Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/source/fitz/ftoa.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/source/fitz/ftoa.c Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,301 @@ +#include "mupdf/fitz.h" + +#include <assert.h> + +/* + Convert IEEE single precision numbers into decimal ASCII strings, while + satisfying the following two properties: + 1) Calling strtof or '(float) strtod' on the result must produce the + original float, independent of the rounding mode used by strtof/strtod. + 2) Minimize the number of produced decimal digits. E.g. the float 0.7f + should convert to "0.7", not "0.69999999". + + To solve this we use a dedicated single precision version of + Florian Loitsch's Grisu2 algorithm. See + http://florian.loitsch.com/publications/dtoa-pldi2010.pdf?attredirects=0 + + The code below is derived from Loitsch's C code, which + implements the same algorithm for IEEE double precision. See + http://florian.loitsch.com/publications/bench.tar.gz?attredirects=0 +*/ + +/* + Copyright (c) 2009 Florian Loitsch + + Permission is hereby granted, free of charge, to any person + obtaining a copy of this software and associated documentation + files (the "Software"), to deal in the Software without + restriction, including without limitation the rights to use, + copy, modify, merge, publish, distribute, sublicense, and/or sell + copies of the Software, and to permit persons to whom the + Software is furnished to do so, subject to the following + conditions: + + The above copyright notice and this permission notice shall be + included in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES + OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + OTHER DEALINGS IN THE SOFTWARE. +*/ + +static uint32_t +float_to_uint32(float d) +{ + union + { + float d; + uint32_t n; + } tmp; + tmp.d = d; + return tmp.n; +} + +typedef struct +{ + uint64_t f; + int e; +} diy_fp_t; + +#define DIY_SIGNIFICAND_SIZE 64 +#define DIY_LEADING_BIT ((uint64_t) 1 << (DIY_SIGNIFICAND_SIZE - 1)) + +static diy_fp_t +minus(diy_fp_t x, diy_fp_t y) +{ + diy_fp_t result = {x.f - y.f, x.e}; + assert(x.e == y.e && x.f >= y.f); + return result; +} + +static diy_fp_t +multiply(diy_fp_t x, diy_fp_t y) +{ + uint64_t a, b, c, d, ac, bc, ad, bd, tmp; + int half = DIY_SIGNIFICAND_SIZE / 2; + diy_fp_t r; uint64_t mask = ((uint64_t) 1 << half) - 1; + a = x.f >> half; b = x.f & mask; + c = y.f >> half; d = y.f & mask; + ac = a * c; bc = b * c; ad = a * d; bd = b * d; + tmp = (bd >> half) + (ad & mask) + (bc & mask); + tmp += ((uint64_t)1U) << (half - 1); /* Round. */ + r.f = ac + (ad >> half) + (bc >> half) + (tmp >> half); + r.e = x.e + y.e + half * 2; + return r; +} + +#define SP_SIGNIFICAND_SIZE 23 +#define SP_EXPONENT_BIAS (127 + SP_SIGNIFICAND_SIZE) +#define SP_MIN_EXPONENT (-SP_EXPONENT_BIAS) +#define SP_EXPONENT_MASK 0x7f800000 +#define SP_SIGNIFICAND_MASK 0x7fffff +#define SP_HIDDEN_BIT 0x800000 /* 2^23 */ + +/* Does not normalize the result. */ +static diy_fp_t +float2diy_fp(float d) +{ + uint32_t d32 = float_to_uint32(d); + int biased_e = (d32 & SP_EXPONENT_MASK) >> SP_SIGNIFICAND_SIZE; + uint32_t significand = d32 & SP_SIGNIFICAND_MASK; + diy_fp_t res; + + if (biased_e != 0) + { + res.f = significand + SP_HIDDEN_BIT; + res.e = biased_e - SP_EXPONENT_BIAS; + } + else + { + res.f = significand; + res.e = SP_MIN_EXPONENT + 1; + } + return res; +} + +static diy_fp_t +normalize_boundary(diy_fp_t in) +{ + diy_fp_t res = in; + /* The original number could have been a denormal. */ + while (! (res.f & (SP_HIDDEN_BIT << 1))) + { + res.f <<= 1; + res.e--; + } + /* Do the final shifts in one go. */ + res.f <<= (DIY_SIGNIFICAND_SIZE - SP_SIGNIFICAND_SIZE - 2); + res.e = res.e - (DIY_SIGNIFICAND_SIZE - SP_SIGNIFICAND_SIZE - 2); + return res; +} + +static void +normalized_boundaries(float f, diy_fp_t* lower_ptr, diy_fp_t* upper_ptr) +{ + diy_fp_t v = float2diy_fp(f); + diy_fp_t upper, lower; + int significand_is_zero = v.f == SP_HIDDEN_BIT; + + upper.f = (v.f << 1) + 1; upper.e = v.e - 1; + upper = normalize_boundary(upper); + if (significand_is_zero) + { + lower.f = (v.f << 2) - 1; + lower.e = v.e - 2; + } + else + { + lower.f = (v.f << 1) - 1; + lower.e = v.e - 1; + } + lower.f <<= lower.e - upper.e; + lower.e = upper.e; + + /* Adjust to double boundaries, so that we can also read the numbers with '(float) strtod'. */ + upper.f -= 1 << 10; + lower.f += 1 << 10; + + *upper_ptr = upper; + *lower_ptr = lower; +} + +static int +k_comp(int n) +{ + /* Avoid ceil and floating point multiplication for better + * performance and portability. Instead use the approximation + * log10(2) ~ 1233/(2^12). Tests show that this gives the correct + * result for all values of n in the range -500..500. */ + int tmp = n + DIY_SIGNIFICAND_SIZE - 1; + int k = (tmp * 1233) / (1 << 12); + return tmp > 0 ? k + 1 : k; +} + +/* Cached powers of ten from 10**-37..10**46. Produced using GNU MPFR's mpfr_pow_si. */ + +/* Significands. */ +static uint64_t powers_ten[84] = { + 0x881cea14545c7575ull, 0xaa242499697392d3ull, 0xd4ad2dbfc3d07788ull, + 0x84ec3c97da624ab5ull, 0xa6274bbdd0fadd62ull, 0xcfb11ead453994baull, + 0x81ceb32c4b43fcf5ull, 0xa2425ff75e14fc32ull, 0xcad2f7f5359a3b3eull, + 0xfd87b5f28300ca0eull, 0x9e74d1b791e07e48ull, 0xc612062576589ddbull, + 0xf79687aed3eec551ull, 0x9abe14cd44753b53ull, 0xc16d9a0095928a27ull, + 0xf1c90080baf72cb1ull, 0x971da05074da7befull, 0xbce5086492111aebull, + 0xec1e4a7db69561a5ull, 0x9392ee8e921d5d07ull, 0xb877aa3236a4b449ull, + 0xe69594bec44de15bull, 0x901d7cf73ab0acd9ull, 0xb424dc35095cd80full, + 0xe12e13424bb40e13ull, 0x8cbccc096f5088ccull, 0xafebff0bcb24aaffull, + 0xdbe6fecebdedd5bfull, 0x89705f4136b4a597ull, 0xabcc77118461cefdull, + 0xd6bf94d5e57a42bcull, 0x8637bd05af6c69b6ull, 0xa7c5ac471b478423ull, + 0xd1b71758e219652cull, 0x83126e978d4fdf3bull, 0xa3d70a3d70a3d70aull, + 0xcccccccccccccccdull, 0x8000000000000000ull, 0xa000000000000000ull, + 0xc800000000000000ull, 0xfa00000000000000ull, 0x9c40000000000000ull, + 0xc350000000000000ull, 0xf424000000000000ull, 0x9896800000000000ull, + 0xbebc200000000000ull, 0xee6b280000000000ull, 0x9502f90000000000ull, + 0xba43b74000000000ull, 0xe8d4a51000000000ull, 0x9184e72a00000000ull, + 0xb5e620f480000000ull, 0xe35fa931a0000000ull, 0x8e1bc9bf04000000ull, + 0xb1a2bc2ec5000000ull, 0xde0b6b3a76400000ull, 0x8ac7230489e80000ull, + 0xad78ebc5ac620000ull, 0xd8d726b7177a8000ull, 0x878678326eac9000ull, + 0xa968163f0a57b400ull, 0xd3c21bcecceda100ull, 0x84595161401484a0ull, + 0xa56fa5b99019a5c8ull, 0xcecb8f27f4200f3aull, 0x813f3978f8940984ull, + 0xa18f07d736b90be5ull, 0xc9f2c9cd04674edfull, 0xfc6f7c4045812296ull, + 0x9dc5ada82b70b59eull, 0xc5371912364ce305ull, 0xf684df56c3e01bc7ull, + 0x9a130b963a6c115cull, 0xc097ce7bc90715b3ull, 0xf0bdc21abb48db20ull, + 0x96769950b50d88f4ull, 0xbc143fa4e250eb31ull, 0xeb194f8e1ae525fdull, + 0x92efd1b8d0cf37beull, 0xb7abc627050305aeull, 0xe596b7b0c643c719ull, + 0x8f7e32ce7bea5c70ull, 0xb35dbf821ae4f38cull, 0xe0352f62a19e306full, +}; + +/* Exponents. */ +static int powers_ten_e[84] = { + -186, -183, -180, -176, -173, -170, -166, -163, -160, -157, -153, + -150, -147, -143, -140, -137, -133, -130, -127, -123, -120, -117, + -113, -110, -107, -103, -100, -97, -93, -90, -87, -83, -80, + -77, -73, -70, -67, -63, -60, -57, -54, -50, -47, -44, + -40, -37, -34, -30, -27, -24, -20, -17, -14, -10, -7, + -4, 0, 3, 6, 10, 13, 16, 20, 23, 26, 30, + 33, 36, 39, 43, 46, 49, 53, 56, 59, 63, 66, + 69, 73, 76, 79, 83, 86, 89 +}; + +static diy_fp_t +cached_power(int i) +{ + diy_fp_t result; + + assert (i >= -37 && i <= 46); + result.f = powers_ten[i + 37]; + result.e = powers_ten_e[i + 37]; + return result; +} + +/* Returns buffer length. */ +static int +digit_gen_mix_grisu2(diy_fp_t D_upper, diy_fp_t delta, char* buffer, int* K) +{ + int kappa; + diy_fp_t one = {(uint64_t) 1 << -D_upper.e, D_upper.e}; + unsigned char p1 = D_upper.f >> -one.e; + uint64_t p2 = D_upper.f & (one.f - 1); + unsigned char div = 10; + uint64_t mask = one.f - 1; + int len = 0; + for (kappa = 2; kappa > 0; --kappa) + { + unsigned char digit = p1 / div; + if (digit || len) + buffer[len++] = '0' + digit; + p1 %= div; div /= 10; + if ((((uint64_t) p1) << -one.e) + p2 <= delta.f) + { + *K += kappa - 1; + return len; + } + } + do + { + p2 *= 10; + buffer[len++] = '0' + (p2 >> -one.e); + p2 &= mask; + kappa--; + delta.f *= 10; + } + while (p2 > delta.f); + *K += kappa; + return len; +} + +/* + Compute decimal integer m, exp such that: + f = m * 10^exp + m is as short as possible without losing exactness + Assumes special cases (0, NaN, +Inf, -Inf) have been handled. +*/ +int +fz_grisu(float v, char* buffer, int* K) +{ + diy_fp_t w_lower, w_upper, D_upper, D_lower, c_mk, delta; + int length, mk, alpha = -DIY_SIGNIFICAND_SIZE + 4; + + normalized_boundaries(v, &w_lower, &w_upper); + mk = k_comp(alpha - w_upper.e - DIY_SIGNIFICAND_SIZE); + c_mk = cached_power(mk); + + D_upper = multiply(w_upper, c_mk); + D_lower = multiply(w_lower, c_mk); + + D_upper.f--; + D_lower.f++; + + delta = minus(D_upper, D_lower); + + *K = -mk; + length = digit_gen_mix_grisu2(D_upper, delta, buffer, K); + + buffer[length] = 0; + return length; +}
