Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/tesseract/src/lstm/plumbing.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line source
/////////////////////////////////////////////////////////////////////// // File: plumbing.cpp // Description: Base class for networks that organize other networks // eg series or parallel. // Author: Ray Smith // // (C) Copyright 2014, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #include "plumbing.h" namespace tesseract { // ni_ and no_ will be set by AddToStack. Plumbing::Plumbing(const std::string &name) : Network(NT_PARALLEL, name, 0, 0) {} // Suspends/Enables training by setting the training_ flag. Serialize and // DeSerialize only operate on the run-time data if state is false. void Plumbing::SetEnableTraining(TrainingState state) { Network::SetEnableTraining(state); for (auto &i : stack_) { i->SetEnableTraining(state); } } // Sets flags that control the action of the network. See NetworkFlags enum // for bit values. void Plumbing::SetNetworkFlags(uint32_t flags) { Network::SetNetworkFlags(flags); for (auto &i : stack_) { i->SetNetworkFlags(flags); } } // Sets up the network for training. Initializes weights using weights of // scale `range` picked according to the random number generator `randomizer`. // Note that randomizer is a borrowed pointer that should outlive the network // and should not be deleted by any of the networks. // Returns the number of weights initialized. int Plumbing::InitWeights(float range, TRand *randomizer) { num_weights_ = 0; for (auto &i : stack_) { num_weights_ += i->InitWeights(range, randomizer); } return num_weights_; } // Recursively searches the network for softmaxes with old_no outputs, // and remaps their outputs according to code_map. See network.h for details. int Plumbing::RemapOutputs(int old_no, const std::vector<int> &code_map) { num_weights_ = 0; for (auto &i : stack_) { num_weights_ += i->RemapOutputs(old_no, code_map); } return num_weights_; } // Converts a float network to an int network. void Plumbing::ConvertToInt() { for (auto &i : stack_) { i->ConvertToInt(); } } // Provides a pointer to a TRand for any networks that care to use it. // Note that randomizer is a borrowed pointer that should outlive the network // and should not be deleted by any of the networks. void Plumbing::SetRandomizer(TRand *randomizer) { for (auto &i : stack_) { i->SetRandomizer(randomizer); } } // Adds the given network to the stack. void Plumbing::AddToStack(Network *network) { if (stack_.empty()) { ni_ = network->NumInputs(); no_ = network->NumOutputs(); } else if (type_ == NT_SERIES) { // ni is input of first, no output of last, others match output to input. ASSERT_HOST(no_ == network->NumInputs()); no_ = network->NumOutputs(); } else { // All parallel types. Output is sum of outputs, inputs all match. ASSERT_HOST(ni_ == network->NumInputs()); no_ += network->NumOutputs(); } stack_.push_back(network); } // Sets needs_to_backprop_ to needs_backprop and calls on sub-network // according to needs_backprop || any weights in this network. bool Plumbing::SetupNeedsBackprop(bool needs_backprop) { if (IsTraining()) { needs_to_backprop_ = needs_backprop; bool retval = needs_backprop; for (auto &i : stack_) { if (i->SetupNeedsBackprop(needs_backprop)) { retval = true; } } return retval; } // Frozen networks don't do backprop. needs_to_backprop_ = false; return false; } // Returns an integer reduction factor that the network applies to the // time sequence. Assumes that any 2-d is already eliminated. Used for // scaling bounding boxes of truth data. // WARNING: if GlobalMinimax is used to vary the scale, this will return // the last used scale factor. Call it before any forward, and it will return // the minimum scale factor of the paths through the GlobalMinimax. int Plumbing::XScaleFactor() const { return stack_[0]->XScaleFactor(); } // Provides the (minimum) x scale factor to the network (of interest only to // input units) so they can determine how to scale bounding boxes. void Plumbing::CacheXScaleFactor(int factor) { for (auto &i : stack_) { i->CacheXScaleFactor(factor); } } // Provides debug output on the weights. void Plumbing::DebugWeights() { for (auto &i : stack_) { i->DebugWeights(); } } // Returns a set of strings representing the layer-ids of all layers below. void Plumbing::EnumerateLayers(const std::string *prefix, std::vector<std::string> &layers) const { for (size_t i = 0; i < stack_.size(); ++i) { std::string layer_name; if (prefix) { layer_name = *prefix; } layer_name += ":" + std::to_string(i); if (stack_[i]->IsPlumbingType()) { auto *plumbing = static_cast<Plumbing *>(stack_[i]); plumbing->EnumerateLayers(&layer_name, layers); } else { layers.push_back(layer_name); } } } // Returns a pointer to the network layer corresponding to the given id. Network *Plumbing::GetLayer(const char *id) const { char *next_id; int index = strtol(id, &next_id, 10); if (index < 0 || static_cast<unsigned>(index) >= stack_.size()) { return nullptr; } if (stack_[index]->IsPlumbingType()) { auto *plumbing = static_cast<Plumbing *>(stack_[index]); ASSERT_HOST(*next_id == ':'); return plumbing->GetLayer(next_id + 1); } return stack_[index]; } // Returns a pointer to the learning rate for the given layer id. float *Plumbing::LayerLearningRatePtr(const char *id) { char *next_id; int index = strtol(id, &next_id, 10); if (index < 0 || static_cast<unsigned>(index) >= stack_.size()) { return nullptr; } if (stack_[index]->IsPlumbingType()) { auto *plumbing = static_cast<Plumbing *>(stack_[index]); ASSERT_HOST(*next_id == ':'); return plumbing->LayerLearningRatePtr(next_id + 1); } if (static_cast<unsigned>(index) >= learning_rates_.size()) { return nullptr; } return &learning_rates_[index]; } // Writes to the given file. Returns false in case of error. bool Plumbing::Serialize(TFile *fp) const { if (!Network::Serialize(fp)) { return false; } uint32_t size = stack_.size(); // Can't use PointerVector::Serialize here as we need a special DeSerialize. if (!fp->Serialize(&size)) { return false; } for (uint32_t i = 0; i < size; ++i) { if (!stack_[i]->Serialize(fp)) { return false; } } if ((network_flags_ & NF_LAYER_SPECIFIC_LR) && !fp->Serialize(learning_rates_)) { return false; } return true; } // Reads from the given file. Returns false in case of error. bool Plumbing::DeSerialize(TFile *fp) { for (auto data : stack_) { delete data; } stack_.clear(); no_ = 0; // We will be modifying this as we AddToStack. uint32_t size; if (!fp->DeSerialize(&size)) { return false; } for (uint32_t i = 0; i < size; ++i) { Network *network = CreateFromFile(fp); if (network == nullptr) { return false; } AddToStack(network); } if ((network_flags_ & NF_LAYER_SPECIFIC_LR) && !fp->DeSerialize(learning_rates_)) { return false; } return true; } // Updates the weights using the given learning rate, momentum and adam_beta. // num_samples is used in the adam computation iff use_adam_ is true. void Plumbing::Update(float learning_rate, float momentum, float adam_beta, int num_samples) { for (size_t i = 0; i < stack_.size(); ++i) { if (network_flags_ & NF_LAYER_SPECIFIC_LR) { if (i < learning_rates_.size()) { learning_rate = learning_rates_[i]; } else { learning_rates_.push_back(learning_rate); } } if (stack_[i]->IsTraining()) { stack_[i]->Update(learning_rate, momentum, adam_beta, num_samples); } } } // Sums the products of weight updates in *this and other, splitting into // positive (same direction) in *same and negative (different direction) in // *changed. void Plumbing::CountAlternators(const Network &other, TFloat *same, TFloat *changed) const { ASSERT_HOST(other.type() == type_); const auto *plumbing = static_cast<const Plumbing *>(&other); ASSERT_HOST(plumbing->stack_.size() == stack_.size()); for (size_t i = 0; i < stack_.size(); ++i) { stack_[i]->CountAlternators(*plumbing->stack_[i], same, changed); } } } // namespace tesseract.
