Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/tesseract/src/lstm/series.cpp @ 3:2c135c81b16c
MERGE: upstream PyMuPDF 1.26.4 with MuPDF 1.26.7
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:44:09 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/tesseract/src/lstm/series.cpp Mon Sep 15 11:44:09 2025 +0200 @@ -0,0 +1,204 @@ +/////////////////////////////////////////////////////////////////////// +// File: series.cpp +// Description: Runs networks in series on the same input. +// Author: Ray Smith +// +// (C) Copyright 2013, Google Inc. +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +/////////////////////////////////////////////////////////////////////// + +#include "series.h" + +#include "fullyconnected.h" +#include "networkscratch.h" +#include "scrollview.h" +#include "tesserrstream.h" // for tesserr +#include "tprintf.h" + +namespace tesseract { + +// ni_ and no_ will be set by AddToStack. +Series::Series(const std::string &name) : Plumbing(name) { + type_ = NT_SERIES; +} + +// Returns the shape output from the network given an input shape (which may +// be partially unknown ie zero). +StaticShape Series::OutputShape(const StaticShape &input_shape) const { + StaticShape result(input_shape); + int stack_size = stack_.size(); + for (int i = 0; i < stack_size; ++i) { + result = stack_[i]->OutputShape(result); + } + return result; +} + +// Sets up the network for training. Initializes weights using weights of +// scale `range` picked according to the random number generator `randomizer`. +// Note that series has its own implementation just for debug purposes. +int Series::InitWeights(float range, TRand *randomizer) { + num_weights_ = 0; + tprintf("Num outputs,weights in Series:\n"); + for (auto &i : stack_) { + int weights = i->InitWeights(range, randomizer); + tprintf(" %s:%d, %d\n", i->spec().c_str(), i->NumOutputs(), weights); + num_weights_ += weights; + } + tprintf("Total weights = %d\n", num_weights_); + return num_weights_; +} + +// Recursively searches the network for softmaxes with old_no outputs, +// and remaps their outputs according to code_map. See network.h for details. +int Series::RemapOutputs(int old_no, const std::vector<int> &code_map) { + num_weights_ = 0; + tprintf("Num (Extended) outputs,weights in Series:\n"); + for (auto &i : stack_) { + int weights = i->RemapOutputs(old_no, code_map); + tprintf(" %s:%d, %d\n", i->spec().c_str(), i->NumOutputs(), weights); + num_weights_ += weights; + } + tprintf("Total weights = %d\n", num_weights_); + no_ = stack_.back()->NumOutputs(); + return num_weights_; +} + +// Sets needs_to_backprop_ to needs_backprop and returns true if +// needs_backprop || any weights in this network so the next layer forward +// can be told to produce backprop for this layer if needed. +bool Series::SetupNeedsBackprop(bool needs_backprop) { + needs_to_backprop_ = needs_backprop; + for (auto &i : stack_) { + needs_backprop = i->SetupNeedsBackprop(needs_backprop); + } + return needs_backprop; +} + +// Returns an integer reduction factor that the network applies to the +// time sequence. Assumes that any 2-d is already eliminated. Used for +// scaling bounding boxes of truth data. +// WARNING: if GlobalMinimax is used to vary the scale, this will return +// the last used scale factor. Call it before any forward, and it will return +// the minimum scale factor of the paths through the GlobalMinimax. +int Series::XScaleFactor() const { + int factor = 1; + for (auto i : stack_) { + factor *= i->XScaleFactor(); + } + return factor; +} + +// Provides the (minimum) x scale factor to the network (of interest only to +// input units) so they can determine how to scale bounding boxes. +void Series::CacheXScaleFactor(int factor) { + stack_[0]->CacheXScaleFactor(factor); +} + +// Runs forward propagation of activations on the input line. +// See NetworkCpp for a detailed discussion of the arguments. +void Series::Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose, + NetworkScratch *scratch, NetworkIO *output) { + int stack_size = stack_.size(); + ASSERT_HOST(stack_size > 1); + // Revolving intermediate buffers. + NetworkScratch::IO buffer1(input, scratch); + NetworkScratch::IO buffer2(input, scratch); + // Run each network in turn, giving the output of n as the input to n + 1, + // with the final network providing the real output. + stack_[0]->Forward(debug, input, input_transpose, scratch, buffer1); + for (int i = 1; i < stack_size; i += 2) { + stack_[i]->Forward(debug, *buffer1, nullptr, scratch, i + 1 < stack_size ? buffer2 : output); + if (i + 1 == stack_size) { + return; + } + stack_[i + 1]->Forward(debug, *buffer2, nullptr, scratch, + i + 2 < stack_size ? buffer1 : output); + } +} + +// Runs backward propagation of errors on the deltas line. +// See NetworkCpp for a detailed discussion of the arguments. +bool Series::Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch, + NetworkIO *back_deltas) { + if (!IsTraining()) { + return false; + } + int stack_size = stack_.size(); + ASSERT_HOST(stack_size > 1); + // Revolving intermediate buffers. + NetworkScratch::IO buffer1(fwd_deltas, scratch); + NetworkScratch::IO buffer2(fwd_deltas, scratch); + // Run each network in reverse order, giving the back_deltas output of n as + // the fwd_deltas input to n-1, with the 0 network providing the real output. + if (!stack_.back()->IsTraining() || + !stack_.back()->Backward(debug, fwd_deltas, scratch, buffer1)) { + return false; + } + for (int i = stack_size - 2; i >= 0; i -= 2) { + if (!stack_[i]->IsTraining() || + !stack_[i]->Backward(debug, *buffer1, scratch, i > 0 ? buffer2 : back_deltas)) { + return false; + } + if (i == 0) { + return needs_to_backprop_; + } + if (!stack_[i - 1]->IsTraining() || + !stack_[i - 1]->Backward(debug, *buffer2, scratch, i > 1 ? buffer1 : back_deltas)) { + return false; + } + } + return needs_to_backprop_; +} + +// Splits the series after the given index, returning the two parts and +// deletes itself. The first part, up to network with index last_start, goes +// into start, and the rest goes into end. +void Series::SplitAt(unsigned last_start, Series **start, Series **end) { + *start = nullptr; + *end = nullptr; + if (last_start >= stack_.size()) { + tesserr << "Invalid split index " << last_start + << " must be in range [0," << stack_.size() - 1 << "]!\n"; + return; + } + auto *master_series = new Series("MasterSeries"); + auto *boosted_series = new Series("BoostedSeries"); + for (unsigned s = 0; s <= last_start; ++s) { + if (s + 1 == stack_.size() && stack_[s]->type() == NT_SOFTMAX) { + // Change the softmax to a tanh. + auto *fc = static_cast<FullyConnected *>(stack_[s]); + fc->ChangeType(NT_TANH); + } + master_series->AddToStack(stack_[s]); + stack_[s] = nullptr; + } + for (unsigned s = last_start + 1; s < stack_.size(); ++s) { + boosted_series->AddToStack(stack_[s]); + stack_[s] = nullptr; + } + *start = master_series; + *end = boosted_series; + delete this; +} + +// Appends the elements of the src series to this, removing from src and +// deleting it. +void Series::AppendSeries(Network *src) { + ASSERT_HOST(src->type() == NT_SERIES); + auto *src_series = static_cast<Series *>(src); + for (auto &s : src_series->stack_) { + AddToStack(s); + s = nullptr; + } + delete src; +} + +} // namespace tesseract.
