Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/tesseract/src/lstm/plumbing.cpp @ 3:2c135c81b16c
MERGE: upstream PyMuPDF 1.26.4 with MuPDF 1.26.7
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:44:09 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/tesseract/src/lstm/plumbing.cpp Mon Sep 15 11:44:09 2025 +0200 @@ -0,0 +1,267 @@ +/////////////////////////////////////////////////////////////////////// +// File: plumbing.cpp +// Description: Base class for networks that organize other networks +// eg series or parallel. +// Author: Ray Smith +// +// (C) Copyright 2014, Google Inc. +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +/////////////////////////////////////////////////////////////////////// + +#include "plumbing.h" + +namespace tesseract { + +// ni_ and no_ will be set by AddToStack. +Plumbing::Plumbing(const std::string &name) : Network(NT_PARALLEL, name, 0, 0) {} + +// Suspends/Enables training by setting the training_ flag. Serialize and +// DeSerialize only operate on the run-time data if state is false. +void Plumbing::SetEnableTraining(TrainingState state) { + Network::SetEnableTraining(state); + for (auto &i : stack_) { + i->SetEnableTraining(state); + } +} + +// Sets flags that control the action of the network. See NetworkFlags enum +// for bit values. +void Plumbing::SetNetworkFlags(uint32_t flags) { + Network::SetNetworkFlags(flags); + for (auto &i : stack_) { + i->SetNetworkFlags(flags); + } +} + +// Sets up the network for training. Initializes weights using weights of +// scale `range` picked according to the random number generator `randomizer`. +// Note that randomizer is a borrowed pointer that should outlive the network +// and should not be deleted by any of the networks. +// Returns the number of weights initialized. +int Plumbing::InitWeights(float range, TRand *randomizer) { + num_weights_ = 0; + for (auto &i : stack_) { + num_weights_ += i->InitWeights(range, randomizer); + } + return num_weights_; +} + +// Recursively searches the network for softmaxes with old_no outputs, +// and remaps their outputs according to code_map. See network.h for details. +int Plumbing::RemapOutputs(int old_no, const std::vector<int> &code_map) { + num_weights_ = 0; + for (auto &i : stack_) { + num_weights_ += i->RemapOutputs(old_no, code_map); + } + return num_weights_; +} + +// Converts a float network to an int network. +void Plumbing::ConvertToInt() { + for (auto &i : stack_) { + i->ConvertToInt(); + } +} + +// Provides a pointer to a TRand for any networks that care to use it. +// Note that randomizer is a borrowed pointer that should outlive the network +// and should not be deleted by any of the networks. +void Plumbing::SetRandomizer(TRand *randomizer) { + for (auto &i : stack_) { + i->SetRandomizer(randomizer); + } +} + +// Adds the given network to the stack. +void Plumbing::AddToStack(Network *network) { + if (stack_.empty()) { + ni_ = network->NumInputs(); + no_ = network->NumOutputs(); + } else if (type_ == NT_SERIES) { + // ni is input of first, no output of last, others match output to input. + ASSERT_HOST(no_ == network->NumInputs()); + no_ = network->NumOutputs(); + } else { + // All parallel types. Output is sum of outputs, inputs all match. + ASSERT_HOST(ni_ == network->NumInputs()); + no_ += network->NumOutputs(); + } + stack_.push_back(network); +} + +// Sets needs_to_backprop_ to needs_backprop and calls on sub-network +// according to needs_backprop || any weights in this network. +bool Plumbing::SetupNeedsBackprop(bool needs_backprop) { + if (IsTraining()) { + needs_to_backprop_ = needs_backprop; + bool retval = needs_backprop; + for (auto &i : stack_) { + if (i->SetupNeedsBackprop(needs_backprop)) { + retval = true; + } + } + return retval; + } + // Frozen networks don't do backprop. + needs_to_backprop_ = false; + return false; +} + +// Returns an integer reduction factor that the network applies to the +// time sequence. Assumes that any 2-d is already eliminated. Used for +// scaling bounding boxes of truth data. +// WARNING: if GlobalMinimax is used to vary the scale, this will return +// the last used scale factor. Call it before any forward, and it will return +// the minimum scale factor of the paths through the GlobalMinimax. +int Plumbing::XScaleFactor() const { + return stack_[0]->XScaleFactor(); +} + +// Provides the (minimum) x scale factor to the network (of interest only to +// input units) so they can determine how to scale bounding boxes. +void Plumbing::CacheXScaleFactor(int factor) { + for (auto &i : stack_) { + i->CacheXScaleFactor(factor); + } +} + +// Provides debug output on the weights. +void Plumbing::DebugWeights() { + for (auto &i : stack_) { + i->DebugWeights(); + } +} + +// Returns a set of strings representing the layer-ids of all layers below. +void Plumbing::EnumerateLayers(const std::string *prefix, std::vector<std::string> &layers) const { + for (size_t i = 0; i < stack_.size(); ++i) { + std::string layer_name; + if (prefix) { + layer_name = *prefix; + } + layer_name += ":" + std::to_string(i); + if (stack_[i]->IsPlumbingType()) { + auto *plumbing = static_cast<Plumbing *>(stack_[i]); + plumbing->EnumerateLayers(&layer_name, layers); + } else { + layers.push_back(layer_name); + } + } +} + +// Returns a pointer to the network layer corresponding to the given id. +Network *Plumbing::GetLayer(const char *id) const { + char *next_id; + int index = strtol(id, &next_id, 10); + if (index < 0 || static_cast<unsigned>(index) >= stack_.size()) { + return nullptr; + } + if (stack_[index]->IsPlumbingType()) { + auto *plumbing = static_cast<Plumbing *>(stack_[index]); + ASSERT_HOST(*next_id == ':'); + return plumbing->GetLayer(next_id + 1); + } + return stack_[index]; +} + +// Returns a pointer to the learning rate for the given layer id. +float *Plumbing::LayerLearningRatePtr(const char *id) { + char *next_id; + int index = strtol(id, &next_id, 10); + if (index < 0 || static_cast<unsigned>(index) >= stack_.size()) { + return nullptr; + } + if (stack_[index]->IsPlumbingType()) { + auto *plumbing = static_cast<Plumbing *>(stack_[index]); + ASSERT_HOST(*next_id == ':'); + return plumbing->LayerLearningRatePtr(next_id + 1); + } + if (static_cast<unsigned>(index) >= learning_rates_.size()) { + return nullptr; + } + return &learning_rates_[index]; +} + +// Writes to the given file. Returns false in case of error. +bool Plumbing::Serialize(TFile *fp) const { + if (!Network::Serialize(fp)) { + return false; + } + uint32_t size = stack_.size(); + // Can't use PointerVector::Serialize here as we need a special DeSerialize. + if (!fp->Serialize(&size)) { + return false; + } + for (uint32_t i = 0; i < size; ++i) { + if (!stack_[i]->Serialize(fp)) { + return false; + } + } + if ((network_flags_ & NF_LAYER_SPECIFIC_LR) && !fp->Serialize(learning_rates_)) { + return false; + } + return true; +} + +// Reads from the given file. Returns false in case of error. +bool Plumbing::DeSerialize(TFile *fp) { + for (auto data : stack_) { + delete data; + } + stack_.clear(); + no_ = 0; // We will be modifying this as we AddToStack. + uint32_t size; + if (!fp->DeSerialize(&size)) { + return false; + } + for (uint32_t i = 0; i < size; ++i) { + Network *network = CreateFromFile(fp); + if (network == nullptr) { + return false; + } + AddToStack(network); + } + if ((network_flags_ & NF_LAYER_SPECIFIC_LR) && !fp->DeSerialize(learning_rates_)) { + return false; + } + return true; +} + +// Updates the weights using the given learning rate, momentum and adam_beta. +// num_samples is used in the adam computation iff use_adam_ is true. +void Plumbing::Update(float learning_rate, float momentum, float adam_beta, int num_samples) { + for (size_t i = 0; i < stack_.size(); ++i) { + if (network_flags_ & NF_LAYER_SPECIFIC_LR) { + if (i < learning_rates_.size()) { + learning_rate = learning_rates_[i]; + } else { + learning_rates_.push_back(learning_rate); + } + } + if (stack_[i]->IsTraining()) { + stack_[i]->Update(learning_rate, momentum, adam_beta, num_samples); + } + } +} + +// Sums the products of weight updates in *this and other, splitting into +// positive (same direction) in *same and negative (different direction) in +// *changed. +void Plumbing::CountAlternators(const Network &other, TFloat *same, TFloat *changed) const { + ASSERT_HOST(other.type() == type_); + const auto *plumbing = static_cast<const Plumbing *>(&other); + ASSERT_HOST(plumbing->stack_.size() == stack_.size()); + for (size_t i = 0; i < stack_.size(); ++i) { + stack_[i]->CountAlternators(*plumbing->stack_[i], same, changed); + } +} + +} // namespace tesseract.
