Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/source/fitz/ftoa.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 #include "mupdf/fitz.h" | |
| 2 | |
| 3 #include <assert.h> | |
| 4 | |
| 5 /* | |
| 6 Convert IEEE single precision numbers into decimal ASCII strings, while | |
| 7 satisfying the following two properties: | |
| 8 1) Calling strtof or '(float) strtod' on the result must produce the | |
| 9 original float, independent of the rounding mode used by strtof/strtod. | |
| 10 2) Minimize the number of produced decimal digits. E.g. the float 0.7f | |
| 11 should convert to "0.7", not "0.69999999". | |
| 12 | |
| 13 To solve this we use a dedicated single precision version of | |
| 14 Florian Loitsch's Grisu2 algorithm. See | |
| 15 http://florian.loitsch.com/publications/dtoa-pldi2010.pdf?attredirects=0 | |
| 16 | |
| 17 The code below is derived from Loitsch's C code, which | |
| 18 implements the same algorithm for IEEE double precision. See | |
| 19 http://florian.loitsch.com/publications/bench.tar.gz?attredirects=0 | |
| 20 */ | |
| 21 | |
| 22 /* | |
| 23 Copyright (c) 2009 Florian Loitsch | |
| 24 | |
| 25 Permission is hereby granted, free of charge, to any person | |
| 26 obtaining a copy of this software and associated documentation | |
| 27 files (the "Software"), to deal in the Software without | |
| 28 restriction, including without limitation the rights to use, | |
| 29 copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| 30 copies of the Software, and to permit persons to whom the | |
| 31 Software is furnished to do so, subject to the following | |
| 32 conditions: | |
| 33 | |
| 34 The above copyright notice and this permission notice shall be | |
| 35 included in all copies or substantial portions of the Software. | |
| 36 | |
| 37 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
| 38 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES | |
| 39 OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
| 40 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT | |
| 41 HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, | |
| 42 WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
| 43 FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | |
| 44 OTHER DEALINGS IN THE SOFTWARE. | |
| 45 */ | |
| 46 | |
| 47 static uint32_t | |
| 48 float_to_uint32(float d) | |
| 49 { | |
| 50 union | |
| 51 { | |
| 52 float d; | |
| 53 uint32_t n; | |
| 54 } tmp; | |
| 55 tmp.d = d; | |
| 56 return tmp.n; | |
| 57 } | |
| 58 | |
| 59 typedef struct | |
| 60 { | |
| 61 uint64_t f; | |
| 62 int e; | |
| 63 } diy_fp_t; | |
| 64 | |
| 65 #define DIY_SIGNIFICAND_SIZE 64 | |
| 66 #define DIY_LEADING_BIT ((uint64_t) 1 << (DIY_SIGNIFICAND_SIZE - 1)) | |
| 67 | |
| 68 static diy_fp_t | |
| 69 minus(diy_fp_t x, diy_fp_t y) | |
| 70 { | |
| 71 diy_fp_t result = {x.f - y.f, x.e}; | |
| 72 assert(x.e == y.e && x.f >= y.f); | |
| 73 return result; | |
| 74 } | |
| 75 | |
| 76 static diy_fp_t | |
| 77 multiply(diy_fp_t x, diy_fp_t y) | |
| 78 { | |
| 79 uint64_t a, b, c, d, ac, bc, ad, bd, tmp; | |
| 80 int half = DIY_SIGNIFICAND_SIZE / 2; | |
| 81 diy_fp_t r; uint64_t mask = ((uint64_t) 1 << half) - 1; | |
| 82 a = x.f >> half; b = x.f & mask; | |
| 83 c = y.f >> half; d = y.f & mask; | |
| 84 ac = a * c; bc = b * c; ad = a * d; bd = b * d; | |
| 85 tmp = (bd >> half) + (ad & mask) + (bc & mask); | |
| 86 tmp += ((uint64_t)1U) << (half - 1); /* Round. */ | |
| 87 r.f = ac + (ad >> half) + (bc >> half) + (tmp >> half); | |
| 88 r.e = x.e + y.e + half * 2; | |
| 89 return r; | |
| 90 } | |
| 91 | |
| 92 #define SP_SIGNIFICAND_SIZE 23 | |
| 93 #define SP_EXPONENT_BIAS (127 + SP_SIGNIFICAND_SIZE) | |
| 94 #define SP_MIN_EXPONENT (-SP_EXPONENT_BIAS) | |
| 95 #define SP_EXPONENT_MASK 0x7f800000 | |
| 96 #define SP_SIGNIFICAND_MASK 0x7fffff | |
| 97 #define SP_HIDDEN_BIT 0x800000 /* 2^23 */ | |
| 98 | |
| 99 /* Does not normalize the result. */ | |
| 100 static diy_fp_t | |
| 101 float2diy_fp(float d) | |
| 102 { | |
| 103 uint32_t d32 = float_to_uint32(d); | |
| 104 int biased_e = (d32 & SP_EXPONENT_MASK) >> SP_SIGNIFICAND_SIZE; | |
| 105 uint32_t significand = d32 & SP_SIGNIFICAND_MASK; | |
| 106 diy_fp_t res; | |
| 107 | |
| 108 if (biased_e != 0) | |
| 109 { | |
| 110 res.f = significand + SP_HIDDEN_BIT; | |
| 111 res.e = biased_e - SP_EXPONENT_BIAS; | |
| 112 } | |
| 113 else | |
| 114 { | |
| 115 res.f = significand; | |
| 116 res.e = SP_MIN_EXPONENT + 1; | |
| 117 } | |
| 118 return res; | |
| 119 } | |
| 120 | |
| 121 static diy_fp_t | |
| 122 normalize_boundary(diy_fp_t in) | |
| 123 { | |
| 124 diy_fp_t res = in; | |
| 125 /* The original number could have been a denormal. */ | |
| 126 while (! (res.f & (SP_HIDDEN_BIT << 1))) | |
| 127 { | |
| 128 res.f <<= 1; | |
| 129 res.e--; | |
| 130 } | |
| 131 /* Do the final shifts in one go. */ | |
| 132 res.f <<= (DIY_SIGNIFICAND_SIZE - SP_SIGNIFICAND_SIZE - 2); | |
| 133 res.e = res.e - (DIY_SIGNIFICAND_SIZE - SP_SIGNIFICAND_SIZE - 2); | |
| 134 return res; | |
| 135 } | |
| 136 | |
| 137 static void | |
| 138 normalized_boundaries(float f, diy_fp_t* lower_ptr, diy_fp_t* upper_ptr) | |
| 139 { | |
| 140 diy_fp_t v = float2diy_fp(f); | |
| 141 diy_fp_t upper, lower; | |
| 142 int significand_is_zero = v.f == SP_HIDDEN_BIT; | |
| 143 | |
| 144 upper.f = (v.f << 1) + 1; upper.e = v.e - 1; | |
| 145 upper = normalize_boundary(upper); | |
| 146 if (significand_is_zero) | |
| 147 { | |
| 148 lower.f = (v.f << 2) - 1; | |
| 149 lower.e = v.e - 2; | |
| 150 } | |
| 151 else | |
| 152 { | |
| 153 lower.f = (v.f << 1) - 1; | |
| 154 lower.e = v.e - 1; | |
| 155 } | |
| 156 lower.f <<= lower.e - upper.e; | |
| 157 lower.e = upper.e; | |
| 158 | |
| 159 /* Adjust to double boundaries, so that we can also read the numbers with '(float) strtod'. */ | |
| 160 upper.f -= 1 << 10; | |
| 161 lower.f += 1 << 10; | |
| 162 | |
| 163 *upper_ptr = upper; | |
| 164 *lower_ptr = lower; | |
| 165 } | |
| 166 | |
| 167 static int | |
| 168 k_comp(int n) | |
| 169 { | |
| 170 /* Avoid ceil and floating point multiplication for better | |
| 171 * performance and portability. Instead use the approximation | |
| 172 * log10(2) ~ 1233/(2^12). Tests show that this gives the correct | |
| 173 * result for all values of n in the range -500..500. */ | |
| 174 int tmp = n + DIY_SIGNIFICAND_SIZE - 1; | |
| 175 int k = (tmp * 1233) / (1 << 12); | |
| 176 return tmp > 0 ? k + 1 : k; | |
| 177 } | |
| 178 | |
| 179 /* Cached powers of ten from 10**-37..10**46. Produced using GNU MPFR's mpfr_pow_si. */ | |
| 180 | |
| 181 /* Significands. */ | |
| 182 static uint64_t powers_ten[84] = { | |
| 183 0x881cea14545c7575ull, 0xaa242499697392d3ull, 0xd4ad2dbfc3d07788ull, | |
| 184 0x84ec3c97da624ab5ull, 0xa6274bbdd0fadd62ull, 0xcfb11ead453994baull, | |
| 185 0x81ceb32c4b43fcf5ull, 0xa2425ff75e14fc32ull, 0xcad2f7f5359a3b3eull, | |
| 186 0xfd87b5f28300ca0eull, 0x9e74d1b791e07e48ull, 0xc612062576589ddbull, | |
| 187 0xf79687aed3eec551ull, 0x9abe14cd44753b53ull, 0xc16d9a0095928a27ull, | |
| 188 0xf1c90080baf72cb1ull, 0x971da05074da7befull, 0xbce5086492111aebull, | |
| 189 0xec1e4a7db69561a5ull, 0x9392ee8e921d5d07ull, 0xb877aa3236a4b449ull, | |
| 190 0xe69594bec44de15bull, 0x901d7cf73ab0acd9ull, 0xb424dc35095cd80full, | |
| 191 0xe12e13424bb40e13ull, 0x8cbccc096f5088ccull, 0xafebff0bcb24aaffull, | |
| 192 0xdbe6fecebdedd5bfull, 0x89705f4136b4a597ull, 0xabcc77118461cefdull, | |
| 193 0xd6bf94d5e57a42bcull, 0x8637bd05af6c69b6ull, 0xa7c5ac471b478423ull, | |
| 194 0xd1b71758e219652cull, 0x83126e978d4fdf3bull, 0xa3d70a3d70a3d70aull, | |
| 195 0xcccccccccccccccdull, 0x8000000000000000ull, 0xa000000000000000ull, | |
| 196 0xc800000000000000ull, 0xfa00000000000000ull, 0x9c40000000000000ull, | |
| 197 0xc350000000000000ull, 0xf424000000000000ull, 0x9896800000000000ull, | |
| 198 0xbebc200000000000ull, 0xee6b280000000000ull, 0x9502f90000000000ull, | |
| 199 0xba43b74000000000ull, 0xe8d4a51000000000ull, 0x9184e72a00000000ull, | |
| 200 0xb5e620f480000000ull, 0xe35fa931a0000000ull, 0x8e1bc9bf04000000ull, | |
| 201 0xb1a2bc2ec5000000ull, 0xde0b6b3a76400000ull, 0x8ac7230489e80000ull, | |
| 202 0xad78ebc5ac620000ull, 0xd8d726b7177a8000ull, 0x878678326eac9000ull, | |
| 203 0xa968163f0a57b400ull, 0xd3c21bcecceda100ull, 0x84595161401484a0ull, | |
| 204 0xa56fa5b99019a5c8ull, 0xcecb8f27f4200f3aull, 0x813f3978f8940984ull, | |
| 205 0xa18f07d736b90be5ull, 0xc9f2c9cd04674edfull, 0xfc6f7c4045812296ull, | |
| 206 0x9dc5ada82b70b59eull, 0xc5371912364ce305ull, 0xf684df56c3e01bc7ull, | |
| 207 0x9a130b963a6c115cull, 0xc097ce7bc90715b3ull, 0xf0bdc21abb48db20ull, | |
| 208 0x96769950b50d88f4ull, 0xbc143fa4e250eb31ull, 0xeb194f8e1ae525fdull, | |
| 209 0x92efd1b8d0cf37beull, 0xb7abc627050305aeull, 0xe596b7b0c643c719ull, | |
| 210 0x8f7e32ce7bea5c70ull, 0xb35dbf821ae4f38cull, 0xe0352f62a19e306full, | |
| 211 }; | |
| 212 | |
| 213 /* Exponents. */ | |
| 214 static int powers_ten_e[84] = { | |
| 215 -186, -183, -180, -176, -173, -170, -166, -163, -160, -157, -153, | |
| 216 -150, -147, -143, -140, -137, -133, -130, -127, -123, -120, -117, | |
| 217 -113, -110, -107, -103, -100, -97, -93, -90, -87, -83, -80, | |
| 218 -77, -73, -70, -67, -63, -60, -57, -54, -50, -47, -44, | |
| 219 -40, -37, -34, -30, -27, -24, -20, -17, -14, -10, -7, | |
| 220 -4, 0, 3, 6, 10, 13, 16, 20, 23, 26, 30, | |
| 221 33, 36, 39, 43, 46, 49, 53, 56, 59, 63, 66, | |
| 222 69, 73, 76, 79, 83, 86, 89 | |
| 223 }; | |
| 224 | |
| 225 static diy_fp_t | |
| 226 cached_power(int i) | |
| 227 { | |
| 228 diy_fp_t result; | |
| 229 | |
| 230 assert (i >= -37 && i <= 46); | |
| 231 result.f = powers_ten[i + 37]; | |
| 232 result.e = powers_ten_e[i + 37]; | |
| 233 return result; | |
| 234 } | |
| 235 | |
| 236 /* Returns buffer length. */ | |
| 237 static int | |
| 238 digit_gen_mix_grisu2(diy_fp_t D_upper, diy_fp_t delta, char* buffer, int* K) | |
| 239 { | |
| 240 int kappa; | |
| 241 diy_fp_t one = {(uint64_t) 1 << -D_upper.e, D_upper.e}; | |
| 242 unsigned char p1 = D_upper.f >> -one.e; | |
| 243 uint64_t p2 = D_upper.f & (one.f - 1); | |
| 244 unsigned char div = 10; | |
| 245 uint64_t mask = one.f - 1; | |
| 246 int len = 0; | |
| 247 for (kappa = 2; kappa > 0; --kappa) | |
| 248 { | |
| 249 unsigned char digit = p1 / div; | |
| 250 if (digit || len) | |
| 251 buffer[len++] = '0' + digit; | |
| 252 p1 %= div; div /= 10; | |
| 253 if ((((uint64_t) p1) << -one.e) + p2 <= delta.f) | |
| 254 { | |
| 255 *K += kappa - 1; | |
| 256 return len; | |
| 257 } | |
| 258 } | |
| 259 do | |
| 260 { | |
| 261 p2 *= 10; | |
| 262 buffer[len++] = '0' + (p2 >> -one.e); | |
| 263 p2 &= mask; | |
| 264 kappa--; | |
| 265 delta.f *= 10; | |
| 266 } | |
| 267 while (p2 > delta.f); | |
| 268 *K += kappa; | |
| 269 return len; | |
| 270 } | |
| 271 | |
| 272 /* | |
| 273 Compute decimal integer m, exp such that: | |
| 274 f = m * 10^exp | |
| 275 m is as short as possible without losing exactness | |
| 276 Assumes special cases (0, NaN, +Inf, -Inf) have been handled. | |
| 277 */ | |
| 278 int | |
| 279 fz_grisu(float v, char* buffer, int* K) | |
| 280 { | |
| 281 diy_fp_t w_lower, w_upper, D_upper, D_lower, c_mk, delta; | |
| 282 int length, mk, alpha = -DIY_SIGNIFICAND_SIZE + 4; | |
| 283 | |
| 284 normalized_boundaries(v, &w_lower, &w_upper); | |
| 285 mk = k_comp(alpha - w_upper.e - DIY_SIGNIFICAND_SIZE); | |
| 286 c_mk = cached_power(mk); | |
| 287 | |
| 288 D_upper = multiply(w_upper, c_mk); | |
| 289 D_lower = multiply(w_lower, c_mk); | |
| 290 | |
| 291 D_upper.f--; | |
| 292 D_lower.f++; | |
| 293 | |
| 294 delta = minus(D_upper, D_lower); | |
| 295 | |
| 296 *K = -mk; | |
| 297 length = digit_gen_mix_grisu2(D_upper, delta, buffer, K); | |
| 298 | |
| 299 buffer[length] = 0; | |
| 300 return length; | |
| 301 } |
