diff mupdf-source/source/fitz/ftoa.c @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/source/fitz/ftoa.c	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,301 @@
+#include "mupdf/fitz.h"
+
+#include <assert.h>
+
+/*
+	Convert IEEE single precision numbers into decimal ASCII strings, while
+	satisfying the following two properties:
+	1) Calling strtof or '(float) strtod' on the result must produce the
+	original float, independent of the rounding mode used by strtof/strtod.
+	2) Minimize the number of produced decimal digits. E.g. the float 0.7f
+	should convert to "0.7", not "0.69999999".
+
+	To solve this we use a dedicated single precision version of
+	Florian Loitsch's Grisu2 algorithm. See
+	http://florian.loitsch.com/publications/dtoa-pldi2010.pdf?attredirects=0
+
+	The code below is derived from Loitsch's C code, which
+	implements the same algorithm for IEEE double precision. See
+	http://florian.loitsch.com/publications/bench.tar.gz?attredirects=0
+*/
+
+/*
+	Copyright (c) 2009 Florian Loitsch
+
+	Permission is hereby granted, free of charge, to any person
+	obtaining a copy of this software and associated documentation
+	files (the "Software"), to deal in the Software without
+	restriction, including without limitation the rights to use,
+	copy, modify, merge, publish, distribute, sublicense, and/or sell
+	copies of the Software, and to permit persons to whom the
+	Software is furnished to do so, subject to the following
+	conditions:
+
+	The above copyright notice and this permission notice shall be
+	included in all copies or substantial portions of the Software.
+
+	THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+	EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
+	OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+	NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
+	HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+	WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+	FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+	OTHER DEALINGS IN THE SOFTWARE.
+*/
+
+static uint32_t
+float_to_uint32(float d)
+{
+	union
+	{
+		float d;
+		uint32_t n;
+	} tmp;
+	tmp.d = d;
+	return tmp.n;
+}
+
+typedef struct
+{
+	uint64_t f;
+	int e;
+} diy_fp_t;
+
+#define DIY_SIGNIFICAND_SIZE 64
+#define DIY_LEADING_BIT ((uint64_t) 1 << (DIY_SIGNIFICAND_SIZE - 1))
+
+static diy_fp_t
+minus(diy_fp_t x, diy_fp_t y)
+{
+	diy_fp_t result = {x.f - y.f, x.e};
+	assert(x.e == y.e && x.f >= y.f);
+	return result;
+}
+
+static diy_fp_t
+multiply(diy_fp_t x, diy_fp_t y)
+{
+	uint64_t a, b, c, d, ac, bc, ad, bd, tmp;
+	int half = DIY_SIGNIFICAND_SIZE / 2;
+	diy_fp_t r; uint64_t mask = ((uint64_t) 1 << half) - 1;
+	a = x.f >> half; b = x.f & mask;
+	c = y.f >> half; d = y.f & mask;
+	ac = a * c; bc = b * c; ad = a * d; bd = b * d;
+	tmp = (bd >> half) + (ad & mask) + (bc & mask);
+	tmp += ((uint64_t)1U) << (half - 1); /* Round. */
+	r.f = ac + (ad >> half) + (bc >> half) + (tmp >> half);
+	r.e = x.e + y.e + half * 2;
+	return r;
+}
+
+#define SP_SIGNIFICAND_SIZE 23
+#define SP_EXPONENT_BIAS (127 + SP_SIGNIFICAND_SIZE)
+#define SP_MIN_EXPONENT (-SP_EXPONENT_BIAS)
+#define SP_EXPONENT_MASK 0x7f800000
+#define SP_SIGNIFICAND_MASK 0x7fffff
+#define SP_HIDDEN_BIT 0x800000 /* 2^23 */
+
+/* Does not normalize the result. */
+static diy_fp_t
+float2diy_fp(float d)
+{
+	uint32_t d32 = float_to_uint32(d);
+	int biased_e = (d32 & SP_EXPONENT_MASK) >> SP_SIGNIFICAND_SIZE;
+	uint32_t significand = d32 & SP_SIGNIFICAND_MASK;
+	diy_fp_t res;
+
+	if (biased_e != 0)
+	{
+		res.f = significand + SP_HIDDEN_BIT;
+		res.e = biased_e - SP_EXPONENT_BIAS;
+	}
+	else
+	{
+		res.f = significand;
+		res.e = SP_MIN_EXPONENT + 1;
+	}
+	return res;
+}
+
+static diy_fp_t
+normalize_boundary(diy_fp_t in)
+{
+	diy_fp_t res = in;
+	/* The original number could have been a denormal. */
+	while (! (res.f & (SP_HIDDEN_BIT << 1)))
+	{
+		res.f <<= 1;
+		res.e--;
+	}
+	/* Do the final shifts in one go. */
+	res.f <<= (DIY_SIGNIFICAND_SIZE - SP_SIGNIFICAND_SIZE - 2);
+	res.e = res.e - (DIY_SIGNIFICAND_SIZE - SP_SIGNIFICAND_SIZE - 2);
+	return res;
+}
+
+static void
+normalized_boundaries(float f, diy_fp_t* lower_ptr, diy_fp_t* upper_ptr)
+{
+	diy_fp_t v = float2diy_fp(f);
+	diy_fp_t upper, lower;
+	int significand_is_zero = v.f == SP_HIDDEN_BIT;
+
+	upper.f = (v.f << 1) + 1; upper.e = v.e - 1;
+	upper = normalize_boundary(upper);
+	if (significand_is_zero)
+	{
+		lower.f = (v.f << 2) - 1;
+		lower.e = v.e - 2;
+	}
+	else
+	{
+		lower.f = (v.f << 1) - 1;
+		lower.e = v.e - 1;
+	}
+	lower.f <<= lower.e - upper.e;
+	lower.e = upper.e;
+
+	/* Adjust to double boundaries, so that we can also read the numbers with '(float) strtod'. */
+	upper.f -= 1 << 10;
+	lower.f += 1 << 10;
+
+	*upper_ptr = upper;
+	*lower_ptr = lower;
+}
+
+static int
+k_comp(int n)
+{
+	/* Avoid ceil and floating point multiplication for better
+	 * performance and portability. Instead use the approximation
+	 * log10(2) ~ 1233/(2^12). Tests show that this gives the correct
+	 * result for all values of n in the range -500..500. */
+	int tmp = n + DIY_SIGNIFICAND_SIZE - 1;
+	int k = (tmp * 1233) / (1 << 12);
+	return tmp > 0 ? k + 1 : k;
+}
+
+/* Cached powers of ten from 10**-37..10**46. Produced using GNU MPFR's mpfr_pow_si. */
+
+/* Significands. */
+static uint64_t powers_ten[84] = {
+	0x881cea14545c7575ull, 0xaa242499697392d3ull, 0xd4ad2dbfc3d07788ull,
+	0x84ec3c97da624ab5ull, 0xa6274bbdd0fadd62ull, 0xcfb11ead453994baull,
+	0x81ceb32c4b43fcf5ull, 0xa2425ff75e14fc32ull, 0xcad2f7f5359a3b3eull,
+	0xfd87b5f28300ca0eull, 0x9e74d1b791e07e48ull, 0xc612062576589ddbull,
+	0xf79687aed3eec551ull, 0x9abe14cd44753b53ull, 0xc16d9a0095928a27ull,
+	0xf1c90080baf72cb1ull, 0x971da05074da7befull, 0xbce5086492111aebull,
+	0xec1e4a7db69561a5ull, 0x9392ee8e921d5d07ull, 0xb877aa3236a4b449ull,
+	0xe69594bec44de15bull, 0x901d7cf73ab0acd9ull, 0xb424dc35095cd80full,
+	0xe12e13424bb40e13ull, 0x8cbccc096f5088ccull, 0xafebff0bcb24aaffull,
+	0xdbe6fecebdedd5bfull, 0x89705f4136b4a597ull, 0xabcc77118461cefdull,
+	0xd6bf94d5e57a42bcull, 0x8637bd05af6c69b6ull, 0xa7c5ac471b478423ull,
+	0xd1b71758e219652cull, 0x83126e978d4fdf3bull, 0xa3d70a3d70a3d70aull,
+	0xcccccccccccccccdull, 0x8000000000000000ull, 0xa000000000000000ull,
+	0xc800000000000000ull, 0xfa00000000000000ull, 0x9c40000000000000ull,
+	0xc350000000000000ull, 0xf424000000000000ull, 0x9896800000000000ull,
+	0xbebc200000000000ull, 0xee6b280000000000ull, 0x9502f90000000000ull,
+	0xba43b74000000000ull, 0xe8d4a51000000000ull, 0x9184e72a00000000ull,
+	0xb5e620f480000000ull, 0xe35fa931a0000000ull, 0x8e1bc9bf04000000ull,
+	0xb1a2bc2ec5000000ull, 0xde0b6b3a76400000ull, 0x8ac7230489e80000ull,
+	0xad78ebc5ac620000ull, 0xd8d726b7177a8000ull, 0x878678326eac9000ull,
+	0xa968163f0a57b400ull, 0xd3c21bcecceda100ull, 0x84595161401484a0ull,
+	0xa56fa5b99019a5c8ull, 0xcecb8f27f4200f3aull, 0x813f3978f8940984ull,
+	0xa18f07d736b90be5ull, 0xc9f2c9cd04674edfull, 0xfc6f7c4045812296ull,
+	0x9dc5ada82b70b59eull, 0xc5371912364ce305ull, 0xf684df56c3e01bc7ull,
+	0x9a130b963a6c115cull, 0xc097ce7bc90715b3ull, 0xf0bdc21abb48db20ull,
+	0x96769950b50d88f4ull, 0xbc143fa4e250eb31ull, 0xeb194f8e1ae525fdull,
+	0x92efd1b8d0cf37beull, 0xb7abc627050305aeull, 0xe596b7b0c643c719ull,
+	0x8f7e32ce7bea5c70ull, 0xb35dbf821ae4f38cull, 0xe0352f62a19e306full,
+};
+
+/* Exponents. */
+static int powers_ten_e[84] = {
+	-186, -183, -180, -176, -173, -170, -166, -163, -160, -157, -153,
+	-150, -147, -143, -140, -137, -133, -130, -127, -123, -120, -117,
+	-113, -110, -107, -103, -100, -97, -93, -90, -87, -83, -80,
+	-77, -73, -70, -67, -63, -60, -57, -54, -50, -47, -44,
+	-40, -37, -34, -30, -27, -24, -20, -17, -14, -10, -7,
+	-4, 0, 3, 6, 10, 13, 16, 20, 23, 26, 30,
+	33, 36, 39, 43, 46, 49, 53, 56, 59, 63, 66,
+	69, 73, 76, 79, 83, 86, 89
+};
+
+static diy_fp_t
+cached_power(int i)
+{
+	diy_fp_t result;
+
+	assert (i >= -37 && i <= 46);
+	result.f = powers_ten[i + 37];
+	result.e = powers_ten_e[i + 37];
+	return result;
+}
+
+/* Returns buffer length. */
+static int
+digit_gen_mix_grisu2(diy_fp_t D_upper, diy_fp_t delta, char* buffer, int* K)
+{
+	int kappa;
+	diy_fp_t one = {(uint64_t) 1 << -D_upper.e, D_upper.e};
+	unsigned char p1 = D_upper.f >> -one.e;
+	uint64_t p2 = D_upper.f & (one.f - 1);
+	unsigned char div = 10;
+	uint64_t mask = one.f - 1;
+	int len = 0;
+	for (kappa = 2; kappa > 0; --kappa)
+	{
+		unsigned char digit = p1 / div;
+		if (digit || len)
+			buffer[len++] = '0' + digit;
+		p1 %= div; div /= 10;
+		if ((((uint64_t) p1) << -one.e) + p2 <= delta.f)
+		{
+			*K += kappa - 1;
+			return len;
+		}
+	}
+	do
+	{
+		p2 *= 10;
+		buffer[len++] = '0' + (p2 >> -one.e);
+		p2 &= mask;
+		kappa--;
+		delta.f *= 10;
+	}
+	while (p2 > delta.f);
+	*K += kappa;
+	return len;
+}
+
+/*
+	Compute decimal integer m, exp such that:
+		f = m * 10^exp
+		m is as short as possible without losing exactness
+	Assumes special cases (0, NaN, +Inf, -Inf) have been handled.
+*/
+int
+fz_grisu(float v, char* buffer, int* K)
+{
+	diy_fp_t w_lower, w_upper, D_upper, D_lower, c_mk, delta;
+	int length, mk, alpha = -DIY_SIGNIFICAND_SIZE + 4;
+
+	normalized_boundaries(v, &w_lower, &w_upper);
+	mk = k_comp(alpha - w_upper.e - DIY_SIGNIFICAND_SIZE);
+	c_mk = cached_power(mk);
+
+	D_upper = multiply(w_upper, c_mk);
+	D_lower = multiply(w_lower, c_mk);
+
+	D_upper.f--;
+	D_lower.f++;
+
+	delta = minus(D_upper, D_lower);
+
+	*K = -mk;
+	length = digit_gen_mix_grisu2(D_upper, delta, buffer, K);
+
+	buffer[length] = 0;
+	return length;
+}