 419 /* UL --> LR scan */ | |
| 420 for (i = 0; i < h; i++) { | |
| 421 lines = datas + i * wpls; | |
| 422 linem = datam + i * wplm; | |
| 423 for (j = 0; j < wpl; j++) { | |
| 424 word = *(lines + j); | |
| 425 mask = *(linem + j); | |
| 426 | |
| 427 /* OR from word above and from word to left; mask */ | |
| 428 if (i > 0) { | |
| 429 wordabove = *(lines - wpls + j); | |
| 430 word |= wordabove; | |
| 431 } | |
| 432 if (j > 0) { | |
| 433 wordleft = *(lines + j - 1); | |
| 434 word |= wordleft << 31; | |
| 435 } | |
| 436 word &= mask; | |
| 437 | |
| 438 /* No need to fill horizontally? */ | |
| 439 if (!word || !(~word)) { | |
| 440 *(lines + j) = word; | |
| 441 continue; | |
| 442 } | |
| 443 | |
| 444 while (1) { | |
| 445 wordprev = word; | |
| 446 word = (word | (word >> 1) | (word << 1)) & mask; | |
| 447 if ((word ^ wordprev) == 0) { | |
| 448 *(lines + j) = word; | |
| 449 break; | |
| 450 } | |
| 451 } | |
| 452 } | |
| 453 } | |
| 454 | |
| 455 /* LR --> UL scan */ | |
| 456 for (i = h - 1; i >= 0; i--) { | |
| 457 lines = datas + i * wpls; | |
| 458 linem = datam + i * wplm; | |
| 459 for (j = wpl - 1; j >= 0; j--) { | |
| 460 word = *(lines + j); | |
| 461 mask = *(linem + j); | |
| 462 | |
| 463 /* OR from word below and from word to right; mask */ | |
| 464 if (i < h - 1) { | |
| 465 wordbelow = *(lines + wpls + j); | |
| 466 word |= wordbelow; | |
| 467 } | |
| 468 if (j < wpl - 1) { | |
| 469 wordright = *(lines + j + 1); | |
| 470 word |= wordright >> 31; | |
| 471 } | |
| 472 word &= mask; | |
| 473 | |
| 474 /* No need to fill horizontally? */ | |
| 475 if (!word || !(~word)) { | |
| 476 *(lines + j) = word; | |
| 477 continue; | |
| 478 } | |
| 479 | |
| 480 while (1) { | |
| 481 wordprev = word; | |
| 482 word = (word | (word >> 1) | (word << 1)) & mask; | |
| 483 if ((word ^ wordprev) == 0) { | |
| 484 *(lines + j) = word; | |
| 485 break; | |
| 486 } | |
| 487 } | |
| 488 } | |
| 489 } | |
| 490 break; | |
| 491 | |
| 492 case 8: | |
| 493 /* UL --> LR scan */ | |
| 494 for (i = 0; i < h; i++) { | |
| 495 lines = datas + i * wpls; | |
| 496 linem = datam + i * wplm; | |
| 497 for (j = 0; j < wpl; j++) { | |
| 498 word = *(lines + j); | |
| 499 mask = *(linem + j); | |
| 500 | |
| 501 /* OR from words above and from word to left; mask */ | |
| 502 if (i > 0) { | |
| 503 wordabove = *(lines - wpls + j); | |
| 504 word |= (wordabove | (wordabove << 1) | (wordabove >> 1)); | |
| 505 if (j > 0) | |
| 506 word |= (*(lines - wpls + j - 1)) << 31; | |
| 507 if (j < wpl - 1) | |
| 508 word |= (*(lines - wpls + j + 1)) >> 31; | |
| 509 } | |
| 510 if (j > 0) { | |
| 511 wordleft = *(lines + j - 1); | |
| 512 word |= wordleft << 31; | |
| 513 } | |
| 514 word &= mask; | |
| 515 | |
| 516 /* No need to fill horizontally? */ | |
| 517 if (!word || !(~word)) { | |
| 518 *(lines + j) = word; | |
| 519 continue; | |
| 520 } | |
| 521 | |
| 522 while (1) { | |
| 523 wordprev = word; | |
| 524 word = (word | (word >> 1) | (word << 1)) & mask; | |
| 525 if ((word ^ wordprev) == 0) { | |
| 526 *(lines + j) = word; | |
| 527 break; | |
| 528 } | |
| 529 } | |
| 530 } | |
| 531 } | |
| 532 | |
| 533 /* LR --> UL scan */ | |
| 534 for (i = h - 1; i >= 0; i--) { | |
| 535 lines = datas + i * wpls; | |
| 536 linem = datam + i * wplm; | |
| 537 for (j = wpl - 1; j >= 0; j--) { | |
| 538 word = *(lines + j); | |
| 539 mask = *(linem + j); | |
| 540 | |
| 541 /* OR from words below and from word to right; mask */ | |
| 542 if (i < h - 1) { | |
| 543 wordbelow = *(lines + wpls + j); | |
| 544 word |= (wordbelow | (wordbelow << 1) | (wordbelow >> 1)); | |
| 545 if (j > 0) | |
| 546 word |= (*(lines + wpls + j - 1)) << 31; | |
| 547 if (j < wpl - 1) | |
| 548 word |= (*(lines + wpls + j + 1)) >> 31; | |
| 549 } | |
| 550 if (j < wpl - 1) { | |
| 551 wordright = *(lines + j + 1); | |
| 552 word |= wordright >> 31; | |
| 553 } | |
| 554 word &= mask; | |
| 555 | |
| 556 /* No need to fill horizontally? */ | |
| 557 if (!word || !(~word)) { | |
| 558 *(lines + j) = word; | |
| 559 continue; | |
| 560 } | |
| 561 | |
| 562 while (1) { | |
| 563 wordprev = word; | |
| 564 word = (word | (word >> 1) | (word << 1)) & mask; | |
| 565 if ((word ^ wordprev) == 0) { | |
| 566 *(lines + j) = word; | |
| 567 break; | |
| 568 } | |
| 569 } | |
| 570 } | |
| 571 } | |
| 572 break; | |
| 573 | |
| 574 default: | |
| 575 L_ERROR("connectivity must be 4 or 8\n", __func__); | |
| 576 } | |
| 577 } | |
| 578 | |
| 579 | |
| 580 /*! | |
| 581 * \brief pixHolesByFilling() | |
| 582 * | |
| 583 * \param[in] pixs 1 bpp | |
| 584 * \param[in] connectivity 4 or 8 | |
| 585 * \return pixd inverted image of all holes, or NULL on error | |
| 586 * | |
| 587 * Action: | |
| 588 * 1 Start with 1-pixel black border on otherwise white pixd | |
| 589 * 2 Use the inverted pixs as the filling mask to fill in | |
| 590 * all the pixels from the border to the pixs foreground | |
| 591 * 3 OR the result with pixs to have an image with all | |
| 592 * ON pixels except for the holes. | |
| 593 * 4 Invert the result to get the holes as foreground | |
| 594 * | |
| 595 * <pre> | |
| 596 * Notes: | |
| 597 * (1) To get 4-c.c. holes of the 8-c.c. as foreground, use | |
| 598 * 4-connected filling; to get 8-c.c. holes of the 4-c.c. | |
| 599 * as foreground, use 8-connected filling. | |
| 600 * </pre> | |
| 601 */ | |
| 602 PIX * | |
| 603 pixHolesByFilling(PIX *pixs, | |
| 604 l_int32 connectivity) | |
| 605 { | |
| 606 PIX *pixsi, *pixd; | |
| 607 | |
| 608 if (!pixs || pixGetDepth(pixs) != 1) | |
| 609 return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); | |
| 610 if (connectivity != 4 && connectivity != 8) | |
| 611 return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); | |
| 612 | |
| 613 if ((pixd = pixCreateTemplate(pixs)) == NULL) | |
| 614 return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); | |
| 615 if ((pixsi = pixInvert(NULL, pixs)) == NULL) { | |
| 616 pixDestroy(&pixd); | |
| 617 return (PIX *)ERROR_PTR("pixsi not made", __func__, NULL); | |
| 618 } | |
| 619 | |
| 620 pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET); | |
| 621 pixSeedfillBinary(pixd, pixd, pixsi, connectivity); | |
| 622 pixOr(pixd, pixd, pixs); | |
| 623 pixInvert(pixd, pixd); | |
| 624 pixDestroy(&pixsi); | |
| 625 return pixd; | |
| 626 } | |
| 627 | |
| 628 | |
| 629 /*! | |
| 630 * \brief pixFillClosedBorders() | |
| 631 * | |
| 632 * \param[in] pixs 1 bpp | |
| 633 * \param[in] connectivity filling connectivity 4 or 8 | |
| 634 * \return pixd all topologically outer closed borders are filled | |
| 635 * as connected comonents, or NULL on error | |
| 636 * | |
| 637 * <pre> | |
| 638 * Notes: | |
| 639 * (1) Start with 1-pixel black border on otherwise white pixd | |
| 640 * (2) Subtract input pixs to remove border pixels that were | |
| 641 * also on the closed border | |
| 642 * (3) Use the inverted pixs as the filling mask to fill in | |
| 643 * all the pixels from the outer border to the closed border | |
| 644 * on pixs | |
| 645 * (4) Invert the result to get the filled component, including | |
| 646 * the input border | |
| 647 * (5) If the borders are 4-c.c., use 8-c.c. filling, and v.v. | |
| 648 * (6) Closed borders within c.c. that represent holes, etc., are filled. | |
| 649 * </pre> | |
| 650 */ | |
| 651 PIX * | |
| 652 pixFillClosedBorders(PIX *pixs, | |
| 653 l_int32 connectivity) | |
| 654 { | |
| 655 PIX *pixsi, *pixd; | |
| 656 | |
| 657 if (!pixs || pixGetDepth(pixs) != 1) | |
| 658 return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); | |
| 659 if (connectivity != 4 && connectivity != 8) | |
| 660 return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); | |
| 661 | |
| 662 if ((pixd = pixCreateTemplate(pixs)) == NULL) | |
| 663 return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); | |
| 664 pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET); | |
| 665 pixSubtract(pixd, pixd, pixs); | |
| 666 if ((pixsi = pixInvert(NULL, pixs)) == NULL) { | |
| 667 pixDestroy(&pixd); | |
| 668 return (PIX *)ERROR_PTR("pixsi not made", __func__, NULL); | |
| 669 } | |
| 670 | |
| 671 pixSeedfillBinary(pixd, pixd, pixsi, connectivity); | |
| 672 pixInvert(pixd, pixd); | |
| 673 pixDestroy(&pixsi); | |
| 674 | |
| 675 return pixd; | |
| 676 } | |
| 677 | |
| 678 | |
| 679 /*! | |
| 680 * \brief pixExtractBorderConnComps() | |
| 681 * | |
| 682 * \param[in] pixs 1 bpp | |
| 683 * \param[in] connectivity filling connectivity 4 or 8 | |
| 684 * \return pixd all pixels in the src that are in connected | |
| 685 * components touching the border, or NULL on error | |
| 686 */ | |
| 687 PIX * | |
| 688 pixExtractBorderConnComps(PIX *pixs, | |
| 689 l_int32 connectivity) | |
| 690 { | |
| 691 PIX *pixd; | |
| 692 | |
| 693 if (!pixs || pixGetDepth(pixs) != 1) | |
| 694 return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); | |
| 695 if (connectivity != 4 && connectivity != 8) | |
| 696 return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); | |
| 697 | |
| 698 /* Start with 1 pixel wide black border as seed in pixd */ | |
| 699 if ((pixd = pixCreateTemplate(pixs)) == NULL) | |
| 700 return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); | |
| 701 pixSetOrClearBorder(pixd, 1, 1, 1, 1, PIX_SET); | |
| 702 | |
| 703 /* Fill in pixd from the seed, using pixs as the filling mask. | |
| 704 * This fills all components from pixs that are touching the border. */ | |
| 705 pixSeedfillBinary(pixd, pixd, pixs, connectivity); | |
| 706 | |
| 707 return pixd; | |
| 708 } | |
| 709 | |
| 710 | |
| 711 /*! | |
| 712 * \brief pixRemoveBorderConnComps() | |
| 713 * | |
| 714 * \param[in] pixs 1 bpp | |
| 715 * \param[in] connectivity filling connectivity 4 or 8 | |
| 716 * \return pixd all pixels in the src that are not touching the | |
| 717 * border or NULL on error | |
| 718 * | |
| 719 * <pre> | |
| 720 * Notes: | |
| 721 * (1) This removes all fg components touching the border. | |
| 722 * </pre> | |
| 723 */ | |
| 724 PIX * | |
| 725 pixRemoveBorderConnComps(PIX *pixs, | |
| 726 l_int32 connectivity) | |
| 727 { | |
| 728 PIX *pixd; | |
| 729 | |
| 730 if (!pixs || pixGetDepth(pixs) != 1) | |
| 731 return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); | |
| 732 if (connectivity != 4 && connectivity != 8) | |
| 733 return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); | |
| 734 | |
| 735 /* Fill from a 1 pixel wide seed at the border into all components | |
| 736 * in pixs (the filling mask) that are touching the border */ | |
| 737 pixd = pixExtractBorderConnComps(pixs, connectivity); | |
| 738 | |
| 739 /* Save in pixd only those components in pixs not touching the border */ | |
| 740 pixXor(pixd, pixd, pixs); | |
| 741 return pixd; | |
| 742 } | |
| 743 | |
| 744 | |
| 745 /*! | |
| 746 * \brief pixFillBgFromBorder() | |
| 747 * | |
| 748 * \param[in] pixs 1 bpp | |
| 749 * \param[in] connectivity filling connectivity 4 or 8 | |
| 750 * \return pixd with the background c.c. touching the border | |
| 751 * filled to foreground, or NULL on error | |
| 752 * | |
| 753 * <pre> | |
| 754 * Notes: | |
| 755 * (1) This fills all bg components touching the border to fg. | |
| 756 * It is the photometric inverse of pixRemoveBorderConnComps(). | |
| 757 * (2) Invert the result to get the "holes" left after this fill. | |
| 758 * This can be done multiple times, extracting holes within | |
| 759 * holes after each pair of fillings. Specifically, this code | |
| 760 * peels away n successive embeddings of components: | |
| 761 * \code | |
| 762 * pix1 = <initial image> | |
| 763 * for (i = 0; i < 2 * n; i++) { | |
| 764 * pix2 = pixFillBgFromBorder(pix1, 8); | |
| 765 * pixInvert(pix2, pix2); | |
| 766 * pixDestroy(&pix1); | |
| 767 * pix1 = pix2; | |
| 768 * } | |
| 769 * \endcode | |
| 770 * </pre> | |
| 771 */ | |
| 772 PIX * | |
| 773 pixFillBgFromBorder(PIX *pixs, | |
| 774 l_int32 connectivity) | |
| 775 { | |
| 776 PIX *pixd; | |
| 777 | |
| 778 if (!pixs || pixGetDepth(pixs) != 1) | |
| 779 return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); | |
| 780 if (connectivity != 4 && connectivity != 8) | |
| 781 return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); | |
| 782 | |
| 783 /* Invert to turn bg touching the border to a fg component. | |
| 784 * Extract this by filling from a 1 pixel wide seed at the border. */ | |
| 785 pixInvert(pixs, pixs); | |
| 786 pixd = pixExtractBorderConnComps(pixs, connectivity); | |
| 787 pixInvert(pixs, pixs); /* restore pixs */ | |
| 788 | |
| 789 /* Bit-or the filled bg component with pixs */ | |
| 790 pixOr(pixd, pixd, pixs); | |
| 791 return pixd; | |
| 792 } | |
| 793 | |
| 794 | |
| 795 /*-----------------------------------------------------------------------* | |
| 796 * Hole-filling of components to bounding rectangle * | |
| 797 *-----------------------------------------------------------------------*/ | |
| 798 /*! | |
| 799 * \brief pixFillHolesToBoundingRect() | |
| 800 * | |
| 801 * \param[in] pixs 1 bpp | |
| 802 * \param[in] minsize min number of pixels in the hole | |
| 803 * \param[in] maxhfract max hole area as fraction of fg pixels in the cc | |
| 804 * \param[in] minfgfract min fg area as fraction of bounding rectangle | |
| 805 * \return pixd with some holes possibly filled and some c.c. possibly | |
| 806 * expanded to their bounding rects, or NULL on error | |
| 807 * | |
| 808 * <pre> | |
| 809 * Notes: | |
| 810 * (1) This does not fill holes that are smaller in area than 'minsize'. | |
| 811 * Use %minsize = 0 and %maxhfract = 1.0 to fill all holes. | |
| 812 * (2) This does not fill holes with an area larger than | |
| 813 * %maxhfract times the fg area of the c.c. | |
| 814 * Use 1.0 to fill all holes. | |
| 815 * (3) This does not expand the fg of the c.c. to bounding rect if | |
| 816 * the fg area is less than %minfgfract times the area of the | |
| 817 * bounding rect. Use 1.0 to skip expanding to the bounding rect. | |
| 818 * (4) The decisions are made as follows: | |
| 819 * ~ Decide if we are filling the holes; if so, when using | |
| 820 * the fg area, include the filled holes. | |
| 821 * ~ Decide based on the fg area if we are filling to a bounding rect. | |
| 822 * If so, do it. | |
| 823 * If not, fill the holes if the condition is satisfied. | |
| 824 * (5) The choice of %minsize depends on the resolution. | |
| 825 * (6) For solidifying image mask regions on printed materials, | |
| 826 * which tend to be rectangular, values for %maxhfract | |
| 827 * and %minfgfract around 0.5 are reasonable. | |
| 828 * </pre> | |
| 829 */ | |
| 830 PIX * | |
| 831 pixFillHolesToBoundingRect(PIX *pixs, | |
| 832 l_int32 minsize, | |
| 833 l_float32 maxhfract, | |
| 834 l_float32 minfgfract) | |
| 835 { | |
| 836 l_int32 i, x, y, w, h, n, nfg, nh, ntot, area; | |
| 837 l_int32 *tab; | |
| 838 l_float32 hfract; /* measured hole fraction */ | |
| 839 l_float32 fgfract; /* measured fg fraction */ | |
| 840 BOXA *boxa; | |
| 841 PIX *pixd, *pixfg, *pixh; | |
| 842 PIXA *pixa; | |
| 843 | |
| 844 if (!pixs || pixGetDepth(pixs) != 1) | |
| 845 return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, NULL); | |
| 846 maxhfract = L_MIN(L_MAX(maxhfract, 0.0), 1.0); | |
| 847 minfgfract = L_MIN(L_MAX(minfgfract, 0.0), 1.0); | |
| 848 | |
| 849 pixd = pixCopy(NULL, pixs); | |
| 850 boxa = pixConnComp(pixd, &pixa, 8); | |
| 851 n = boxaGetCount(boxa); | |
| 852 tab = makePixelSumTab8(); | |
| 853 for (i = 0; i < n; i++) { | |
| 854 boxaGetBoxGeometry(boxa, i, &x, &y, &w, &h); | |
| 855 area = w * h; | |
| 856 if (area < minsize) | |
| 857 continue; | |
| 858 pixfg = pixaGetPix(pixa, i, L_COPY); | |
| 859 pixh = pixHolesByFilling(pixfg, 4); /* holes only */ | |
| 860 pixCountPixels(pixfg, &nfg, tab); | |
| 861 pixCountPixels(pixh, &nh, tab); | |
| 862 hfract = (l_float32)nh / (l_float32)nfg; | |
| 863 ntot = nfg; | |
| 864 if (hfract <= maxhfract) /* we will fill the holes (at least) */ | |
| 865 ntot = nfg + nh; | |
| 866 fgfract = (l_float32)ntot / (l_float32)area; | |
| 867 if (fgfract >= minfgfract) { /* fill to bounding rect */ | |
| 868 pixSetAll(pixfg); | |
| 869 pixRasterop(pixd, x, y, w, h, PIX_SRC, pixfg, 0, 0); | |
| 870 } else if (hfract <= maxhfract) { /* fill just the holes */ | |
| 871 pixRasterop(pixd, x, y, w, h, PIX_DST | PIX_SRC , pixh, 0, 0); | |
| 872 } | |
| 873 pixDestroy(&pixfg); | |
| 874 pixDestroy(&pixh); | |
| 875 } | |
| 876 boxaDestroy(&boxa); | |
| 877 pixaDestroy(&pixa); | |
| 878 LEPT_FREE(tab); | |
| 879 return pixd; | |
| 880 } | |
| 881 | |
| 882 | |
| 883 /*-----------------------------------------------------------------------* | |
| 884 * Vincent's hybrid Grayscale Seedfill method * | |
| 885 *-----------------------------------------------------------------------*/ | |
| 886 /*! | |
| 887 * \brief pixSeedfillGray() | |
| 888 * | |
| 889 * \param[in] pixs 8 bpp seed; filled in place | |
| 890 * \param[in] pixm 8 bpp filling mask | |
| 891 * \param[in] connectivity 4 or 8 | |
| 892 * \return 0 if OK, 1 on error | |
| 893 * | |
| 894 * <pre> | |
| 895 * Notes: | |
| 896 * (1) This is an in-place filling operation on the seed, pixs, | |
| 897 * where the clipping mask is always above or at the level | |
| 898 * of the seed as it is filled. | |
| 899 * (2) For details of the operation, see the description in | |
| 900 * seedfillGrayLow() and the code there. | |
| 901 * (3) As an example of use, see the description in pixHDome(). | |
| 902 * There, the seed is an image where each pixel is a fixed | |
| 903 * amount smaller than the corresponding mask pixel. | |
| 904 * (4) Reference paper : | |
| 905 * L. Vincent, Morphological grayscale reconstruction in image | |
| 906 * analysis: applications and efficient algorithms, IEEE Transactions | |
| 907 * on Image Processing, vol. 2, no. 2, pp. 176-201, 1993. | |
| 908 * </pre> | |
| 909 */ | |
| 910 l_ok | |
| 911 pixSeedfillGray(PIX *pixs, | |
| 912 PIX *pixm, | |
| 913 l_int32 connectivity) | |
| 914 { | |
| 915 l_int32 h, w, wpls, wplm; | |
| 916 l_uint32 *datas, *datam; | |
| 917 | |
| 918 if (!pixs || pixGetDepth(pixs) != 8) | |
| 919 return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); | |
| 920 if (!pixm || pixGetDepth(pixm) != 8) | |
| 921 return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1); | |
| 922 if (connectivity != 4 && connectivity != 8) | |
| 923 return ERROR_INT("connectivity not in {4,8}", __func__, 1); | |
| 924 | |
| 925 /* Make sure the sizes of seed and mask images are the same */ | |
| 926 if (pixSizesEqual(pixs, pixm) == 0) | |
| 927 return ERROR_INT("pixs and pixm sizes differ", __func__, 1); | |
| 928 | |
| 929 datas = pixGetData(pixs); | |
| 930 datam = pixGetData(pixm); | |
| 931 wpls = pixGetWpl(pixs); | |
| 932 wplm = pixGetWpl(pixm); | |
| 933 pixGetDimensions(pixs, &w, &h, NULL); | |
| 934 seedfillGrayLow(datas, w, h, wpls, datam, wplm, connectivity); | |
| 935 | |
| 936 return 0; | |
| 937 } | |
| 938 | |
| 939 | |
| 940 /*! | |
| 941 * \brief pixSeedfillGrayInv() | |
| 942 * | |
| 943 * \param[in] pixs 8 bpp seed; filled in place | |
| 944 * \param[in] pixm 8 bpp filling mask | |
| 945 * \param[in] connectivity 4 or 8 | |
| 946 * \return 0 if OK, 1 on error | |
| 947 * | |
| 948 * <pre> | |
| 949 * Notes: | |
| 950 * (1) This is an in-place filling operation on the seed, pixs, | |
| 951 * where the clipping mask is always below or at the level | |
| 952 * of the seed as it is filled. Think of filling up a basin | |
| 953 * to a particular level, given by the maximum seed value | |
| 954 * in the basin. Outside the filled region, the mask | |
| 955 * is above the filling level. | |
| 956 * (2) Contrast this with pixSeedfillGray(), where the clipping mask | |
| 957 * is always above or at the level of the fill. An example | |
| 958 * of its use is the hdome fill, where the seed is an image | |
| 959 * where each pixel is a fixed amount smaller than the | |
| 960 * corresponding mask pixel. | |
| 961 * (3) The basin fill, pixSeedfillGrayBasin(), is a special case | |
| 962 * where the seed pixel values are generated from the mask, | |
| 963 * and where the implementation uses pixSeedfillGray() by | |
| 964 * inverting both the seed and mask. | |
| 965 * </pre> | |
| 966 */ | |
| 967 l_ok | |
| 968 pixSeedfillGrayInv(PIX *pixs, | |
| 969 PIX *pixm, | |
| 970 l_int32 connectivity) | |
| 971 { | |
| 972 l_int32 h, w, wpls, wplm; | |
| 973 l_uint32 *datas, *datam; | |
| 974 | |
| 975 if (!pixs || pixGetDepth(pixs) != 8) | |
| 976 return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); | |
| 977 if (!pixm || pixGetDepth(pixm) != 8) | |
| 978 return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1); | |
| 979 if (connectivity != 4 && connectivity != 8) | |
| 980 return ERROR_INT("connectivity not in {4,8}", __func__, 1); | |
| 981 | |
| 982 /* Make sure the sizes of seed and mask images are the same */ | |
| 983 if (pixSizesEqual(pixs, pixm) == 0) | |
| 984 return ERROR_INT("pixs and pixm sizes differ", __func__, 1); | |
| 985 | |
| 986 datas = pixGetData(pixs); | |
| 987 datam = pixGetData(pixm); | |
| 988 wpls = pixGetWpl(pixs); | |
| 989 wplm = pixGetWpl(pixm); | |
| 990 pixGetDimensions(pixs, &w, &h, NULL); | |
| 991 seedfillGrayInvLow(datas, w, h, wpls, datam, wplm, connectivity); | |
| 992 | |
| 993 return 0; | |
| 994 } | |
| 995 | |
| 996 | |
| 997 /*! | |
| 998 * \brief seedfillGrayLow() | |
| 999 * | |
| 1000 * Notes: | |
| 1001 * (1) The pixels are numbered as follows: | |
| 1002 * 1 2 3 | |
| 1003 * 4 x 5 | |
| 1004 * 6 7 8 | |
| 1005 * This low-level filling operation consists of two scans, | |
| 1006 * raster and anti-raster, covering the entire seed image. | |
| 1007 * This is followed by a breadth-first propagation operation to | |
| 1008 * complete the fill. | |
| 1009 * During the anti-raster scan, every pixel p whose current value | |
| 1010 * could still be propagated after the anti-raster scan is put into | |
| 1011 * the FIFO queue. | |
| 1012 * The propagation step is a breadth-first fill to completion. | |
| 1013 * Unlike the simple grayscale seedfill pixSeedfillGraySimple(), | |
| 1014 * where at least two full raster/anti-raster iterations are required | |
| 1015 * for completion and verification, the hybrid method uses only a | |
| 1016 * single raster/anti-raster set of scans. | |
| 1017 * (2) The filling action can be visualized from the following example. | |
| 1018 * Suppose the mask, which clips the fill, is a sombrero-shaped | |
| 1019 * surface, where the highest point is 200 and the low pixels | |
| 1020 * around the rim are 30. Beyond the rim, the mask goes up a bit. | |
| 1021 * Suppose the seed, which is filled, consists of a single point | |
| 1022 * of height 150, located below the max of the mask, with | |
| 1023 * the rest 0. Then in the raster scan, nothing happens until | |
| 1024 * the high seed point is encountered, and then this value is | |
| 1025 * propagated right and down, until it hits the side of the | |
| 1026 * sombrero. The seed can never exceed the mask, so it fills | |
| 1027 * to the rim, going lower along the mask surface. When it | |
| 1028 * passes the rim, the seed continues to fill at the rim | |
| 1029 * height to the edge of the seed image. Then on the | |
| 1030 * anti-raster scan, the seed fills flat inside the | |
| 1031 * sombrero to the upper and left, and then out from the | |
| 1032 * rim as before. The final result has a seed that is | |
| 1033 * flat outside the rim, and inside it fills the sombrero | |
| 1034 * but only up to 150. If the rim height varies, the | |
| 1035 * filled seed outside the rim will be at the highest | |
| 1036 * point on the rim, which is a saddle point on the rim. | |
| 1037 * (3) Reference paper : | |
| 1038 * L. Vincent, Morphological grayscale reconstruction in image | |
| 1039 * analysis: applications and efficient algorithms, IEEE Transactions | |
| 1040 * on Image Processing, vol. 2, no. 2, pp. 176-201, 1993. | |
| 1041 */ | |
| 1042 static void | |
| 1043 seedfillGrayLow(l_uint32 *datas, | |
| 1044 l_int32 w, | |
| 1045 l_int32 h, | |
| 1046 l_int32 wpls, | |
| 1047 l_uint32 *datam, | |
| 1048 l_int32 wplm, | |
| 1049 l_int32 connectivity) | |
| 1050 { | |
| 1051 l_uint8 val1, val2, val3, val4, val5, val6, val7, val8; | |
| 1052 l_uint8 val, maxval, maskval, boolval; | |
| 1053 l_int32 i, j, imax, jmax, queue_size; | |
| 1054 l_uint32 *lines, *linem; | |
| 1055 L_PIXEL *pixel; | |
| 1056 L_QUEUE *lq_pixel; | |
| 1057 | |
| 1058 if (connectivity != 4 && connectivity != 8) { | |
| 1059 L_ERROR("connectivity must be 4 or 8\n", __func__); | |
| 1060 return; | |
| 1061 } | |
| 1062 | |
| 1063 imax = h - 1; | |
| 1064 jmax = w - 1; | |
| 1065 | |
| 1066 /* In the worst case, most of the pixels could be pushed | |
| 1067 * onto the FIFO queue during anti-raster scan. However this | |
| 1068 * will rarely happen, and we initialize the queue ptr size to | |
| 1069 * the image perimeter. */ | |
| 1070 lq_pixel = lqueueCreate(2 * (w + h)); | |
| 1071 | |
| 1072 switch (connectivity) | |
| 1073 { | |
| 1074 case 4: | |
| 1075 /* UL --> LR scan (Raster Order) | |
| 1076 * If I : mask image | |
| 1077 * J : marker image | |
| 1078 * Let p be the currect pixel; | |
| 1079 * J(p) <- (max{J(p) union J(p) neighbors in raster order}) | |
| 1080 * intersection I(p) */ | |
| 1081 for (i = 0; i < h; i++) { | |
| 1082 lines = datas + i * wpls; | |
| 1083 linem = datam + i * wplm; | |
| 1084 for (j = 0; j < w; j++) { | |
| 1085 if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { | |
| 1086 maxval = 0; | |
| 1087 if (i > 0) | |
| 1088 maxval = GET_DATA_BYTE(lines - wpls, j); | |
| 1089 if (j > 0) { | |
| 1090 val4 = GET_DATA_BYTE(lines, j - 1); | |
| 1091 maxval = L_MAX(maxval, val4); | |
| 1092 } | |
| 1093 val = GET_DATA_BYTE(lines, j); | |
| 1094 maxval = L_MAX(maxval, val); | |
| 1095 val = L_MIN(maxval, maskval); | |
| 1096 SET_DATA_BYTE(lines, j, val); | |
| 1097 } | |
| 1098 } | |
| 1099 } | |
| 1100 | |
| 1101 /* LR --> UL scan (anti-raster order) | |
| 1102 * Let p be the currect pixel; | |
| 1103 * J(p) <- (max{J(p) union J(p) neighbors in anti-raster order}) | |
| 1104 * intersection I(p) */ | |
| 1105 for (i = imax; i >= 0; i--) { | |
| 1106 lines = datas + i * wpls; | |
| 1107 linem = datam + i * wplm; | |
| 1108 for (j = jmax; j >= 0; j--) { | |
| 1109 boolval = FALSE; | |
| 1110 if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { | |
| 1111 maxval = 0; | |
| 1112 if (i < imax) | |
| 1113 maxval = GET_DATA_BYTE(lines + wpls, j); | |
| 1114 if (j < jmax) { | |
| 1115 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 1116 maxval = L_MAX(maxval, val5); | |
| 1117 } | |
| 1118 val = GET_DATA_BYTE(lines, j); | |
| 1119 maxval = L_MAX(maxval, val); | |
| 1120 val = L_MIN(maxval, maskval); | |
| 1121 SET_DATA_BYTE(lines, j, val); | |
| 1122 | |
| 1123 /* | |
| 1124 * If there exists a point (q) which belongs to J(p) | |
| 1125 * neighbors in anti-raster order such that J(q) < J(p) | |
| 1126 * and J(q) < I(q) then | |
| 1127 * fifo_add(p) */ | |
| 1128 if (i < imax) { | |
| 1129 val7 = GET_DATA_BYTE(lines + wpls, j); | |
| 1130 if ((val7 < val) && | |
| 1131 (val7 < GET_DATA_BYTE(linem + wplm, j))) { | |
| 1132 boolval = TRUE; | |
| 1133 } | |
| 1134 } | |
| 1135 if (j < jmax) { | |
| 1136 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 1137 if (!boolval && (val5 < val) && | |
| 1138 (val5 < GET_DATA_BYTE(linem, j + 1))) { | |
| 1139 boolval = TRUE; | |
| 1140 } | |
| 1141 } | |
| 1142 if (boolval) { | |
| 1143 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1144 pixel->x = i; | |
| 1145 pixel->y = j; | |
| 1146 lqueueAdd(lq_pixel, pixel); | |
| 1147 } | |
| 1148 } | |
| 1149 } | |
| 1150 } | |
| 1151 | |
| 1152 /* Propagation step: | |
| 1153 * while fifo_empty = false | |
| 1154 * p <- fifo_first() | |
| 1155 * for every pixel (q) belong to neighbors of (p) | |
| 1156 * if J(q) < J(p) and I(q) != J(q) | |
| 1157 * J(q) <- min(J(p), I(q)); | |
| 1158 * fifo_add(q); | |
| 1159 * end | |
| 1160 * end | |
| 1161 * end */ | |
| 1162 queue_size = lqueueGetCount(lq_pixel); | |
| 1163 while (queue_size) { | |
| 1164 pixel = (L_PIXEL *)lqueueRemove(lq_pixel); | |
| 1165 i = pixel->x; | |
| 1166 j = pixel->y; | |
| 1167 LEPT_FREE(pixel); | |
| 1168 lines = datas + i * wpls; | |
| 1169 linem = datam + i * wplm; | |
| 1170 | |
| 1171 if ((val = GET_DATA_BYTE(lines, j)) > 0) { | |
| 1172 if (i > 0) { | |
| 1173 val2 = GET_DATA_BYTE(lines - wpls, j); | |
| 1174 maskval = GET_DATA_BYTE(linem - wplm, j); | |
| 1175 if (val > val2 && val2 != maskval) { | |
| 1176 SET_DATA_BYTE(lines - wpls, j, L_MIN(val, maskval)); | |
| 1177 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1178 pixel->x = i - 1; | |
| 1179 pixel->y = j; | |
| 1180 lqueueAdd(lq_pixel, pixel); | |
| 1181 } | |
| 1182 | |
| 1183 } | |
| 1184 if (j > 0) { | |
| 1185 val4 = GET_DATA_BYTE(lines, j - 1); | |
| 1186 maskval = GET_DATA_BYTE(linem, j - 1); | |
| 1187 if (val > val4 && val4 != maskval) { | |
| 1188 SET_DATA_BYTE(lines, j - 1, L_MIN(val, maskval)); | |
| 1189 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1190 pixel->x = i; | |
| 1191 pixel->y = j - 1; | |
| 1192 lqueueAdd(lq_pixel, pixel); | |
| 1193 } | |
| 1194 } | |
| 1195 if (i < imax) { | |
| 1196 val7 = GET_DATA_BYTE(lines + wpls, j); | |
| 1197 maskval = GET_DATA_BYTE(linem + wplm, j); | |
| 1198 if (val > val7 && val7 != maskval) { | |
| 1199 SET_DATA_BYTE(lines + wpls, j, L_MIN(val, maskval)); | |
| 1200 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1201 pixel->x = i + 1; | |
| 1202 pixel->y = j; | |
| 1203 lqueueAdd(lq_pixel, pixel); | |
| 1204 } | |
| 1205 } | |
| 1206 if (j < jmax) { | |
| 1207 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 1208 maskval = GET_DATA_BYTE(linem, j + 1); | |
| 1209 if (val > val5 && val5 != maskval) { | |
| 1210 SET_DATA_BYTE(lines, j + 1, L_MIN(val, maskval)); | |
| 1211 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1212 pixel->x = i; | |
| 1213 pixel->y = j + 1; | |
| 1214 lqueueAdd(lq_pixel, pixel); | |
| 1215 } | |
| 1216 } | |
| 1217 } | |
| 1218 | |
| 1219 queue_size = lqueueGetCount(lq_pixel); | |
| 1220 } | |
| 1221 break; | |
| 1222 | |
| 1223 case 8: | |
| 1224 /* UL --> LR scan (Raster Order) | |
| 1225 * If I : mask image | |
| 1226 * J : marker image | |
| 1227 * Let p be the currect pixel; | |
| 1228 * J(p) <- (max{J(p) union J(p) neighbors in raster order}) | |
| 1229 * intersection I(p) */ | |
| 1230 for (i = 0; i < h; i++) { | |
| 1231 lines = datas + i * wpls; | |
| 1232 linem = datam + i * wplm; | |
| 1233 for (j = 0; j < w; j++) { | |
| 1234 if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { | |
| 1235 maxval = 0; | |
| 1236 if (i > 0) { | |
| 1237 if (j > 0) | |
| 1238 maxval = GET_DATA_BYTE(lines - wpls, j - 1); | |
| 1239 if (j < jmax) { | |
| 1240 val3 = GET_DATA_BYTE(lines - wpls, j + 1); | |
| 1241 maxval = L_MAX(maxval, val3); | |
| 1242 } | |
| 1243 val2 = GET_DATA_BYTE(lines - wpls, j); | |
| 1244 maxval = L_MAX(maxval, val2); | |
| 1245 } | |
| 1246 if (j > 0) { | |
| 1247 val4 = GET_DATA_BYTE(lines, j - 1); | |
| 1248 maxval = L_MAX(maxval, val4); | |
| 1249 } | |
| 1250 val = GET_DATA_BYTE(lines, j); | |
| 1251 maxval = L_MAX(maxval, val); | |
| 1252 val = L_MIN(maxval, maskval); | |
| 1253 SET_DATA_BYTE(lines, j, val); | |
| 1254 } | |
| 1255 } | |
| 1256 } | |
| 1257 | |
| 1258 /* LR --> UL scan (anti-raster order) | |
| 1259 * Let p be the currect pixel; | |
| 1260 * J(p) <- (max{J(p) union J(p) neighbors in anti-raster order}) | |
| 1261 * intersection I(p) */ | |
| 1262 for (i = imax; i >= 0; i--) { | |
| 1263 lines = datas + i * wpls; | |
| 1264 linem = datam + i * wplm; | |
| 1265 for (j = jmax; j >= 0; j--) { | |
| 1266 boolval = FALSE; | |
| 1267 if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { | |
| 1268 maxval = 0; | |
| 1269 if (i < imax) { | |
| 1270 if (j > 0) { | |
| 1271 maxval = GET_DATA_BYTE(lines + wpls, j - 1); | |
| 1272 } | |
| 1273 if (j < jmax) { | |
| 1274 val8 = GET_DATA_BYTE(lines + wpls, j + 1); | |
| 1275 maxval = L_MAX(maxval, val8); | |
| 1276 } | |
| 1277 val7 = GET_DATA_BYTE(lines + wpls, j); | |
| 1278 maxval = L_MAX(maxval, val7); | |
| 1279 } | |
| 1280 if (j < jmax) { | |
| 1281 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 1282 maxval = L_MAX(maxval, val5); | |
| 1283 } | |
| 1284 val = GET_DATA_BYTE(lines, j); | |
| 1285 maxval = L_MAX(maxval, val); | |
| 1286 val = L_MIN(maxval, maskval); | |
| 1287 SET_DATA_BYTE(lines, j, val); | |
| 1288 | |
| 1289 /* If there exists a point (q) which belongs to J(p) | |
| 1290 * neighbors in anti-raster order such that J(q) < J(p) | |
| 1291 * and J(q) < I(q) then | |
| 1292 * fifo_add(p) */ | |
| 1293 if (i < imax) { | |
| 1294 if (j > 0) { | |
| 1295 val6 = GET_DATA_BYTE(lines + wpls, j - 1); | |
| 1296 if ((val6 < val) && | |
| 1297 (val6 < GET_DATA_BYTE(linem + wplm, j - 1))) { | |
| 1298 boolval = TRUE; | |
| 1299 } | |
| 1300 } | |
| 1301 if (j < jmax) { | |
| 1302 val8 = GET_DATA_BYTE(lines + wpls, j + 1); | |
| 1303 if (!boolval && (val8 < val) && | |
| 1304 (val8 < GET_DATA_BYTE(linem + wplm, j + 1))) { | |
| 1305 boolval = TRUE; | |
| 1306 } | |
| 1307 } | |
| 1308 val7 = GET_DATA_BYTE(lines + wpls, j); | |
| 1309 if (!boolval && (val7 < val) && | |
| 1310 (val7 < GET_DATA_BYTE(linem + wplm, j))) { | |
| 1311 boolval = TRUE; | |
| 1312 } | |
| 1313 } | |
| 1314 if (j < jmax) { | |
| 1315 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 1316 if (!boolval && (val5 < val) && | |
| 1317 (val5 < GET_DATA_BYTE(linem, j + 1))) { | |
| 1318 boolval = TRUE; | |
| 1319 } | |
| 1320 } | |
| 1321 if (boolval) { | |
| 1322 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1323 pixel->x = i; | |
| 1324 pixel->y = j; | |
| 1325 lqueueAdd(lq_pixel, pixel); | |
| 1326 } | |
| 1327 } | |
| 1328 } | |
| 1329 } | |
| 1330 | |
| 1331 /* Propagation step: | |
| 1332 * while fifo_empty = false | |
| 1333 * p <- fifo_first() | |
| 1334 * for every pixel (q) belong to neighbors of (p) | |
| 1335 * if J(q) < J(p) and I(q) != J(q) | |
| 1336 * J(q) <- min(J(p), I(q)); | |
| 1337 * fifo_add(q); | |
| 1338 * end | |
| 1339 * end | |
| 1340 * end */ | |
| 1341 queue_size = lqueueGetCount(lq_pixel); | |
| 1342 while (queue_size) { | |
| 1343 pixel = (L_PIXEL *)lqueueRemove(lq_pixel); | |
| 1344 i = pixel->x; | |
| 1345 j = pixel->y; | |
| 1346 LEPT_FREE(pixel); | |
| 1347 lines = datas + i * wpls; | |
| 1348 linem = datam + i * wplm; | |
| 1349 | |
| 1350 if ((val = GET_DATA_BYTE(lines, j)) > 0) { | |
| 1351 if (i > 0) { | |
| 1352 if (j > 0) { | |
| 1353 val1 = GET_DATA_BYTE(lines - wpls, j - 1); | |
| 1354 maskval = GET_DATA_BYTE(linem - wplm, j - 1); | |
| 1355 if (val > val1 && val1 != maskval) { | |
| 1356 SET_DATA_BYTE(lines - wpls, j - 1, | |
| 1357 L_MIN(val, maskval)); | |
| 1358 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1359 pixel->x = i - 1; | |
| 1360 pixel->y = j - 1; | |
| 1361 lqueueAdd(lq_pixel, pixel); | |
| 1362 } | |
| 1363 } | |
| 1364 if (j < jmax) { | |
| 1365 val3 = GET_DATA_BYTE(lines - wpls, j + 1); | |
| 1366 maskval = GET_DATA_BYTE(linem - wplm, j + 1); | |
| 1367 if (val > val3 && val3 != maskval) { | |
| 1368 SET_DATA_BYTE(lines - wpls, j + 1, | |
| 1369 L_MIN(val, maskval)); | |
| 1370 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1371 pixel->x = i - 1; | |
| 1372 pixel->y = j + 1; | |
| 1373 lqueueAdd(lq_pixel, pixel); | |
| 1374 } | |
| 1375 } | |
| 1376 val2 = GET_DATA_BYTE(lines - wpls, j); | |
| 1377 maskval = GET_DATA_BYTE(linem - wplm, j); | |
| 1378 if (val > val2 && val2 != maskval) { | |
| 1379 SET_DATA_BYTE(lines - wpls, j, L_MIN(val, maskval)); | |
| 1380 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1381 pixel->x = i - 1; | |
| 1382 pixel->y = j; | |
| 1383 lqueueAdd(lq_pixel, pixel); | |
| 1384 } | |
| 1385 | |
| 1386 } | |
| 1387 if (j > 0) { | |
| 1388 val4 = GET_DATA_BYTE(lines, j - 1); | |
| 1389 maskval = GET_DATA_BYTE(linem, j - 1); | |
| 1390 if (val > val4 && val4 != maskval) { | |
| 1391 SET_DATA_BYTE(lines, j - 1, L_MIN(val, maskval)); | |
| 1392 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1393 pixel->x = i; | |
| 1394 pixel->y = j - 1; | |
| 1395 lqueueAdd(lq_pixel, pixel); | |
| 1396 } | |
| 1397 } | |
| 1398 if (i < imax) { | |
| 1399 if (j > 0) { | |
| 1400 val6 = GET_DATA_BYTE(lines + wpls, j - 1); | |
| 1401 maskval = GET_DATA_BYTE(linem + wplm, j - 1); | |
| 1402 if (val > val6 && val6 != maskval) { | |
| 1403 SET_DATA_BYTE(lines + wpls, j - 1, | |
| 1404 L_MIN(val, maskval)); | |
| 1405 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1406 pixel->x = i + 1; | |
| 1407 pixel->y = j - 1; | |
| 1408 lqueueAdd(lq_pixel, pixel); | |
| 1409 } | |
| 1410 } | |
| 1411 if (j < jmax) { | |
| 1412 val8 = GET_DATA_BYTE(lines + wpls, j + 1); | |
| 1413 maskval = GET_DATA_BYTE(linem + wplm, j + 1); | |
| 1414 if (val > val8 && val8 != maskval) { | |
| 1415 SET_DATA_BYTE(lines + wpls, j + 1, | |
| 1416 L_MIN(val, maskval)); | |
| 1417 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1418 pixel->x = i + 1; | |
| 1419 pixel->y = j + 1; | |
| 1420 lqueueAdd(lq_pixel, pixel); | |
| 1421 } | |
| 1422 } | |
| 1423 val7 = GET_DATA_BYTE(lines + wpls, j); | |
| 1424 maskval = GET_DATA_BYTE(linem + wplm, j); | |
| 1425 if (val > val7 && val7 != maskval) { | |
| 1426 SET_DATA_BYTE(lines + wpls, j, L_MIN(val, maskval)); | |
| 1427 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1428 pixel->x = i + 1; | |
| 1429 pixel->y = j; | |
| 1430 lqueueAdd(lq_pixel, pixel); | |
| 1431 } | |
| 1432 } | |
| 1433 if (j < jmax) { | |
| 1434 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 1435 maskval = GET_DATA_BYTE(linem, j + 1); | |
| 1436 if (val > val5 && val5 != maskval) { | |
| 1437 SET_DATA_BYTE(lines, j + 1, L_MIN(val, maskval)); | |
| 1438 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1439 pixel->x = i; | |
| 1440 pixel->y = j + 1; | |
| 1441 lqueueAdd(lq_pixel, pixel); | |
| 1442 } | |
| 1443 } | |
| 1444 } | |
| 1445 | |
| 1446 queue_size = lqueueGetCount(lq_pixel); | |
| 1447 } | |
| 1448 break; | |
| 1449 | |
| 1450 default: | |
| 1451 L_ERROR("shouldn't get here!\n", __func__); | |
| 1452 } | |
| 1453 | |
| 1454 lqueueDestroy(&lq_pixel, TRUE); | |
| 1455 } | |
| 1456 | |
| 1457 | |
| 1458 /*! | |
| 1459 * \brief seedfillGrayInvLow() | |
| 1460 * | |
| 1461 * Notes: | |
| 1462 * (1) The pixels are numbered as follows: | |
| 1463 * 1 2 3 | |
| 1464 * 4 x 5 | |
| 1465 * 6 7 8 | |
| 1466 * This low-level filling operation consists of two scans, | |
| 1467 * raster and anti-raster, covering the entire seed image. | |
| 1468 * During the anti-raster scan, every pixel p such that its | |
| 1469 * current value could still be propagated during the next | |
| 1470 * raster scanning is put into the FIFO-queue. | |
| 1471 * Next step is the propagation step where where we update | |
| 1472 * and propagate the values using FIFO structure created in | |
| 1473 * anti-raster scan. | |
| 1474 * (2) The "Inv" signifies the fact that in this case, filling | |
| 1475 * of the seed only takes place when the seed value is | |
| 1476 * greater than the mask value. The mask will act to stop | |
| 1477 * the fill when it is higher than the seed level. (This is | |
| 1478 * in contrast to conventional grayscale filling where the | |
| 1479 * seed always fills below the mask.) | |
| 1480 * (3) An example of use is a basin, described by the mask (pixm), | |
| 1481 * where within the basin, the seed pix (pixs) gets filled to the | |
| 1482 * height of the highest seed pixel that is above its | |
| 1483 * corresponding max pixel. Filling occurs while the | |
| 1484 * propagating seed pixels in pixs are larger than the | |
| 1485 * corresponding mask values in pixm. | |
| 1486 * (4) Reference paper : | |
| 1487 * L. Vincent, Morphological grayscale reconstruction in image | |
| 1488 * analysis: applications and efficient algorithms, IEEE Transactions | |
| 1489 * on Image Processing, vol. 2, no. 2, pp. 176-201, 1993. | |
| 1490 */ | |
| 1491 static void | |
| 1492 seedfillGrayInvLow(l_uint32 *datas, | |
| 1493 l_int32 w, | |
| 1494 l_int32 h, | |
| 1495 l_int32 wpls, | |
| 1496 l_uint32 *datam, | |
| 1497 l_int32 wplm, | |
| 1498 l_int32 connectivity) | |
| 1499 { | |
| 1500 l_uint8 val1, val2, val3, val4, val5, val6, val7, val8; | |
| 1501 l_uint8 val, maxval, maskval, boolval; | |
| 1502 l_int32 i, j, imax, jmax, queue_size; | |
| 1503 l_uint32 *lines, *linem; | |
| 1504 L_PIXEL *pixel; | |
| 1505 L_QUEUE *lq_pixel; | |
| 1506 | |
| 1507 if (connectivity != 4 && connectivity != 8) { | |
| 1508 L_ERROR("connectivity must be 4 or 8\n", __func__); | |
| 1509 return; | |
| 1510 } | |
| 1511 | |
| 1512 imax = h - 1; | |
| 1513 jmax = w - 1; | |
| 1514 | |
| 1515 /* In the worst case, most of the pixels could be pushed | |
| 1516 * onto the FIFO queue during anti-raster scan. However this | |
| 1517 * will rarely happen, and we initialize the queue ptr size to | |
| 1518 * the image perimeter. */ | |
| 1519 lq_pixel = lqueueCreate(2 * (w + h)); | |
| 1520 | |
| 1521 switch (connectivity) | |
| 1522 { | |
| 1523 case 4: | |
| 1524 /* UL --> LR scan (Raster Order) | |
| 1525 * If I : mask image | |
| 1526 * J : marker image | |
| 1527 * Let p be the currect pixel; | |
| 1528 * tmp <- max{J(p) union J(p) neighbors in raster order} | |
| 1529 * if (tmp > I(p)) | |
| 1530 * J(p) <- tmp | |
| 1531 * end */ | |
| 1532 for (i = 0; i < h; i++) { | |
| 1533 lines = datas + i * wpls; | |
| 1534 linem = datam + i * wplm; | |
| 1535 for (j = 0; j < w; j++) { | |
| 1536 if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { | |
| 1537 maxval = GET_DATA_BYTE(lines, j); | |
| 1538 if (i > 0) { | |
| 1539 val2 = GET_DATA_BYTE(lines - wpls, j); | |
| 1540 maxval = L_MAX(maxval, val2); | |
| 1541 } | |
| 1542 if (j > 0) { | |
| 1543 val4 = GET_DATA_BYTE(lines, j - 1); | |
| 1544 maxval = L_MAX(maxval, val4); | |
| 1545 } | |
| 1546 if (maxval > maskval) | |
| 1547 SET_DATA_BYTE(lines, j, maxval); | |
| 1548 } | |
| 1549 } | |
| 1550 } | |
| 1551 | |
| 1552 /* LR --> UL scan (anti-raster order) | |
| 1553 * If I : mask image | |
| 1554 * J : marker image | |
| 1555 * Let p be the currect pixel; | |
| 1556 * tmp <- max{J(p) union J(p) neighbors in anti-raster order} | |
| 1557 * if (tmp > I(p)) | |
| 1558 * J(p) <- tmp | |
| 1559 * end */ | |
| 1560 for (i = imax; i >= 0; i--) { | |
| 1561 lines = datas + i * wpls; | |
| 1562 linem = datam + i * wplm; | |
| 1563 for (j = jmax; j >= 0; j--) { | |
| 1564 boolval = FALSE; | |
| 1565 if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { | |
| 1566 val = maxval = GET_DATA_BYTE(lines, j); | |
| 1567 if (i < imax) { | |
| 1568 val7 = GET_DATA_BYTE(lines + wpls, j); | |
| 1569 maxval = L_MAX(maxval, val7); | |
| 1570 } | |
| 1571 if (j < jmax) { | |
| 1572 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 1573 maxval = L_MAX(maxval, val5); | |
| 1574 } | |
| 1575 if (maxval > maskval) | |
| 1576 SET_DATA_BYTE(lines, j, maxval); | |
| 1577 val = GET_DATA_BYTE(lines, j); | |
| 1578 | |
| 1579 /* | |
| 1580 * If there exists a point (q) which belongs to J(p) | |
| 1581 * neighbors in anti-raster order such that J(q) < J(p) | |
| 1582 * and J(p) > I(q) then | |
| 1583 * fifo_add(p) */ | |
| 1584 if (i < imax) { | |
| 1585 val7 = GET_DATA_BYTE(lines + wpls, j); | |
| 1586 if ((val7 < val) && | |
| 1587 (val > GET_DATA_BYTE(linem + wplm, j))) { | |
| 1588 boolval = TRUE; | |
| 1589 } | |
| 1590 } | |
| 1591 if (j < jmax) { | |
| 1592 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 1593 if (!boolval && (val5 < val) && | |
| 1594 (val > GET_DATA_BYTE(linem, j + 1))) { | |
| 1595 boolval = TRUE; | |
| 1596 } | |
| 1597 } | |
| 1598 if (boolval) { | |
| 1599 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1600 pixel->x = i; | |
| 1601 pixel->y = j; | |
| 1602 lqueueAdd(lq_pixel, pixel); | |
| 1603 } | |
| 1604 } | |
| 1605 } | |
| 1606 } | |
| 1607 | |
| 1608 /* Propagation step: | |
| 1609 * while fifo_empty = false | |
| 1610 * p <- fifo_first() | |
| 1611 * for every pixel (q) belong to neighbors of (p) | |
| 1612 * if J(q) < J(p) and J(p) > I(q) | |
| 1613 * J(q) <- min(J(p), I(q)); | |
| 1614 * fifo_add(q); | |
| 1615 * end | |
| 1616 * end | |
| 1617 * end */ | |
| 1618 queue_size = lqueueGetCount(lq_pixel); | |
| 1619 while (queue_size) { | |
| 1620 pixel = (L_PIXEL *)lqueueRemove(lq_pixel); | |
| 1621 i = pixel->x; | |
| 1622 j = pixel->y; | |
| 1623 LEPT_FREE(pixel); | |
| 1624 lines = datas + i * wpls; | |
| 1625 linem = datam + i * wplm; | |
| 1626 | |
| 1627 if ((val = GET_DATA_BYTE(lines, j)) > 0) { | |
| 1628 if (i > 0) { | |
| 1629 val2 = GET_DATA_BYTE(lines - wpls, j); | |
| 1630 maskval = GET_DATA_BYTE(linem - wplm, j); | |
| 1631 if (val > val2 && val > maskval) { | |
| 1632 SET_DATA_BYTE(lines - wpls, j, val); | |
| 1633 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1634 pixel->x = i - 1; | |
| 1635 pixel->y = j; | |
| 1636 lqueueAdd(lq_pixel, pixel); | |
| 1637 } | |
| 1638 | |
| 1639 } | |
| 1640 if (j > 0) { | |
| 1641 val4 = GET_DATA_BYTE(lines, j - 1); | |
| 1642 maskval = GET_DATA_BYTE(linem, j - 1); | |
| 1643 if (val > val4 && val > maskval) { | |
| 1644 SET_DATA_BYTE(lines, j - 1, val); | |
| 1645 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1646 pixel->x = i; | |
| 1647 pixel->y = j - 1; | |
| 1648 lqueueAdd(lq_pixel, pixel); | |
| 1649 } | |
| 1650 } | |
| 1651 if (i < imax) { | |
| 1652 val7 = GET_DATA_BYTE(lines + wpls, j); | |
| 1653 maskval = GET_DATA_BYTE(linem + wplm, j); | |
| 1654 if (val > val7 && val > maskval) { | |
| 1655 SET_DATA_BYTE(lines + wpls, j, val); | |
| 1656 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1657 pixel->x = i + 1; | |
| 1658 pixel->y = j; | |
| 1659 lqueueAdd(lq_pixel, pixel); | |
| 1660 } | |
| 1661 } | |
| 1662 if (j < jmax) { | |
| 1663 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 1664 maskval = GET_DATA_BYTE(linem, j + 1); | |
| 1665 if (val > val5 && val > maskval) { | |
| 1666 SET_DATA_BYTE(lines, j + 1, val); | |
| 1667 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1668 pixel->x = i; | |
| 1669 pixel->y = j + 1; | |
| 1670 lqueueAdd(lq_pixel, pixel); | |
| 1671 } | |
| 1672 } | |
| 1673 } | |
| 1674 | |
| 1675 queue_size = lqueueGetCount(lq_pixel); | |
| 1676 } | |
| 1677 break; | |
| 1678 | |
| 1679 case 8: | |
| 1680 /* UL --> LR scan (Raster Order) | |
| 1681 * If I : mask image | |
| 1682 * J : marker image | |
| 1683 * Let p be the currect pixel; | |
| 1684 * tmp <- max{J(p) union J(p) neighbors in raster order} | |
| 1685 * if (tmp > I(p)) | |
| 1686 * J(p) <- tmp | |
| 1687 * end */ | |
| 1688 for (i = 0; i < h; i++) { | |
| 1689 lines = datas + i * wpls; | |
| 1690 linem = datam + i * wplm; | |
| 1691 for (j = 0; j < w; j++) { | |
| 1692 if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { | |
| 1693 maxval = GET_DATA_BYTE(lines, j); | |
| 1694 if (i > 0) { | |
| 1695 if (j > 0) { | |
| 1696 val1 = GET_DATA_BYTE(lines - wpls, j - 1); | |
| 1697 maxval = L_MAX(maxval, val1); | |
| 1698 } | |
| 1699 if (j < jmax) { | |
| 1700 val3 = GET_DATA_BYTE(lines - wpls, j + 1); | |
| 1701 maxval = L_MAX(maxval, val3); | |
| 1702 } | |
| 1703 val2 = GET_DATA_BYTE(lines - wpls, j); | |
| 1704 maxval = L_MAX(maxval, val2); | |
| 1705 } | |
| 1706 if (j > 0) { | |
| 1707 val4 = GET_DATA_BYTE(lines, j - 1); | |
| 1708 maxval = L_MAX(maxval, val4); | |
| 1709 } | |
| 1710 if (maxval > maskval) | |
| 1711 SET_DATA_BYTE(lines, j, maxval); | |
| 1712 } | |
| 1713 } | |
| 1714 } | |
| 1715 | |
| 1716 /* LR --> UL scan (anti-raster order) | |
| 1717 * If I : mask image | |
| 1718 * J : marker image | |
| 1719 * Let p be the currect pixel; | |
| 1720 * tmp <- max{J(p) union J(p) neighbors in anti-raster order} | |
| 1721 * if (tmp > I(p)) | |
| 1722 * J(p) <- tmp | |
| 1723 * end */ | |
| 1724 for (i = imax; i >= 0; i--) { | |
| 1725 lines = datas + i * wpls; | |
| 1726 linem = datam + i * wplm; | |
| 1727 for (j = jmax; j >= 0; j--) { | |
| 1728 boolval = FALSE; | |
| 1729 if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { | |
| 1730 maxval = GET_DATA_BYTE(lines, j); | |
| 1731 if (i < imax) { | |
| 1732 if (j > 0) { | |
| 1733 val6 = GET_DATA_BYTE(lines + wpls, j - 1); | |
| 1734 maxval = L_MAX(maxval, val6); | |
| 1735 } | |
| 1736 if (j < jmax) { | |
| 1737 val8 = GET_DATA_BYTE(lines + wpls, j + 1); | |
| 1738 maxval = L_MAX(maxval, val8); | |
| 1739 } | |
| 1740 val7 = GET_DATA_BYTE(lines + wpls, j); | |
| 1741 maxval = L_MAX(maxval, val7); | |
| 1742 } | |
| 1743 if (j < jmax) { | |
| 1744 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 1745 maxval = L_MAX(maxval, val5); | |
| 1746 } | |
| 1747 if (maxval > maskval) | |
| 1748 SET_DATA_BYTE(lines, j, maxval); | |
| 1749 val = GET_DATA_BYTE(lines, j); | |
| 1750 | |
| 1751 /* | |
| 1752 * If there exists a point (q) which belongs to J(p) | |
| 1753 * neighbors in anti-raster order such that J(q) < J(p) | |
| 1754 * and J(p) > I(q) then | |
| 1755 * fifo_add(p) */ | |
| 1756 if (i < imax) { | |
| 1757 if (j > 0) { | |
| 1758 val6 = GET_DATA_BYTE(lines + wpls, j - 1); | |
| 1759 if ((val6 < val) && | |
| 1760 (val > GET_DATA_BYTE(linem + wplm, j - 1))) { | |
| 1761 boolval = TRUE; | |
| 1762 } | |
| 1763 } | |
| 1764 if (j < jmax) { | |
| 1765 val8 = GET_DATA_BYTE(lines + wpls, j + 1); | |
| 1766 if (!boolval && (val8 < val) && | |
| 1767 (val > GET_DATA_BYTE(linem + wplm, j + 1))) { | |
| 1768 boolval = TRUE; | |
| 1769 } | |
| 1770 } | |
| 1771 val7 = GET_DATA_BYTE(lines + wpls, j); | |
| 1772 if (!boolval && (val7 < val) && | |
| 1773 (val > GET_DATA_BYTE(linem + wplm, j))) { | |
| 1774 boolval = TRUE; | |
| 1775 } | |
| 1776 } | |
| 1777 if (j < jmax) { | |
| 1778 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 1779 if (!boolval && (val5 < val) && | |
| 1780 (val > GET_DATA_BYTE(linem, j + 1))) { | |
| 1781 boolval = TRUE; | |
| 1782 } | |
| 1783 } | |
| 1784 if (boolval) { | |
| 1785 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1786 pixel->x = i; | |
| 1787 pixel->y = j; | |
| 1788 lqueueAdd(lq_pixel, pixel); | |
| 1789 } | |
| 1790 } | |
| 1791 } | |
| 1792 } | |
| 1793 | |
| 1794 /* Propagation step: | |
| 1795 * while fifo_empty = false | |
| 1796 * p <- fifo_first() | |
| 1797 * for every pixel (q) belong to neighbors of (p) | |
| 1798 * if J(q) < J(p) and J(p) > I(q) | |
| 1799 * J(q) <- min(J(p), I(q)); | |
| 1800 * fifo_add(q); | |
| 1801 * end | |
| 1802 * end | |
| 1803 * end */ | |
| 1804 queue_size = lqueueGetCount(lq_pixel); | |
| 1805 while (queue_size) { | |
| 1806 pixel = (L_PIXEL *)lqueueRemove(lq_pixel); | |
| 1807 i = pixel->x; | |
| 1808 j = pixel->y; | |
| 1809 LEPT_FREE(pixel); | |
| 1810 lines = datas + i * wpls; | |
| 1811 linem = datam + i * wplm; | |
| 1812 | |
| 1813 if ((val = GET_DATA_BYTE(lines, j)) > 0) { | |
| 1814 if (i > 0) { | |
| 1815 if (j > 0) { | |
| 1816 val1 = GET_DATA_BYTE(lines - wpls, j - 1); | |
| 1817 maskval = GET_DATA_BYTE(linem - wplm, j - 1); | |
| 1818 if (val > val1 && val > maskval) { | |
| 1819 SET_DATA_BYTE(lines - wpls, j - 1, val); | |
| 1820 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1821 pixel->x = i - 1; | |
| 1822 pixel->y = j - 1; | |
| 1823 lqueueAdd(lq_pixel, pixel); | |
| 1824 } | |
| 1825 } | |
| 1826 if (j < jmax) { | |
| 1827 val3 = GET_DATA_BYTE(lines - wpls, j + 1); | |
| 1828 maskval = GET_DATA_BYTE(linem - wplm, j + 1); | |
| 1829 if (val > val3 && val > maskval) { | |
| 1830 SET_DATA_BYTE(lines - wpls, j + 1, val); | |
| 1831 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1832 pixel->x = i - 1; | |
| 1833 pixel->y = j + 1; | |
| 1834 lqueueAdd(lq_pixel, pixel); | |
| 1835 } | |
| 1836 } | |
| 1837 val2 = GET_DATA_BYTE(lines - wpls, j); | |
| 1838 maskval = GET_DATA_BYTE(linem - wplm, j); | |
| 1839 if (val > val2 && val > maskval) { | |
| 1840 SET_DATA_BYTE(lines - wpls, j, val); | |
| 1841 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1842 pixel->x = i - 1; | |
| 1843 pixel->y = j; | |
| 1844 lqueueAdd(lq_pixel, pixel); | |
| 1845 } | |
| 1846 | |
| 1847 } | |
| 1848 if (j > 0) { | |
| 1849 val4 = GET_DATA_BYTE(lines, j - 1); | |
| 1850 maskval = GET_DATA_BYTE(linem, j - 1); | |
| 1851 if (val > val4 && val > maskval) { | |
| 1852 SET_DATA_BYTE(lines, j - 1, val); | |
| 1853 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1854 pixel->x = i; | |
| 1855 pixel->y = j - 1; | |
| 1856 lqueueAdd(lq_pixel, pixel); | |
| 1857 } | |
| 1858 } | |
| 1859 if (i < imax) { | |
| 1860 if (j > 0) { | |
| 1861 val6 = GET_DATA_BYTE(lines + wpls, j - 1); | |
| 1862 maskval = GET_DATA_BYTE(linem + wplm, j - 1); | |
| 1863 if (val > val6 && val > maskval) { | |
| 1864 SET_DATA_BYTE(lines + wpls, j - 1, val); | |
| 1865 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1866 pixel->x = i + 1; | |
| 1867 pixel->y = j - 1; | |
| 1868 lqueueAdd(lq_pixel, pixel); | |
| 1869 } | |
| 1870 } | |
| 1871 if (j < jmax) { | |
| 1872 val8 = GET_DATA_BYTE(lines + wpls, j + 1); | |
| 1873 maskval = GET_DATA_BYTE(linem + wplm, j + 1); | |
| 1874 if (val > val8 && val > maskval) { | |
| 1875 SET_DATA_BYTE(lines + wpls, j + 1, val); | |
| 1876 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1877 pixel->x = i + 1; | |
| 1878 pixel->y = j + 1; | |
| 1879 lqueueAdd(lq_pixel, pixel); | |
| 1880 } | |
| 1881 } | |
| 1882 val7 = GET_DATA_BYTE(lines + wpls, j); | |
| 1883 maskval = GET_DATA_BYTE(linem + wplm, j); | |
| 1884 if (val > val7 && val > maskval) { | |
| 1885 SET_DATA_BYTE(lines + wpls, j, val); | |
| 1886 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1887 pixel->x = i + 1; | |
| 1888 pixel->y = j; | |
| 1889 lqueueAdd(lq_pixel, pixel); | |
| 1890 } | |
| 1891 } | |
| 1892 if (j < jmax) { | |
| 1893 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 1894 maskval = GET_DATA_BYTE(linem, j + 1); | |
| 1895 if (val > val5 && val > maskval) { | |
| 1896 SET_DATA_BYTE(lines, j + 1, val); | |
| 1897 pixel = (L_PIXEL *)LEPT_CALLOC(1, sizeof(L_PIXEL)); | |
| 1898 pixel->x = i; | |
| 1899 pixel->y = j + 1; | |
| 1900 lqueueAdd(lq_pixel, pixel); | |
| 1901 } | |
| 1902 } | |
| 1903 } | |
| 1904 | |
| 1905 queue_size = lqueueGetCount(lq_pixel); | |
| 1906 } | |
| 1907 break; | |
| 1908 | |
| 1909 default: | |
| 1910 L_ERROR("shouldn't get here!\n", __func__); | |
| 1911 } | |
| 1912 | |
| 1913 lqueueDestroy(&lq_pixel, TRUE); | |
| 1914 } | |
| 1915 | |
| 1916 | |
| 1917 /*-----------------------------------------------------------------------* | |
| 1918 * Vincent's Iterative Grayscale Seedfill method * | |
| 1919 *-----------------------------------------------------------------------*/ | |
| 1920 /*! | |
| 1921 * \brief pixSeedfillGraySimple() | |
| 1922 * | |
| 1923 * \param[in] pixs 8 bpp seed; filled in place | |
| 1924 * \param[in] pixm 8 bpp filling mask | |
| 1925 * \param[in] connectivity 4 or 8 | |
| 1926 * \return 0 if OK, 1 on error | |
| 1927 * | |
| 1928 * <pre> | |
| 1929 * Notes: | |
| 1930 * (1) This is an in-place filling operation on the seed, pixs, | |
| 1931 * where the clipping mask is always above or at the level | |
| 1932 * of the seed as it is filled. | |
| 1933 * (2) For details of the operation, see the description in | |
| 1934 * seedfillGrayLowSimple() and the code there. | |
| 1935 * (3) As an example of use, see the description in pixHDome(). | |
| 1936 * There, the seed is an image where each pixel is a fixed | |
| 1937 * amount smaller than the corresponding mask pixel. | |
| 1938 * (4) Reference paper : | |
| 1939 * L. Vincent, Morphological grayscale reconstruction in image | |
| 1940 * analysis: applications and efficient algorithms, IEEE Transactions | |
| 1941 * on Image Processing, vol. 2, no. 2, pp. 176-201, 1993. | |
| 1942 * </pre> | |
| 1943 */ | |
| 1944 l_ok | |
| 1945 pixSeedfillGraySimple(PIX *pixs, | |
| 1946 PIX *pixm, | |
| 1947 l_int32 connectivity) | |
| 1948 { | |
| 1949 l_int32 i, h, w, wpls, wplm, boolval; | |
| 1950 l_uint32 *datas, *datam; | |
| 1951 PIX *pixt; | |
| 1952 | |
| 1953 if (!pixs || pixGetDepth(pixs) != 8) | |
| 1954 return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); | |
| 1955 if (!pixm || pixGetDepth(pixm) != 8) | |
| 1956 return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1); | |
| 1957 if (connectivity != 4 && connectivity != 8) | |
| 1958 return ERROR_INT("connectivity not in {4,8}", __func__, 1); | |
| 1959 | |
| 1960 /* Make sure the sizes of seed and mask images are the same */ | |
| 1961 if (pixSizesEqual(pixs, pixm) == 0) | |
| 1962 return ERROR_INT("pixs and pixm sizes differ", __func__, 1); | |
| 1963 | |
| 1964 /* This is used to test for completion */ | |
| 1965 if ((pixt = pixCreateTemplate(pixs)) == NULL) | |
| 1966 return ERROR_INT("pixt not made", __func__, 1); | |
| 1967 | |
| 1968 datas = pixGetData(pixs); | |
| 1969 datam = pixGetData(pixm); | |
| 1970 wpls = pixGetWpl(pixs); | |
| 1971 wplm = pixGetWpl(pixm); | |
| 1972 pixGetDimensions(pixs, &w, &h, NULL); | |
| 1973 for (i = 0; i < MaxIters; i++) { | |
| 1974 pixCopy(pixt, pixs); | |
| 1975 seedfillGrayLowSimple(datas, w, h, wpls, datam, wplm, connectivity); | |
| 1976 pixEqual(pixs, pixt, &boolval); | |
| 1977 if (boolval == 1) { | |
| 1978 #if DEBUG_PRINT_ITERS | |
| 1979 L_INFO("Gray seed fill converged: %d iters\n", __func__, i + 1); | |
| 1980 #endif /* DEBUG_PRINT_ITERS */ | |
| 1981 break; | |
| 1982 } | |
| 1983 } | |
| 1984 | |
| 1985 pixDestroy(&pixt); | |
| 1986 return 0; | |
| 1987 } | |
| 1988 | |
| 1989 | |
| 1990 /*! | |
| 1991 * \brief pixSeedfillGrayInvSimple() | |
| 1992 * | |
| 1993 * \param[in] pixs 8 bpp seed; filled in place | |
| 1994 * \param[in] pixm 8 bpp filling mask | |
| 1995 * \param[in] connectivity 4 or 8 | |
| 1996 * \return 0 if OK, 1 on error | |
| 1997 * | |
| 1998 * <pre> | |
| 1999 * Notes: | |
| 2000 * (1) This is an in-place filling operation on the seed, pixs, | |
| 2001 * where the clipping mask is always below or at the level | |
| 2002 * of the seed as it is filled. Think of filling up a basin | |
| 2003 * to a particular level, given by the maximum seed value | |
| 2004 * in the basin. Outside the filled region, the mask | |
| 2005 * is above the filling level. | |
| 2006 * (2) Contrast this with pixSeedfillGraySimple(), where the clipping mask | |
| 2007 * is always above or at the level of the fill. An example | |
| 2008 * of its use is the hdome fill, where the seed is an image | |
| 2009 * where each pixel is a fixed amount smaller than the | |
| 2010 * corresponding mask pixel. | |
| 2011 * </pre> | |
| 2012 */ | |
| 2013 l_ok | |
| 2014 pixSeedfillGrayInvSimple(PIX *pixs, | |
| 2015 PIX *pixm, | |
| 2016 l_int32 connectivity) | |
| 2017 { | |
| 2018 l_int32 i, h, w, wpls, wplm, boolval; | |
| 2019 l_uint32 *datas, *datam; | |
| 2020 PIX *pixt; | |
| 2021 | |
| 2022 if (!pixs || pixGetDepth(pixs) != 8) | |
| 2023 return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); | |
| 2024 if (!pixm || pixGetDepth(pixm) != 8) | |
| 2025 return ERROR_INT("pixm not defined or not 8 bpp", __func__, 1); | |
| 2026 if (connectivity != 4 && connectivity != 8) | |
| 2027 return ERROR_INT("connectivity not in {4,8}", __func__, 1); | |
| 2028 | |
| 2029 /* Make sure the sizes of seed and mask images are the same */ | |
| 2030 if (pixSizesEqual(pixs, pixm) == 0) | |
| 2031 return ERROR_INT("pixs and pixm sizes differ", __func__, 1); | |
| 2032 | |
| 2033 /* This is used to test for completion */ | |
| 2034 if ((pixt = pixCreateTemplate(pixs)) == NULL) | |
| 2035 return ERROR_INT("pixt not made", __func__, 1); | |
| 2036 | |
| 2037 datas = pixGetData(pixs); | |
| 2038 datam = pixGetData(pixm); | |
| 2039 wpls = pixGetWpl(pixs); | |
| 2040 wplm = pixGetWpl(pixm); | |
| 2041 pixGetDimensions(pixs, &w, &h, NULL); | |
| 2042 for (i = 0; i < MaxIters; i++) { | |
| 2043 pixCopy(pixt, pixs); | |
| 2044 seedfillGrayInvLowSimple(datas, w, h, wpls, datam, wplm, connectivity); | |
| 2045 pixEqual(pixs, pixt, &boolval); | |
| 2046 if (boolval == 1) { | |
| 2047 #if DEBUG_PRINT_ITERS | |
| 2048 L_INFO("Gray seed fill converged: %d iters\n", __func__, i + 1); | |
| 2049 #endif /* DEBUG_PRINT_ITERS */ | |
| 2050 break; | |
| 2051 } | |
| 2052 } | |
| 2053 | |
| 2054 pixDestroy(&pixt); | |
| 2055 return 0; | |
| 2056 } | |
| 2057 | |
| 2058 | |
| 2059 /*! | |
| 2060 * \brief seedfillGrayLowSimple() | |
| 2061 * | |
| 2062 * Notes: | |
| 2063 * (1) The pixels are numbered as follows: | |
| 2064 * 1 2 3 | |
| 2065 * 4 x 5 | |
| 2066 * 6 7 8 | |
| 2067 * This low-level filling operation consists of two scans, | |
| 2068 * raster and anti-raster, covering the entire seed image. | |
| 2069 * The caller typically iterates until the filling is | |
| 2070 * complete. | |
| 2071 * (2) The filling action can be visualized from the following example. | |
| 2072 * Suppose the mask, which clips the fill, is a sombrero-shaped | |
| 2073 * surface, where the highest point is 200 and the low pixels | |
| 2074 * around the rim are 30. Beyond the rim, the mask goes up a bit. | |
| 2075 * Suppose the seed, which is filled, consists of a single point | |
| 2076 * of height 150, located below the max of the mask, with | |
| 2077 * the rest 0. Then in the raster scan, nothing happens until | |
| 2078 * the high seed point is encountered, and then this value is | |
| 2079 * propagated right and down, until it hits the side of the | |
| 2080 * sombrero. The seed can never exceed the mask, so it fills | |
| 2081 * to the rim, going lower along the mask surface. When it | |
| 2082 * passes the rim, the seed continues to fill at the rim | |
| 2083 * height to the edge of the seed image. Then on the | |
| 2084 * anti-raster scan, the seed fills flat inside the | |
| 2085 * sombrero to the upper and left, and then out from the | |
| 2086 * rim as before. The final result has a seed that is | |
| 2087 * flat outside the rim, and inside it fills the sombrero | |
| 2088 * but only up to 150. If the rim height varies, the | |
| 2089 * filled seed outside the rim will be at the highest | |
| 2090 * point on the rim, which is a saddle point on the rim. | |
| 2091 */ | |
| 2092 static void | |
| 2093 seedfillGrayLowSimple(l_uint32 *datas, | |
| 2094 l_int32 w, | |
| 2095 l_int32 h, | |
| 2096 l_int32 wpls, | |
| 2097 l_uint32 *datam, | |
| 2098 l_int32 wplm, | |
| 2099 l_int32 connectivity) | |
| 2100 { | |
| 2101 l_uint8 val2, val3, val4, val5, val7, val8; | |
| 2102 l_uint8 val, maxval, maskval; | |
| 2103 l_int32 i, j, imax, jmax; | |
| 2104 l_uint32 *lines, *linem; | |
| 2105 | |
| 2106 imax = h - 1; | |
| 2107 jmax = w - 1; | |
| 2108 | |
| 2109 switch (connectivity) | |
| 2110 { | |
| 2111 case 4: | |
| 2112 /* UL --> LR scan */ | |
| 2113 for (i = 0; i < h; i++) { | |
| 2114 lines = datas + i * wpls; | |
| 2115 linem = datam + i * wplm; | |
| 2116 for (j = 0; j < w; j++) { | |
| 2117 if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { | |
| 2118 maxval = 0; | |
| 2119 if (i > 0) | |
| 2120 maxval = GET_DATA_BYTE(lines - wpls, j); | |
| 2121 if (j > 0) { | |
| 2122 val4 = GET_DATA_BYTE(lines, j - 1); | |
| 2123 maxval = L_MAX(maxval, val4); | |
| 2124 } | |
| 2125 val = GET_DATA_BYTE(lines, j); | |
| 2126 maxval = L_MAX(maxval, val); | |
| 2127 val = L_MIN(maxval, maskval); | |
| 2128 SET_DATA_BYTE(lines, j, val); | |
| 2129 } | |
| 2130 } | |
| 2131 } | |
| 2132 | |
| 2133 /* LR --> UL scan */ | |
| 2134 for (i = imax; i >= 0; i--) { | |
| 2135 lines = datas + i * wpls; | |
| 2136 linem = datam + i * wplm; | |
| 2137 for (j = jmax; j >= 0; j--) { | |
| 2138 if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { | |
| 2139 maxval = 0; | |
| 2140 if (i < imax) | |
| 2141 maxval = GET_DATA_BYTE(lines + wpls, j); | |
| 2142 if (j < jmax) { | |
| 2143 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 2144 maxval = L_MAX(maxval, val5); | |
| 2145 } | |
| 2146 val = GET_DATA_BYTE(lines, j); | |
| 2147 maxval = L_MAX(maxval, val); | |
| 2148 val = L_MIN(maxval, maskval); | |
| 2149 SET_DATA_BYTE(lines, j, val); | |
| 2150 } | |
| 2151 } | |
| 2152 } | |
| 2153 break; | |
| 2154 | |
| 2155 case 8: | |
| 2156 /* UL --> LR scan */ | |
| 2157 for (i = 0; i < h; i++) { | |
| 2158 lines = datas + i * wpls; | |
| 2159 linem = datam + i * wplm; | |
| 2160 for (j = 0; j < w; j++) { | |
| 2161 if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { | |
| 2162 maxval = 0; | |
| 2163 if (i > 0) { | |
| 2164 if (j > 0) | |
| 2165 maxval = GET_DATA_BYTE(lines - wpls, j - 1); | |
| 2166 if (j < jmax) { | |
| 2167 val2 = GET_DATA_BYTE(lines - wpls, j + 1); | |
| 2168 maxval = L_MAX(maxval, val2); | |
| 2169 } | |
| 2170 val3 = GET_DATA_BYTE(lines - wpls, j); | |
| 2171 maxval = L_MAX(maxval, val3); | |
| 2172 } | |
| 2173 if (j > 0) { | |
| 2174 val4 = GET_DATA_BYTE(lines, j - 1); | |
| 2175 maxval = L_MAX(maxval, val4); | |
| 2176 } | |
| 2177 val = GET_DATA_BYTE(lines, j); | |
| 2178 maxval = L_MAX(maxval, val); | |
| 2179 val = L_MIN(maxval, maskval); | |
| 2180 SET_DATA_BYTE(lines, j, val); | |
| 2181 } | |
| 2182 } | |
| 2183 } | |
| 2184 | |
| 2185 /* LR --> UL scan */ | |
| 2186 for (i = imax; i >= 0; i--) { | |
| 2187 lines = datas + i * wpls; | |
| 2188 linem = datam + i * wplm; | |
| 2189 for (j = jmax; j >= 0; j--) { | |
| 2190 if ((maskval = GET_DATA_BYTE(linem, j)) > 0) { | |
| 2191 maxval = 0; | |
| 2192 if (i < imax) { | |
| 2193 if (j > 0) | |
| 2194 maxval = GET_DATA_BYTE(lines + wpls, j - 1); | |
| 2195 if (j < jmax) { | |
| 2196 val8 = GET_DATA_BYTE(lines + wpls, j + 1); | |
| 2197 maxval = L_MAX(maxval, val8); | |
| 2198 } | |
| 2199 val7 = GET_DATA_BYTE(lines + wpls, j); | |
| 2200 maxval = L_MAX(maxval, val7); | |
| 2201 } | |
| 2202 if (j < jmax) { | |
| 2203 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 2204 maxval = L_MAX(maxval, val5); | |
| 2205 } | |
| 2206 val = GET_DATA_BYTE(lines, j); | |
| 2207 maxval = L_MAX(maxval, val); | |
| 2208 val = L_MIN(maxval, maskval); | |
| 2209 SET_DATA_BYTE(lines, j, val); | |
| 2210 } | |
| 2211 } | |
| 2212 } | |
| 2213 break; | |
| 2214 | |
| 2215 default: | |
| 2216 L_ERROR("connectivity must be 4 or 8\n", __func__); | |
| 2217 } | |
| 2218 } | |
| 2219 | |
| 2220 | |
| 2221 /*! | |
| 2222 * \brief seedfillGrayInvLowSimple() | |
| 2223 * | |
| 2224 * Notes: | |
| 2225 * (1) The pixels are numbered as follows: | |
| 2226 * 1 2 3 | |
| 2227 * 4 x 5 | |
| 2228 * 6 7 8 | |
| 2229 * This low-level filling operation consists of two scans, | |
| 2230 * raster and anti-raster, covering the entire seed image. | |
| 2231 * The caller typically iterates until the filling is | |
| 2232 * complete. | |
| 2233 * (2) The "Inv" signifies the fact that in this case, filling | |
| 2234 * of the seed only takes place when the seed value is | |
| 2235 * greater than the mask value. The mask will act to stop | |
| 2236 * the fill when it is higher than the seed level. (This is | |
| 2237 * in contrast to conventional grayscale filling where the | |
| 2238 * seed always fills below the mask.) | |
| 2239 * (3) An example of use is a basin, described by the mask (pixm), | |
| 2240 * where within the basin, the seed pix (pixs) gets filled to the | |
| 2241 * height of the highest seed pixel that is above its | |
| 2242 * corresponding max pixel. Filling occurs while the | |
| 2243 * propagating seed pixels in pixs are larger than the | |
| 2244 * corresponding mask values in pixm. | |
| 2245 */ | |
| 2246 static void | |
| 2247 seedfillGrayInvLowSimple(l_uint32 *datas, | |
| 2248 l_int32 w, | |
| 2249 l_int32 h, | |
| 2250 l_int32 wpls, | |
| 2251 l_uint32 *datam, | |
| 2252 l_int32 wplm, | |
| 2253 l_int32 connectivity) | |
| 2254 { | |
| 2255 l_uint8 val1, val2, val3, val4, val5, val6, val7, val8; | |
| 2256 l_uint8 maxval, maskval; | |
| 2257 l_int32 i, j, imax, jmax; | |
| 2258 l_uint32 *lines, *linem; | |
| 2259 | |
| 2260 imax = h - 1; | |
| 2261 jmax = w - 1; | |
| 2262 | |
| 2263 switch (connectivity) | |
| 2264 { | |
| 2265 case 4: | |
| 2266 /* UL --> LR scan */ | |
| 2267 for (i = 0; i < h; i++) { | |
| 2268 lines = datas + i * wpls; | |
| 2269 linem = datam + i * wplm; | |
| 2270 for (j = 0; j < w; j++) { | |
| 2271 if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { | |
| 2272 maxval = GET_DATA_BYTE(lines, j); | |
| 2273 if (i > 0) { | |
| 2274 val2 = GET_DATA_BYTE(lines - wpls, j); | |
| 2275 maxval = L_MAX(maxval, val2); | |
| 2276 } | |
| 2277 if (j > 0) { | |
| 2278 val4 = GET_DATA_BYTE(lines, j - 1); | |
| 2279 maxval = L_MAX(maxval, val4); | |
| 2280 } | |
| 2281 if (maxval > maskval) | |
| 2282 SET_DATA_BYTE(lines, j, maxval); | |
| 2283 } | |
| 2284 } | |
| 2285 } | |
| 2286 | |
| 2287 /* LR --> UL scan */ | |
| 2288 for (i = imax; i >= 0; i--) { | |
| 2289 lines = datas + i * wpls; | |
| 2290 linem = datam + i * wplm; | |
| 2291 for (j = jmax; j >= 0; j--) { | |
| 2292 if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { | |
| 2293 maxval = GET_DATA_BYTE(lines, j); | |
| 2294 if (i < imax) { | |
| 2295 val7 = GET_DATA_BYTE(lines + wpls, j); | |
| 2296 maxval = L_MAX(maxval, val7); | |
| 2297 } | |
| 2298 if (j < jmax) { | |
| 2299 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 2300 maxval = L_MAX(maxval, val5); | |
| 2301 } | |
| 2302 if (maxval > maskval) | |
| 2303 SET_DATA_BYTE(lines, j, maxval); | |
| 2304 } | |
| 2305 } | |
| 2306 } | |
| 2307 break; | |
| 2308 | |
| 2309 case 8: | |
| 2310 /* UL --> LR scan */ | |
| 2311 for (i = 0; i < h; i++) { | |
| 2312 lines = datas + i * wpls; | |
| 2313 linem = datam + i * wplm; | |
| 2314 for (j = 0; j < w; j++) { | |
| 2315 if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { | |
| 2316 maxval = GET_DATA_BYTE(lines, j); | |
| 2317 if (i > 0) { | |
| 2318 if (j > 0) { | |
| 2319 val1 = GET_DATA_BYTE(lines - wpls, j - 1); | |
| 2320 maxval = L_MAX(maxval, val1); | |
| 2321 } | |
| 2322 if (j < jmax) { | |
| 2323 val2 = GET_DATA_BYTE(lines - wpls, j + 1); | |
| 2324 maxval = L_MAX(maxval, val2); | |
| 2325 } | |
| 2326 val3 = GET_DATA_BYTE(lines - wpls, j); | |
| 2327 maxval = L_MAX(maxval, val3); | |
| 2328 } | |
| 2329 if (j > 0) { | |
| 2330 val4 = GET_DATA_BYTE(lines, j - 1); | |
| 2331 maxval = L_MAX(maxval, val4); | |
| 2332 } | |
| 2333 if (maxval > maskval) | |
| 2334 SET_DATA_BYTE(lines, j, maxval); | |
| 2335 } | |
| 2336 } | |
| 2337 } | |
| 2338 | |
| 2339 /* LR --> UL scan */ | |
| 2340 for (i = imax; i >= 0; i--) { | |
| 2341 lines = datas + i * wpls; | |
| 2342 linem = datam + i * wplm; | |
| 2343 for (j = jmax; j >= 0; j--) { | |
| 2344 if ((maskval = GET_DATA_BYTE(linem, j)) < 255) { | |
| 2345 maxval = GET_DATA_BYTE(lines, j); | |
| 2346 if (i < imax) { | |
| 2347 if (j > 0) { | |
| 2348 val6 = GET_DATA_BYTE(lines + wpls, j - 1); | |
| 2349 maxval = L_MAX(maxval, val6); | |
| 2350 } | |
| 2351 if (j < jmax) { | |
| 2352 val8 = GET_DATA_BYTE(lines + wpls, j + 1); | |
| 2353 maxval = L_MAX(maxval, val8); | |
| 2354 } | |
| 2355 val7 = GET_DATA_BYTE(lines + wpls, j); | |
| 2356 maxval = L_MAX(maxval, val7); | |
| 2357 } | |
| 2358 if (j < jmax) { | |
| 2359 val5 = GET_DATA_BYTE(lines, j + 1); | |
| 2360 maxval = L_MAX(maxval, val5); | |
| 2361 } | |
| 2362 if (maxval > maskval) | |
| 2363 SET_DATA_BYTE(lines, j, maxval); | |
| 2364 } | |
| 2365 } | |
| 2366 } | |
| 2367 break; | |
| 2368 | |
| 2369 default: | |
| 2370 L_ERROR("connectivity must be 4 or 8\n", __func__); | |
| 2371 } | |
| 2372 } | |
| 2373 | |
| 2374 | |
| 2375 /*-----------------------------------------------------------------------* | |
| 2376 * Gray seedfill variations * | |
| 2377 *-----------------------------------------------------------------------*/ | |
| 2378 /*! | |
| 2379 * \brief pixSeedfillGrayBasin() | |
| 2380 * | |
| 2381 * \param[in] pixb binary mask giving seed locations | |
| 2382 * \param[in] pixm 8 bpp basin-type filling mask | |
| 2383 * \param[in] delta amount of seed value above mask | |
| 2384 * \param[in] connectivity 4 or 8 | |
| 2385 * \return pixd filled seed if OK, NULL on error | |
| 2386 * | |
| 2387 * <pre> | |
| 2388 * Notes: | |
| 2389 * (1) This fills from a seed within basins defined by a filling mask. | |
| 2390 * The seed value(s) are greater than the corresponding | |
| 2391 * filling mask value, and the result has the bottoms of | |
| 2392 * the basins raised by the initial seed value. | |
| 2393 * (2) The seed has value 255 except where pixb has fg (1), which | |
| 2394 * are the seed 'locations'. At the seed locations, the seed | |
| 2395 * value is the corresponding value of the mask pixel in pixm | |
| 2396 * plus %delta. If %delta == 0, we return a copy of pixm. | |
| 2397 * (3) The actual filling is done using the standard grayscale filling | |
| 2398 * operation on the inverse of the mask and using the inverse | |
| 2399 * of the seed image. After filling, we return the inverse of | |
| 2400 * the filled seed. | |
| 2401 * (4) As an example of use: pixm can describe a grayscale image | |
| 2402 * of text, where the (dark) text pixels are basins of | |
| 2403 * low values; pixb can identify the local minima in pixm (say, at | |
| 2404 * the bottom of the basins); and delta is the amount that we wish | |
| 2405 * to raise (lighten) the basins. We construct the seed | |
| 2406 * (a.k.a marker) image from pixb, pixm and %delta. | |
| 2407 * </pre> | |
| 2408 */ | |
| 2409 PIX * | |
| 2410 pixSeedfillGrayBasin(PIX *pixb, | |
| 2411 PIX *pixm, | |
| 2412 l_int32 delta, | |
| 2413 l_int32 connectivity) | |
| 2414 { | |
| 2415 PIX *pixbi, *pixmi, *pixsd; | |
| 2416 | |
| 2417 if (!pixb || pixGetDepth(pixb) != 1) | |
| 2418 return (PIX *)ERROR_PTR("pixb undefined or not 1 bpp", __func__, NULL); | |
| 2419 if (!pixm || pixGetDepth(pixm) != 8) | |
| 2420 return (PIX *)ERROR_PTR("pixm undefined or not 8 bpp", __func__, NULL); | |
| 2421 if (connectivity != 4 && connectivity != 8) | |
| 2422 return (PIX *)ERROR_PTR("connectivity not in {4,8}", __func__, NULL); | |
| 2423 | |
| 2424 if (delta <= 0) { | |
| 2425 L_WARNING("delta <= 0; returning a copy of pixm\n", __func__); | |
| 2426 return pixCopy(NULL, pixm); | |
| 2427 } | |
| 2428 | |
| 2429 /* Add delta to every pixel in pixm */ | |
| 2430 pixsd = pixCopy(NULL, pixm); | |
| 2431 pixAddConstantGray(pixsd, delta); | |
| 2432 | |
| 2433 /* Prepare the seed. Write 255 in all pixels of | |
| 2434 * ([pixm] + delta) where pixb is 0. */ | |
| 2435 pixbi = pixInvert(NULL, pixb); | |
| 2436 pixSetMasked(pixsd, pixbi, 255); | |
| 2437 | |
| 2438 /* Fill the inverse seed, using the inverse clipping mask */ | |
| 2439 pixmi = pixInvert(NULL, pixm); | |
| 2440 pixInvert(pixsd, pixsd); | |
| 2441 pixSeedfillGray(pixsd, pixmi, connectivity); | |
| 2442 | |
| 2443 /* Re-invert the filled seed */ | |
| 2444 pixInvert(pixsd, pixsd); | |
| 2445 | |
| 2446 pixDestroy(&pixbi); | |
| 2447 pixDestroy(&pixmi); | |
| 2448 return pixsd; | |
| 2449 } | |
| 2450 | |
| 2451 | |
| 2452 /*-----------------------------------------------------------------------* | |
| 2453 * Vincent's Distance Function method * | |
| 2454 *-----------------------------------------------------------------------*/ | |
| 2455 /*! | |
| 2456 * \brief pixDistanceFunction() | |
| 2457 * | |
| 2458 * \param[in] pixs 1 bpp | |
| 2459 * \param[in] connectivity 4 or 8 | |
| 2460 * \param[in] outdepth 8 or 16 bits for pixd | |
| 2461 * \param[in] boundcond L_BOUNDARY_BG, L_BOUNDARY_FG | |
| 2462 * \return pixd, or NULL on error | |
| 2463 * | |
| 2464 * <pre> | |
| 2465 * Notes: | |
| 2466 * (1) This computes the distance of each pixel from the nearest | |
| 2467 * background pixel. All bg pixels therefore have a distance of 0, | |
| 2468 * and the fg pixel distances increase linearly from 1 at the | |
| 2469 * boundary. It can also be used to compute the distance of | |
| 2470 * each pixel from the nearest fg pixel, by inverting the input | |
| 2471 * image before calling this function. Then all fg pixels have | |
| 2472 * a distance 0 and the bg pixel distances increase linearly | |
| 2473 * from 1 at the boundary. | |
| 2474 * (2) The algorithm, described in Leptonica on the page on seed | |
| 2475 * filling and connected components, is due to Luc Vincent. | |
| 2476 * In brief, we generate an 8 or 16 bpp image, initialized | |
| 2477 * with the fg pixels of the input pix set to 1 and the | |
| 2478 * 1-boundary pixels (i.e., the boundary pixels of width 1 on | |
| 2479 * the four sides set as either: | |
| 2480 * * L_BOUNDARY_BG: 0 | |
| 2481 * * L_BOUNDARY_FG: max | |
| 2482 * where max = 0xff for 8 bpp and 0xffff for 16 bpp. | |
| 2483 * Then do raster/anti-raster sweeps over all pixels interior | |
| 2484 * to the 1-boundary, where the value of each new pixel is | |
| 2485 * taken to be 1 more than the minimum of the previously-seen | |
| 2486 * connected pixels (using either 4 or 8 connectivity). | |
| 2487 * Finally, set the 1-boundary pixels using the mirrored method; | |
| 2488 * this removes the max values there. | |
| 2489 * (3) Using L_BOUNDARY_BG clamps the distance to 0 at the | |
| 2490 * boundary. Using L_BOUNDARY_FG allows the distance | |
| 2491 * at the image boundary to "float". | |
| 2492 * (4) For 4-connected, one could initialize only the left and top | |
| 2493 * 1-boundary pixels, and go all the way to the right | |
| 2494 * and bottom; then coming back reset left and top. But we | |
| 2495 * instead use a method that works for both 4- and 8-connected. | |
| 2496 * </pre> | |
| 2497 */ | |
| 2498 PIX * | |
| 2499 pixDistanceFunction(PIX *pixs, | |
| 2500 l_int32 connectivity, | |
| 2501 l_int32 outdepth, | |
| 2502 l_int32 boundcond) | |
| 2503 { | |
| 2504 l_int32 w, h, wpld; | |
| 2505 l_uint32 *datad; | |
| 2506 PIX *pixd; | |
| 2507 | |
| 2508 if (!pixs || pixGetDepth(pixs) != 1) | |
| 2509 return (PIX *)ERROR_PTR("!pixs or pixs not 1 bpp", __func__, NULL); | |
| 2510 if (connectivity != 4 && connectivity != 8) | |
| 2511 return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); | |
| 2512 if (outdepth != 8 && outdepth != 16) | |
| 2513 return (PIX *)ERROR_PTR("outdepth not 8 or 16 bpp", __func__, NULL); | |
| 2514 if (boundcond != L_BOUNDARY_BG && boundcond != L_BOUNDARY_FG) | |
| 2515 return (PIX *)ERROR_PTR("invalid boundcond", __func__, NULL); | |
| 2516 | |
| 2517 pixGetDimensions(pixs, &w, &h, NULL); | |
| 2518 if ((pixd = pixCreate(w, h, outdepth)) == NULL) | |
| 2519 return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); | |
| 2520 datad = pixGetData(pixd); | |
| 2521 wpld = pixGetWpl(pixd); | |
| 2522 | |
| 2523 /* Initialize the fg pixels to 1 and the bg pixels to 0 */ | |
| 2524 pixSetMasked(pixd, pixs, 1); | |
| 2525 | |
| 2526 if (boundcond == L_BOUNDARY_BG) { | |
| 2527 distanceFunctionLow(datad, w, h, outdepth, wpld, connectivity); | |
| 2528 } else { /* L_BOUNDARY_FG: set boundary pixels to max val */ | |
| 2529 pixRasterop(pixd, 0, 0, w, 1, PIX_SET, NULL, 0, 0); /* top */ | |
| 2530 pixRasterop(pixd, 0, h - 1, w, 1, PIX_SET, NULL, 0, 0); /* bot */ | |
| 2531 pixRasterop(pixd, 0, 0, 1, h, PIX_SET, NULL, 0, 0); /* left */ | |
| 2532 pixRasterop(pixd, w - 1, 0, 1, h, PIX_SET, NULL, 0, 0); /* right */ | |
| 2533 | |
| 2534 distanceFunctionLow(datad, w, h, outdepth, wpld, connectivity); | |
| 2535 | |
| 2536 /* Set each boundary pixel equal to the pixel next to it */ | |
| 2537 pixSetMirroredBorder(pixd, 1, 1, 1, 1); | |
| 2538 } | |
| 2539 | |
| 2540 return pixd; | |
| 2541 } | |
| 2542 | |
| 2543 | |
| 2544 /*! | |
| 2545 * \brief distanceFunctionLow() | |
| 2546 */ | |
| 2547 static void | |
| 2548 distanceFunctionLow(l_uint32 *datad, | |
| 2549 l_int32 w, | |
| 2550 l_int32 h, | |
| 2551 l_int32 d, | |
| 2552 l_int32 wpld, | |
| 2553 l_int32 connectivity) | |
| 2554 { | |
| 2555 l_int32 val1, val2, val3, val4, val5, val6, val7, val8, minval, val; | |
| 2556 l_int32 i, j, imax, jmax; | |
| 2557 l_uint32 *lined; | |
| 2558 | |
| 2559 /* One raster scan followed by one anti-raster scan. | |
| 2560 * This does not re-set the 1-boundary of pixels that | |
| 2561 * were initialized to either 0 or maxval. */ | |
| 2562 imax = h - 1; | |
| 2563 jmax = w - 1; | |
| 2564 switch (connectivity) | |
| 2565 { | |
| 2566 case 4: | |
| 2567 if (d == 8) { | |
| 2568 /* UL --> LR scan */ | |
| 2569 for (i = 1; i < imax; i++) { | |
| 2570 lined = datad + i * wpld; | |
| 2571 for (j = 1; j < jmax; j++) { | |
| 2572 if ((val = GET_DATA_BYTE(lined, j)) > 0) { | |
| 2573 val2 = GET_DATA_BYTE(lined - wpld, j); | |
| 2574 val4 = GET_DATA_BYTE(lined, j - 1); | |
| 2575 minval = L_MIN(val2, val4); | |
| 2576 minval = L_MIN(minval, 254); | |
| 2577 SET_DATA_BYTE(lined, j, minval + 1); | |
| 2578 } | |
| 2579 } | |
| 2580 } | |
| 2581 | |
| 2582 /* LR --> UL scan */ | |
| 2583 for (i = imax - 1; i > 0; i--) { | |
| 2584 lined = datad + i * wpld; | |
| 2585 for (j = jmax - 1; j > 0; j--) { | |
| 2586 if ((val = GET_DATA_BYTE(lined, j)) > 0) { | |
| 2587 val7 = GET_DATA_BYTE(lined + wpld, j); | |
| 2588 val5 = GET_DATA_BYTE(lined, j + 1); | |
| 2589 minval = L_MIN(val5, val7); | |
| 2590 minval = L_MIN(minval + 1, val); | |
| 2591 SET_DATA_BYTE(lined, j, minval); | |
| 2592 } | |
| 2593 } | |
| 2594 } | |
| 2595 } else { /* d == 16 */ | |
| 2596 /* UL --> LR scan */ | |
| 2597 for (i = 1; i < imax; i++) { | |
| 2598 lined = datad + i * wpld; | |
| 2599 for (j = 1; j < jmax; j++) { | |
| 2600 if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { | |
| 2601 val2 = GET_DATA_TWO_BYTES(lined - wpld, j); | |
| 2602 val4 = GET_DATA_TWO_BYTES(lined, j - 1); | |
| 2603 minval = L_MIN(val2, val4); | |
| 2604 minval = L_MIN(minval, 0xfffe); | |
| 2605 SET_DATA_TWO_BYTES(lined, j, minval + 1); | |
| 2606 } | |
| 2607 } | |
| 2608 } | |
| 2609 | |
| 2610 /* LR --> UL scan */ | |
| 2611 for (i = imax - 1; i > 0; i--) { | |
| 2612 lined = datad + i * wpld; | |
| 2613 for (j = jmax - 1; j > 0; j--) { | |
| 2614 if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { | |
| 2615 val7 = GET_DATA_TWO_BYTES(lined + wpld, j); | |
| 2616 val5 = GET_DATA_TWO_BYTES(lined, j + 1); | |
| 2617 minval = L_MIN(val5, val7); | |
| 2618 minval = L_MIN(minval + 1, val); | |
| 2619 SET_DATA_TWO_BYTES(lined, j, minval); | |
| 2620 } | |
| 2621 } | |
| 2622 } | |
| 2623 } | |
| 2624 break; | |
| 2625 | |
| 2626 case 8: | |
| 2627 if (d == 8) { | |
| 2628 /* UL --> LR scan */ | |
| 2629 for (i = 1; i < imax; i++) { | |
| 2630 lined = datad + i * wpld; | |
| 2631 for (j = 1; j < jmax; j++) { | |
| 2632 if ((val = GET_DATA_BYTE(lined, j)) > 0) { | |
| 2633 val1 = GET_DATA_BYTE(lined - wpld, j - 1); | |
| 2634 val2 = GET_DATA_BYTE(lined - wpld, j); | |
| 2635 val3 = GET_DATA_BYTE(lined - wpld, j + 1); | |
| 2636 val4 = GET_DATA_BYTE(lined, j - 1); | |
| 2637 minval = L_MIN(val1, val2); | |
| 2638 minval = L_MIN(minval, val3); | |
| 2639 minval = L_MIN(minval, val4); | |
| 2640 minval = L_MIN(minval, 254); | |
| 2641 SET_DATA_BYTE(lined, j, minval + 1); | |
| 2642 } | |
| 2643 } | |
| 2644 } | |
| 2645 | |
| 2646 /* LR --> UL scan */ | |
| 2647 for (i = imax - 1; i > 0; i--) { | |
| 2648 lined = datad + i * wpld; | |
| 2649 for (j = jmax - 1; j > 0; j--) { | |
| 2650 if ((val = GET_DATA_BYTE(lined, j)) > 0) { | |
| 2651 val8 = GET_DATA_BYTE(lined + wpld, j + 1); | |
| 2652 val7 = GET_DATA_BYTE(lined + wpld, j); | |
| 2653 val6 = GET_DATA_BYTE(lined + wpld, j - 1); | |
| 2654 val5 = GET_DATA_BYTE(lined, j + 1); | |
| 2655 minval = L_MIN(val8, val7); | |
| 2656 minval = L_MIN(minval, val6); | |
| 2657 minval = L_MIN(minval, val5); | |
| 2658 minval = L_MIN(minval + 1, val); | |
| 2659 SET_DATA_BYTE(lined, j, minval); | |
| 2660 } | |
| 2661 } | |
| 2662 } | |
| 2663 } else { /* d == 16 */ | |
| 2664 /* UL --> LR scan */ | |
| 2665 for (i = 1; i < imax; i++) { | |
| 2666 lined = datad + i * wpld; | |
| 2667 for (j = 1; j < jmax; j++) { | |
| 2668 if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { | |
| 2669 val1 = GET_DATA_TWO_BYTES(lined - wpld, j - 1); | |
| 2670 val2 = GET_DATA_TWO_BYTES(lined - wpld, j); | |
| 2671 val3 = GET_DATA_TWO_BYTES(lined - wpld, j + 1); | |
| 2672 val4 = GET_DATA_TWO_BYTES(lined, j - 1); | |
| 2673 minval = L_MIN(val1, val2); | |
| 2674 minval = L_MIN(minval, val3); | |
| 2675 minval = L_MIN(minval, val4); | |
| 2676 minval = L_MIN(minval, 0xfffe); | |
| 2677 SET_DATA_TWO_BYTES(lined, j, minval + 1); | |
| 2678 } | |
| 2679 } | |
| 2680 } | |
| 2681 | |
| 2682 /* LR --> UL scan */ | |
| 2683 for (i = imax - 1; i > 0; i--) { | |
| 2684 lined = datad + i * wpld; | |
| 2685 for (j = jmax - 1; j > 0; j--) { | |
| 2686 if ((val = GET_DATA_TWO_BYTES(lined, j)) > 0) { | |
| 2687 val8 = GET_DATA_TWO_BYTES(lined + wpld, j + 1); | |
| 2688 val7 = GET_DATA_TWO_BYTES(lined + wpld, j); | |
| 2689 val6 = GET_DATA_TWO_BYTES(lined + wpld, j - 1); | |
| 2690 val5 = GET_DATA_TWO_BYTES(lined, j + 1); | |
| 2691 minval = L_MIN(val8, val7); | |
| 2692 minval = L_MIN(minval, val6); | |
| 2693 minval = L_MIN(minval, val5); | |
| 2694 minval = L_MIN(minval + 1, val); | |
| 2695 SET_DATA_TWO_BYTES(lined, j, minval); | |
| 2696 } | |
| 2697 } | |
| 2698 } | |
| 2699 } | |
| 2700 break; | |
| 2701 | |
| 2702 default: | |
| 2703 L_ERROR("connectivity must be 4 or 8\n", __func__); | |
| 2704 } | |
| 2705 } | |
| 2706 | |
| 2707 | |
| 2708 /*-----------------------------------------------------------------------* | |
| 2709 * Seed spread (based on distance function) * | |
| 2710 *-----------------------------------------------------------------------*/ | |
| 2711 /*! | |
| 2712 * \brief pixSeedspread() | |
| 2713 * | |
| 2714 * \param[in] pixs 8 bpp | |
| 2715 * \param[in] connectivity 4 or 8 | |
| 2716 * \return pixd, or NULL on error | |
| 2717 * | |
| 2718 * <pre> | |
| 2719 * Notes: | |
| 2720 * (1) The raster/anti-raster method for implementing this filling | |
| 2721 * operation was suggested by Ray Smith. | |
| 2722 * (2) This takes an arbitrary set of nonzero pixels in pixs, which | |
| 2723 * can be sparse, and spreads (extrapolates) the values to | |
| 2724 * fill all the pixels in pixd with the nonzero value it is | |
| 2725 * closest to in pixs. This is similar (though not completely | |
| 2726 * equivalent) to doing a Voronoi tiling of the image, with a | |
| 2727 * tile surrounding each pixel that has a nonzero value. | |
| 2728 * All pixels within a tile are then closer to its "central" | |
| 2729 * pixel than to any others. Then assign the value of the | |
| 2730 * "central" pixel to each pixel in the tile. | |
| 2731 * (3) This is implemented by computing a distance function in parallel | |
| 2732 * with the fill. The distance function uses free boundary | |
| 2733 * conditions (assumed maxval outside), and it controls the | |
| 2734 * propagation of the pixels in pixd away from the nonzero | |
| 2735 * (seed) values. This is done in 2 traversals (raster/antiraster). | |
| 2736 * In the raster direction, whenever the distance function | |
| 2737 * is nonzero, the spread pixel takes on the value of its | |
| 2738 * predecessor that has the minimum distance value. In the | |
| 2739 * antiraster direction, whenever the distance function is nonzero | |
| 2740 * and its value is replaced by a smaller value, the spread | |
| 2741 * pixel takes the value of the predecessor with the minimum | |
| 2742 * distance value. | |
| 2743 * (4) At boundaries where a pixel is equidistant from two | |
| 2744 * nearest nonzero (seed) pixels, the decision of which value | |
| 2745 * to use is arbitrary (greedy in search for minimum distance). | |
| 2746 * This can give rise to strange-looking results, particularly | |
| 2747 * for 4-connectivity where the L1 distance is computed from | |
| 2748 * steps in N,S,E and W directions (no diagonals). | |
| 2749 * </pre> | |
| 2750 */ | |
| 2751 PIX * | |
| 2752 pixSeedspread(PIX *pixs, | |
| 2753 l_int32 connectivity) | |
| 2754 { | |
| 2755 l_int32 w, h, wplt, wplg; | |
| 2756 l_uint32 *datat, *datag; | |
| 2757 PIX *pixm, *pixt, *pixg, *pixd; | |
| 2758 | |
| 2759 if (!pixs || pixGetDepth(pixs) != 8) | |
| 2760 return (PIX *)ERROR_PTR("!pixs or pixs not 8 bpp", __func__, NULL); | |
| 2761 if (connectivity != 4 && connectivity != 8) | |
| 2762 return (PIX *)ERROR_PTR("connectivity not 4 or 8", __func__, NULL); | |
| 2763 | |
| 2764 /* Add a 4 byte border to pixs. This simplifies the computation. */ | |
| 2765 pixg = pixAddBorder(pixs, 4, 0); | |
| 2766 pixGetDimensions(pixg, &w, &h, NULL); | |
| 2767 | |
| 2768 /* Initialize distance function pixt. Threshold pixs to get | |
| 2769 * a 0 at the seed points where the pixs pixel is nonzero, and | |
| 2770 * a 1 at all points that need to be filled. Use this as a | |
| 2771 * mask to set a 1 in pixt at all non-seed points. Also, set all | |
| 2772 * pixt pixels in an interior boundary of width 1 to the | |
| 2773 * maximum value. For debugging, to view the distance function, | |
| 2774 * use pixConvert16To8(pixt, L_LS_BYTE) on small images. */ | |
| 2775 pixm = pixThresholdToBinary(pixg, 1); | |
| 2776 pixt = pixCreate(w, h, 16); | |
| 2777 pixSetMasked(pixt, pixm, 1); | |
| 2778 pixRasterop(pixt, 0, 0, w, 1, PIX_SET, NULL, 0, 0); /* top */ | |
| 2779 pixRasterop(pixt, 0, h - 1, w, 1, PIX_SET, NULL, 0, 0); /* bot */ | |
| 2780 pixRasterop(pixt, 0, 0, 1, h, PIX_SET, NULL, 0, 0); /* left */ | |
| 2781 pixRasterop(pixt, w - 1, 0, 1, h, PIX_SET, NULL, 0, 0); /* right */ | |
| 2782 datat = pixGetData(pixt); | |
| 2783 wplt = pixGetWpl(pixt); | |
| 2784 | |
| 2785 /* Do the interpolation and remove the border. */ | |
| 2786 datag = pixGetData(pixg); | |
| 2787 wplg = pixGetWpl(pixg); | |
| 2788 seedspreadLow(datag, w, h, wplg, datat, wplt, connectivity); | |
| 2789 pixd = pixRemoveBorder(pixg, 4); | |
| 2790 | |
| 2791 pixDestroy(&pixm); | |
| 2792 pixDestroy(&pixg); | |
| 2793 pixDestroy(&pixt); | |
| 2794 return pixd; | |
| 2795 } | |
| 2796 | |
| 2797 | |
| 2798 /*! | |
| 2799 * \brief seedspreadLow() | |
| 2800 * | |
| 2801 * See pixSeedspread() for a brief description of the algorithm here. | |
| 2802 */ | |
| 2803 static void | |
| 2804 seedspreadLow(l_uint32 *datad, | |
| 2805 l_int32 w, | |
| 2806 l_int32 h, | |
| 2807 l_int32 wpld, | |
| 2808 l_uint32 *datat, | |
| 2809 l_int32 wplt, | |
| 2810 l_int32 connectivity) | |
| 2811 { | |
| 2812 l_int32 val1t, val2t, val3t, val4t, val5t, val6t, val7t, val8t; | |
| 2813 l_int32 i, j, imax, jmax, minval, valt, vald; | |
| 2814 l_uint32 *linet, *lined; | |
| 2815 | |
| 2816 /* One raster scan followed by one anti-raster scan. | |
| 2817 * pixt is initialized to have 0 on pixels where the | |
| 2818 * input is specified in pixd, and to have 1 on all | |
| 2819 * other pixels. We only change pixels in pixt and pixd | |
| 2820 * that are non-zero in pixt. */ | |
| 2821 imax = h - 1; | |
| 2822 jmax = w - 1; | |
| 2823 switch (connectivity) | |
| 2824 { | |
| 2825 case 4: | |
| 2826 /* UL --> LR scan */ | |
| 2827 for (i = 1; i < h; i++) { | |
| 2828 linet = datat + i * wplt; | |
| 2829 lined = datad + i * wpld; | |
| 2830 for (j = 1; j < jmax; j++) { | |
| 2831 if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { | |
| 2832 val2t = GET_DATA_TWO_BYTES(linet - wplt, j); | |
| 2833 val4t = GET_DATA_TWO_BYTES(linet, j - 1); | |
| 2834 minval = L_MIN(val2t, val4t); | |
| 2835 minval = L_MIN(minval, 0xfffe); | |
| 2836 SET_DATA_TWO_BYTES(linet, j, minval + 1); | |
| 2837 if (val2t < val4t) | |
| 2838 vald = GET_DATA_BYTE(lined - wpld, j); | |
| 2839 else | |
| 2840 vald = GET_DATA_BYTE(lined, j - 1); | |
| 2841 SET_DATA_BYTE(lined, j, vald); | |
| 2842 } | |
| 2843 } | |
| 2844 } | |
| 2845 | |
| 2846 /* LR --> UL scan */ | |
| 2847 for (i = imax - 1; i > 0; i--) { | |
| 2848 linet = datat + i * wplt; | |
| 2849 lined = datad + i * wpld; | |
| 2850 for (j = jmax - 1; j > 0; j--) { | |
| 2851 if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { | |
| 2852 val7t = GET_DATA_TWO_BYTES(linet + wplt, j); | |
| 2853 val5t = GET_DATA_TWO_BYTES(linet, j + 1); | |
| 2854 minval = L_MIN(val5t, val7t); | |
| 2855 minval = L_MIN(minval + 1, valt); | |
| 2856 if (valt > minval) { /* replace */ | |
| 2857 SET_DATA_TWO_BYTES(linet, j, minval); | |
| 2858 if (val5t < val7t) | |
| 2859 vald = GET_DATA_BYTE(lined, j + 1); | |
| 2860 else | |
| 2861 vald = GET_DATA_BYTE(lined + wplt, j); | |
| 2862 SET_DATA_BYTE(lined, j, vald); | |
| 2863 } | |
| 2864 } | |
| 2865 } | |
| 2866 } | |
| 2867 break; | |
| 2868 case 8: | |
| 2869 /* UL --> LR scan */ | |
| 2870 for (i = 1; i < h; i++) { | |
| 2871 linet = datat + i * wplt; | |
| 2872 lined = datad + i * wpld; | |
| 2873 for (j = 1; j < jmax; j++) { | |
| 2874 if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { | |
| 2875 val1t = GET_DATA_TWO_BYTES(linet - wplt, j - 1); | |
| 2876 val2t = GET_DATA_TWO_BYTES(linet - wplt, j); | |
| 2877 val3t = GET_DATA_TWO_BYTES(linet - wplt, j + 1); | |
| 2878 val4t = GET_DATA_TWO_BYTES(linet, j - 1); | |
| 2879 minval = L_MIN(val1t, val2t); | |
| 2880 minval = L_MIN(minval, val3t); | |
| 2881 minval = L_MIN(minval, val4t); | |
| 2882 minval = L_MIN(minval, 0xfffe); | |
| 2883 SET_DATA_TWO_BYTES(linet, j, minval + 1); | |
| 2884 if (minval == val1t) | |
| 2885 vald = GET_DATA_BYTE(lined - wpld, j - 1); | |
| 2886 else if (minval == val2t) | |
| 2887 vald = GET_DATA_BYTE(lined - wpld, j); | |
| 2888 else if (minval == val3t) | |
| 2889 vald = GET_DATA_BYTE(lined - wpld, j + 1); | |
| 2890 else /* minval == val4t */ | |
| 2891 vald = GET_DATA_BYTE(lined, j - 1); | |
| 2892 SET_DATA_BYTE(lined, j, vald); | |
| 2893 } | |
| 2894 } | |
| 2895 } | |
| 2896 | |
| 2897 /* LR --> UL scan */ | |
| 2898 for (i = imax - 1; i > 0; i--) { | |
| 2899 linet = datat + i * wplt; | |
| 2900 lined = datad + i * wpld; | |
| 2901 for (j = jmax - 1; j > 0; j--) { | |
| 2902 if ((valt = GET_DATA_TWO_BYTES(linet, j)) > 0) { | |
| 2903 val8t = GET_DATA_TWO_BYTES(linet + wplt, j + 1); | |
| 2904 val7t = GET_DATA_TWO_BYTES(linet + wplt, j); | |
| 2905 val6t = GET_DATA_TWO_BYTES(linet + wplt, j - 1); | |
| 2906 val5t = GET_DATA_TWO_BYTES(linet, j + 1); | |
| 2907 minval = L_MIN(val8t, val7t); | |
| 2908 minval = L_MIN(minval, val6t); | |
| 2909 minval = L_MIN(minval, val5t); | |
| 2910 minval = L_MIN(minval + 1, valt); | |
| 2911 if (valt > minval) { /* replace */ | |
| 2912 SET_DATA_TWO_BYTES(linet, j, minval); | |
| 2913 if (minval == val5t + 1) | |
| 2914 vald = GET_DATA_BYTE(lined, j + 1); | |
| 2915 else if (minval == val6t + 1) | |
| 2916 vald = GET_DATA_BYTE(lined + wpld, j - 1); | |
| 2917 else if (minval == val7t + 1) | |
| 2918 vald = GET_DATA_BYTE(lined + wpld, j); | |
| 2919 else /* minval == val8t + 1 */ | |
| 2920 vald = GET_DATA_BYTE(lined + wpld, j + 1); | |
| 2921 SET_DATA_BYTE(lined, j, vald); | |
| 2922 } | |
| 2923 } | |
| 2924 } | |
| 2925 } | |
| 2926 break; | |
| 2927 default: | |
| 2928 L_ERROR("connectivity must be 4 or 8\n", __func__); | |
| 2929 break; | |
| 2930 } | |
| 2931 } | |
| 2932 | |
| 2933 | |
| 2934 /*-----------------------------------------------------------------------* | |
| 2935 * Local extrema * | |
| 2936 *-----------------------------------------------------------------------*/ | |
| 2937 /*! | |
| 2938 * \brief pixLocalExtrema() | |
| 2939 * | |
| 2940 * \param[in] pixs 8 bpp | |
| 2941 * \param[in] maxmin max allowed for the min in a 3x3 neighborhood; | |
| 2942 * use 0 for default which is to have no upper bound | |
| 2943 * \param[in] minmax min allowed for the max in a 3x3 neighborhood; | |
| 2944 * use 0 for default which is to have no lower bound | |
| 2945 * \param[out] ppixmin [optional] mask of local minima | |
| 2946 * \param[out] ppixmax [optional] mask of local maxima | |
| 2947 * \return 0 if OK, 1 on error | |
| 2948 * | |
| 2949 * <pre> | |
| 2950 * Notes: | |
| 2951 * (1) This gives the actual local minima and maxima. | |
| 2952 * A local minimum is a pixel whose surrounding pixels all | |
| 2953 * have values at least as large, and likewise for a local | |
| 2954 * maximum. For the local minima, %maxmin is the upper | |
| 2955 * bound for the value of pixs. Likewise, for the local maxima, | |
| 2956 * %minmax is the lower bound for the value of pixs. | |
| 2957 * (2) The minima are found by starting with the erosion-and-equality | |
| 2958 * approach of pixSelectedLocalExtrema(). This is followed | |
| 2959 * by a qualification step, where each c.c. in the resulting | |
| 2960 * minimum mask is extracted, the pixels bordering it are | |
| 2961 * located, and they are queried. If all of those pixels | |
| 2962 * are larger than the value of that minimum, it is a true | |
| 2963 * minimum and its c.c. is saved; otherwise the c.c. is | |
| 2964 * rejected. Note that if a bordering pixel has the | |
| 2965 * same value as the minimum, it must then have a | |
| 2966 * neighbor that is smaller, so the component is not a | |
| 2967 * true minimum. | |
| 2968 * (3) The maxima are found by inverting the image and looking | |
| 2969 * for the minima there. | |
| 2970 * (4) The generated masks can be used as markers for | |
| 2971 * further operations. | |
| 2972 * </pre> | |
| 2973 */ | |
| 2974 l_ok | |
| 2975 pixLocalExtrema(PIX *pixs, | |
| 2976 l_int32 maxmin, | |
| 2977 l_int32 minmax, | |
| 2978 PIX **ppixmin, | |
| 2979 PIX **ppixmax) | |
| 2980 { | |
| 2981 PIX *pixmin, *pixmax, *pixt1, *pixt2; | |
| 2982 | |
| 2983 if (!pixs || pixGetDepth(pixs) != 8) | |
| 2984 return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); | |
| 2985 if (!ppixmin && !ppixmax) | |
| 2986 return ERROR_INT("neither &pixmin, &pixmax are defined", __func__, 1); | |
| 2987 if (maxmin <= 0) maxmin = 254; | |
| 2988 if (minmax <= 0) minmax = 1; | |
| 2989 | |
| 2990 if (ppixmin) { | |
| 2991 pixt1 = pixErodeGray(pixs, 3, 3); | |
| 2992 pixmin = pixFindEqualValues(pixs, pixt1); | |
| 2993 pixDestroy(&pixt1); | |
| 2994 pixQualifyLocalMinima(pixs, pixmin, maxmin); | |
| 2995 *ppixmin = pixmin; | |
| 2996 } | |
| 2997 | |
| 2998 if (ppixmax) { | |
| 2999 pixt1 = pixInvert(NULL, pixs); | |
| 3000 pixt2 = pixErodeGray(pixt1, 3, 3); | |
| 3001 pixmax = pixFindEqualValues(pixt1, pixt2); | |
| 3002 pixDestroy(&pixt2); | |
| 3003 pixQualifyLocalMinima(pixt1, pixmax, 255 - minmax); | |
| 3004 *ppixmax = pixmax; | |
| 3005 pixDestroy(&pixt1); | |
| 3006 } | |
| 3007 | |
| 3008 return 0; | |
| 3009 } | |
| 3010 | |
| 3011 | |
| 3012 /*! | |
| 3013 * \brief pixQualifyLocalMinima() | |
| 3014 * | |
| 3015 * \param[in] pixs 8 bpp image from which pixm has been extracted | |
| 3016 * \param[in] pixm 1 bpp mask of values equal to min in 3x3 neighborhood | |
| 3017 * \param[in] maxval max allowed for the min in a 3x3 neighborhood; | |
| 3018 * use 0 for default which is to have no upper bound | |
| 3019 * \return 0 if OK, 1 on error | |
| 3020 * | |
| 3021 * <pre> | |
| 3022 * Notes: | |
| 3023 * (1) This function acts in-place to remove all c.c. in pixm | |
| 3024 * that are not true local minima in pixs. As seen in | |
| 3025 * pixLocalExtrema(), the input pixm are found by selecting those | |
| 3026 * pixels of pixs whose values do not change with a 3x3 | |
| 3027 * grayscale erosion. Here, we require that for each c.c. | |
| 3028 * in pixm, all pixels in pixs that correspond to the exterior | |
| 3029 * boundary pixels of the c.c. have values that are greater | |
| 3030 * than the value within the c.c. | |
| 3031 * (2) The maximum allowed value for each local minimum can be | |
| 3032 * bounded with %maxval. Use 0 for default, which is to have | |
| 3033 * no upper bound (equivalent to maxval == 254). | |
| 3034 * </pre> | |
| 3035 */ | |
| 3036 static l_int32 | |
| 3037 pixQualifyLocalMinima(PIX *pixs, | |
| 3038 PIX *pixm, | |
| 3039 l_int32 maxval) | |
| 3040 { | |
| 3041 l_int32 n, i, j, k, x, y, w, h, xc, yc, wc, hc, xon, yon; | |
| 3042 l_int32 vals, wpls, wplc, ismin; | |
| 3043 l_uint32 val; | |
| 3044 l_uint32 *datas, *datac, *lines, *linec; | |
| 3045 BOXA *boxa; | |
| 3046 PIX *pix1, *pix2, *pix3; | |
| 3047 PIXA *pixa; | |
| 3048 | |
| 3049 if (!pixs || pixGetDepth(pixs) != 8) | |
| 3050 return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); | |
| 3051 if (!pixm || pixGetDepth(pixm) != 1) | |
| 3052 return ERROR_INT("pixm not defined or not 1 bpp", __func__, 1); | |
| 3053 if (maxval <= 0) maxval = 254; | |
| 3054 | |
| 3055 pixGetDimensions(pixs, &w, &h, NULL); | |
| 3056 datas = pixGetData(pixs); | |
| 3057 wpls = pixGetWpl(pixs); | |
| 3058 boxa = pixConnComp(pixm, &pixa, 8); | |
| 3059 n = pixaGetCount(pixa); | |
| 3060 for (k = 0; k < n; k++) { | |
| 3061 boxaGetBoxGeometry(boxa, k, &xc, &yc, &wc, &hc); | |
| 3062 pix1 = pixaGetPix(pixa, k, L_COPY); | |
| 3063 pix2 = pixAddBorder(pix1, 1, 0); | |
| 3064 pix3 = pixDilateBrick(NULL, pix2, 3, 3); | |
| 3065 pixXor(pix3, pix3, pix2); /* exterior boundary pixels */ | |
| 3066 datac = pixGetData(pix3); | |
| 3067 wplc = pixGetWpl(pix3); | |
| 3068 nextOnPixelInRaster(pix1, 0, 0, &xon, &yon); | |
| 3069 pixGetPixel(pixs, xc + xon, yc + yon, &val); | |
| 3070 if (val > maxval) { /* too large; erase */ | |
| 3071 pixRasterop(pixm, xc, yc, wc, hc, PIX_XOR, pix1, 0, 0); | |
| 3072 pixDestroy(&pix1); | |
| 3073 pixDestroy(&pix2); | |
| 3074 pixDestroy(&pix3); | |
| 3075 continue; | |
| 3076 } | |
| 3077 ismin = TRUE; | |
| 3078 | |
| 3079 /* Check all values in pixs that correspond to the exterior | |
| 3080 * boundary pixels of the c.c. in pixm. Verify that the | |
| 3081 * value in the c.c. is always less. */ | |
| 3082 for (i = 0, y = yc - 1; i < hc + 2 && y >= 0 && y < h; i++, y++) { | |
| 3083 lines = datas + y * wpls; | |
| 3084 linec = datac + i * wplc; | |
| 3085 for (j = 0, x = xc - 1; j < wc + 2 && x >= 0 && x < w; j++, x++) { | |
| 3086 if (GET_DATA_BIT(linec, j)) { | |
| 3087 vals = GET_DATA_BYTE(lines, x); | |
| 3088 if (vals <= val) { /* not a minimum! */ | |
| 3089 ismin = FALSE; | |
| 3090 break; | |
| 3091 } | |
| 3092 } | |
| 3093 } | |
| 3094 if (!ismin) | |
| 3095 break; | |
| 3096 } | |
| 3097 if (!ismin) /* erase it */ | |
| 3098 pixRasterop(pixm, xc, yc, wc, hc, PIX_XOR, pix1, 0, 0); | |
| 3099 pixDestroy(&pix1); | |
| 3100 pixDestroy(&pix2); | |
| 3101 pixDestroy(&pix3); | |
| 3102 } | |
| 3103 | |
| 3104 boxaDestroy(&boxa); | |
| 3105 pixaDestroy(&pixa); | |
| 3106 return 0; | |
| 3107 } | |
| 3108 | |
| 3109 | |
| 3110 /*! | |
| 3111 * \brief pixSelectedLocalExtrema() | |
| 3112 * | |
| 3113 * \param[in] pixs 8 bpp | |
| 3114 * \param[in] mindist -1 for keeping all pixels; >= 0 specifies distance | |
| 3115 * \param[out] ppixmin mask of local minima | |
| 3116 * \param[out] ppixmax mask of local maxima | |
| 3117 * \return 0 if OK, 1 on error | |
| 3118 * | |
| 3119 * <pre> | |
| 3120 * Notes: | |
| 3121 * (1) This selects those local 3x3 minima that are at least a | |
| 3122 * specified distance from the nearest local 3x3 maxima, and v.v. | |
| 3123 * for the selected set of local 3x3 maxima. | |
| 3124 * The local 3x3 minima is the set of pixels whose value equals | |
| 3125 * the value after a 3x3 brick erosion, and the local 3x3 maxima | |
| 3126 * is the set of pixels whose value equals the value after | |
| 3127 * a 3x3 brick dilation. | |
| 3128 * (2) mindist is the minimum distance allowed between | |
| 3129 * local 3x3 minima and local 3x3 maxima, in an 8-connected sense. | |
| 3130 * mindist == 1 keeps all pixels found in step 1. | |
| 3131 * mindist == 0 removes all pixels from each mask that are | |
| 3132 * both a local 3x3 minimum and a local 3x3 maximum. | |
| 3133 * mindist == 1 removes any local 3x3 minimum pixel that touches a | |
| 3134 * local 3x3 maximum pixel, and likewise for the local maxima. | |
| 3135 * To make the decision, visualize each local 3x3 minimum pixel | |
| 3136 * as being surrounded by a square of size (2 * mindist + 1) | |
| 3137 * on each side, such that no local 3x3 maximum pixel is within | |
| 3138 * that square; and v.v. | |
| 3139 * (3) The generated masks can be used as markers for further operations. | |
| 3140 * </pre> | |
| 3141 */ | |
| 3142 l_ok | |
| 3143 pixSelectedLocalExtrema(PIX *pixs, | |
| 3144 l_int32 mindist, | |
| 3145 PIX **ppixmin, | |
| 3146 PIX **ppixmax) | |
| 3147 { | |
| 3148 PIX *pixmin, *pixmax, *pixt, *pixtmin, *pixtmax; | |
| 3149 | |
| 3150 if (!pixs || pixGetDepth(pixs) != 8) | |
| 3151 return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); | |
| 3152 if (!ppixmin || !ppixmax) | |
| 3153 return ERROR_INT("&pixmin and &pixmax not both defined", __func__, 1); | |
| 3154 | |
| 3155 pixt = pixErodeGray(pixs, 3, 3); | |
| 3156 pixmin = pixFindEqualValues(pixs, pixt); | |
| 3157 pixDestroy(&pixt); | |
| 3158 pixt = pixDilateGray(pixs, 3, 3); | |
| 3159 pixmax = pixFindEqualValues(pixs, pixt); | |
| 3160 pixDestroy(&pixt); | |
| 3161 | |
| 3162 /* Remove all points that are within the prescribed distance | |
| 3163 * from each other. */ | |
| 3164 if (mindist < 0) { /* remove no points */ | |
| 3165 *ppixmin = pixmin; | |
| 3166 *ppixmax = pixmax; | |
| 3167 } else if (mindist == 0) { /* remove points belonging to both sets */ | |
| 3168 pixt = pixAnd(NULL, pixmin, pixmax); | |
| 3169 *ppixmin = pixSubtract(pixmin, pixmin, pixt); | |
| 3170 *ppixmax = pixSubtract(pixmax, pixmax, pixt); | |
| 3171 pixDestroy(&pixt); | |
| 3172 } else { | |
| 3173 pixtmin = pixDilateBrick(NULL, pixmin, | |
| 3174 2 * mindist + 1, 2 * mindist + 1); | |
| 3175 pixtmax = pixDilateBrick(NULL, pixmax, | |
| 3176 2 * mindist + 1, 2 * mindist + 1); | |
| 3177 *ppixmin = pixSubtract(pixmin, pixmin, pixtmax); | |
| 3178 *ppixmax = pixSubtract(pixmax, pixmax, pixtmin); | |
| 3179 pixDestroy(&pixtmin); | |
| 3180 pixDestroy(&pixtmax); | |
| 3181 } | |
| 3182 return 0; | |
| 3183 } | |
| 3184 | |
| 3185 | |
| 3186 /*! | |
| 3187 * \brief pixFindEqualValues() | |
| 3188 * | |
| 3189 * \param[in] pixs1 8 bpp | |
| 3190 * \param[in] pixs2 8 bpp | |
| 3191 * \return pixd 1 bpp mask, or NULL on error | |
| 3192 * | |
| 3193 * <pre> | |
| 3194 * Notes: | |
| 3195 * (1) The two images are aligned at the UL corner, and the returned | |
| 3196 * image has ON pixels where the pixels in pixs1 and pixs2 | |
| 3197 * have equal values. | |
| 3198 * </pre> | |
| 3199 */ | |
| 3200 PIX * | |
| 3201 pixFindEqualValues(PIX *pixs1, | |
| 3202 PIX *pixs2) | |
| 3203 { | |
| 3204 l_int32 w1, h1, w2, h2, w, h; | |
| 3205 l_int32 i, j, val1, val2, wpls1, wpls2, wpld; | |
| 3206 l_uint32 *datas1, *datas2, *datad, *lines1, *lines2, *lined; | |
| 3207 PIX *pixd; | |
| 3208 | |
| 3209 if (!pixs1 || pixGetDepth(pixs1) != 8) | |
| 3210 return (PIX *)ERROR_PTR("pixs1 undefined or not 8 bpp", __func__, NULL); | |
| 3211 if (!pixs2 || pixGetDepth(pixs2) != 8) | |
| 3212 return (PIX *)ERROR_PTR("pixs2 undefined or not 8 bpp", __func__, NULL); | |
| 3213 pixGetDimensions(pixs1, &w1, &h1, NULL); | |
| 3214 pixGetDimensions(pixs2, &w2, &h2, NULL); | |
| 3215 w = L_MIN(w1, w2); | |
| 3216 h = L_MIN(h1, h2); | |
| 3217 pixd = pixCreate(w, h, 1); | |
| 3218 datas1 = pixGetData(pixs1); | |
| 3219 datas2 = pixGetData(pixs2); | |
| 3220 datad = pixGetData(pixd); | |
| 3221 wpls1 = pixGetWpl(pixs1); | |
| 3222 wpls2 = pixGetWpl(pixs2); | |
| 3223 wpld = pixGetWpl(pixd); | |
| 3224 | |
| 3225 for (i = 0; i < h; i++) { | |
| 3226 lines1 = datas1 + i * wpls1; | |
| 3227 lines2 = datas2 + i * wpls2; | |
| 3228 lined = datad + i * wpld; | |
| 3229 for (j = 0; j < w; j++) { | |
| 3230 val1 = GET_DATA_BYTE(lines1, j); | |
| 3231 val2 = GET_DATA_BYTE(lines2, j); | |
| 3232 if (val1 == val2) | |
| 3233 SET_DATA_BIT(lined, j); | |
| 3234 } | |
| 3235 } | |
| 3236 | |
| 3237 return pixd; | |
| 3238 } | |
| 3239 | |
| 3240 | |
| 3241 /*-----------------------------------------------------------------------* | |
| 3242 * Selection of minima in mask connected components * | |
| 3243 *-----------------------------------------------------------------------*/ | |
| 3244 /*! | |
| 3245 * \brief pixSelectMinInConnComp() | |
| 3246 * | |
| 3247 * \param[in] pixs 8 bpp | |
| 3248 * \param[in] pixm 1 bpp | |
| 3249 * \param[out] ppta pta of min pixel locations | |
| 3250 * \param[out] pnav [optional] numa of minima values | |
| 3251 * \return 0 if OK, 1 on error. | |
| 3252 * | |
| 3253 * <pre> | |
| 3254 * Notes: | |
| 3255 * (1) For each 8 connected component in pixm, this finds | |
| 3256 * a pixel in pixs that has the lowest value, and saves | |
| 3257 * it in a Pta. If several pixels in pixs have the same | |
| 3258 * minimum value, it picks the first one found. | |
| 3259 * (2) For a mask pixm of true local minima, all pixels in each | |
| 3260 * connected component have the same value in pixs, so it is | |
| 3261 * fastest to select one of them using a special seedfill | |
| 3262 * operation. Not yet implemented. | |
| 3263 * </pre> | |
| 3264 */ | |
| 3265 l_ok | |
| 3266 pixSelectMinInConnComp(PIX *pixs, | |
| 3267 PIX *pixm, | |
| 3268 PTA **ppta, | |
| 3269 NUMA **pnav) | |
| 3270 { | |
| 3271 l_int32 bx, by, bw, bh, i, j, c, n; | |
| 3272 l_int32 xs, ys, minx, miny, wpls, wplt, val, minval; | |
| 3273 l_uint32 *datas, *datat, *lines, *linet; | |
| 3274 BOXA *boxa; | |
| 3275 NUMA *nav; | |
| 3276 PIX *pixt, *pixs2, *pixm2; | |
| 3277 PIXA *pixa; | |
| 3278 PTA *pta; | |
| 3279 | |
| 3280 if (!ppta) | |
| 3281 return ERROR_INT("&pta not defined", __func__, 1); | |
| 3282 *ppta = NULL; | |
| 3283 if (pnav) *pnav = NULL; | |
| 3284 if (!pixs || pixGetDepth(pixs) != 8) | |
| 3285 return ERROR_INT("pixs undefined or not 8 bpp", __func__, 1); | |
| 3286 if (!pixm || pixGetDepth(pixm) != 1) | |
| 3287 return ERROR_INT("pixm undefined or not 1 bpp", __func__, 1); | |
| 3288 | |
| 3289 /* Crop to the min size if necessary */ | |
| 3290 if (pixCropToMatch(pixs, pixm, &pixs2, &pixm2)) { | |
| 3291 pixDestroy(&pixs2); | |
| 3292 pixDestroy(&pixm2); | |
| 3293 return ERROR_INT("cropping failure", __func__, 1); | |
| 3294 } | |
| 3295 | |
| 3296 /* Find value and location of min value pixel in each component */ | |
| 3297 boxa = pixConnComp(pixm2, &pixa, 8); | |
| 3298 n = boxaGetCount(boxa); | |
| 3299 pta = ptaCreate(n); | |
| 3300 *ppta = pta; | |
| 3301 nav = numaCreate(n); | |
| 3302 datas = pixGetData(pixs2); | |
| 3303 wpls = pixGetWpl(pixs2); | |
| 3304 for (c = 0; c < n; c++) { | |
| 3305 pixt = pixaGetPix(pixa, c, L_CLONE); | |
| 3306 boxaGetBoxGeometry(boxa, c, &bx, &by, &bw, &bh); | |
| 3307 if (bw == 1 && bh == 1) { | |
| 3308 ptaAddPt(pta, bx, by); | |
| 3309 numaAddNumber(nav, GET_DATA_BYTE(datas + by * wpls, bx)); | |
| 3310 pixDestroy(&pixt); | |
| 3311 continue; | |
| 3312 } | |
| 3313 datat = pixGetData(pixt); | |
| 3314 wplt = pixGetWpl(pixt); | |
| 3315 minx = miny = 1000000; | |
| 3316 minval = 256; | |
| 3317 for (i = 0; i < bh; i++) { | |
| 3318 ys = by + i; | |
| 3319 lines = datas + ys * wpls; | |
| 3320 linet = datat + i * wplt; | |
| 3321 for (j = 0; j < bw; j++) { | |
| 3322 xs = bx + j; | |
| 3323 if (GET_DATA_BIT(linet, j)) { | |
| 3324 val = GET_DATA_BYTE(lines, xs); | |
| 3325 if (val < minval) { | |
| 3326 minval = val; | |
| 3327 minx = xs; | |
| 3328 miny = ys; | |
| 3329 } | |
| 3330 } | |
| 3331 } | |
| 3332 } | |
| 3333 ptaAddPt(pta, minx, miny); | |
| 3334 numaAddNumber(nav, GET_DATA_BYTE(datas + miny * wpls, minx)); | |
| 3335 pixDestroy(&pixt); | |
| 3336 } | |
| 3337 | |
| 3338 boxaDestroy(&boxa); | |
| 3339 pixaDestroy(&pixa); | |
| 3340 if (pnav) | |
| 3341 *pnav = nav; | |
| 3342 else | |
| 3343 numaDestroy(&nav); | |
| 3344 pixDestroy(&pixs2); | |
| 3345 pixDestroy(&pixm2); | |
| 3346 return 0; | |
| 3347 } | |
| 3348 | |
| 3349 | |
| 3350 /*-----------------------------------------------------------------------* | |
| 3351 * Removal of seeded connected components from a mask * | |
| 3352 *-----------------------------------------------------------------------*/ | |
| 3353 /*! | |
| 3354 * \brief pixRemoveSeededComponents() | |
| 3355 * | |
| 3356 * \param[in] pixd [optional]; can be null or equal to pixm; 1 bpp | |
| 3357 * \param[in] pixs 1 bpp seed | |
| 3358 * \param[in] pixm 1 bpp filling mask | |
| 3359 * \param[in] connectivity 4 or 8 | |
| 3360 * \param[in] bordersize amount of border clearing | |
| 3361 * \return pixd, or NULL on error | |
| 3362 * | |
| 3363 * <pre> | |
| 3364 * Notes: | |
| 3365 * (1) This removes each component in pixm for which there is | |
| 3366 * at least one seed in pixs. If pixd == NULL, this returns | |
| 3367 * the result in a new pixd. Otherwise, it is an in-place | |
| 3368 * operation on pixm. In no situation is pixs altered, | |
| 3369 * because we do the filling with a copy of pixs. | |
| 3370 * (2) If bordersize > 0, it also clears all pixels within a | |
| 3371 * distance %bordersize of the edge of pixd. This is here | |
| 3372 * because pixLocalExtrema() typically finds local minima | |
| 3373 * at the border. Use %bordersize >= 2 to remove these. | |
| 3374 * </pre> | |
| 3375 */ | |
| 3376 PIX * | |
| 3377 pixRemoveSeededComponents(PIX *pixd, | |
| 3378 PIX *pixs, | |
| 3379 PIX *pixm, | |
| 3380 l_int32 connectivity, | |
| 3381 l_int32 bordersize) | |
| 3382 { | |
| 3383 PIX *pixt; | |
| 3384 | |
| 3385 if (!pixs || pixGetDepth(pixs) != 1) | |
| 3386 return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", __func__, pixd); | |
| 3387 if (!pixm || pixGetDepth(pixm) != 1) | |
| 3388 return (PIX *)ERROR_PTR("pixm undefined or not 1 bpp", __func__, pixd); | |
| 3389 if (pixd && pixd != pixm) | |
| 3390 return (PIX *)ERROR_PTR("operation not inplace", __func__, pixd); | |
| 3391 | |
| 3392 pixt = pixCopy(NULL, pixs); | |
| 3393 pixSeedfillBinary(pixt, pixt, pixm, connectivity); | |
| 3394 pixd = pixXor(pixd, pixm, pixt); | |
| 3395 if (bordersize > 0) | |
| 3396 pixSetOrClearBorder(pixd, bordersize, bordersize, bordersize, | |
| 3397 bordersize, PIX_CLR); | |
| 3398 pixDestroy(&pixt); | |
| 3399 return pixd; | |
| 3400 } |
