Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/tesseract/src/classify/kdtree.h @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /****************************************************************************** | |
| 2 ** Filename: kdtree.h | |
| 3 ** Purpose: Definition of K-D tree access routines. | |
| 4 ** Author: Dan Johnson | |
| 5 ** | |
| 6 ** (c) Copyright Hewlett-Packard Company, 1988. | |
| 7 ** Licensed under the Apache License, Version 2.0 (the "License"); | |
| 8 ** you may not use this file except in compliance with the License. | |
| 9 ** You may obtain a copy of the License at | |
| 10 ** http://www.apache.org/licenses/LICENSE-2.0 | |
| 11 ** Unless required by applicable law or agreed to in writing, software | |
| 12 ** distributed under the License is distributed on an "AS IS" BASIS, | |
| 13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| 14 ** See the License for the specific language governing permissions and | |
| 15 ** limitations under the License. | |
| 16 *****************************************************************************/ | |
| 17 | |
| 18 #ifndef KDTREE_H | |
| 19 #define KDTREE_H | |
| 20 | |
| 21 #include "ocrfeatures.h" | |
| 22 | |
| 23 namespace tesseract { | |
| 24 | |
| 25 /** | |
| 26 NOTE: All circular parameters of all keys must be in the range | |
| 27 | |
| 28 Min <= Param < Max | |
| 29 | |
| 30 where Min and Max are specified in the KeyDesc parameter passed to | |
| 31 MakeKDTree. All KD routines assume that this is true and will not operate | |
| 32 correctly if circular parameters outside the specified range are used. | |
| 33 */ | |
| 34 | |
| 35 struct ClusteringContext; | |
| 36 struct CLUSTER; | |
| 37 struct KDTREE; | |
| 38 | |
| 39 using kdwalk_proc = void (*)(ClusteringContext *context, CLUSTER *Cluster, int32_t Level); | |
| 40 | |
| 41 struct KDNODE { | |
| 42 /// This routine allocates memory for a new K-D tree node | |
| 43 /// and places the specified Key and Data into it. The | |
| 44 /// left and right subtree pointers for the node are | |
| 45 /// initialized to empty subtrees. | |
| 46 /// @param tree The tree to create the node for | |
| 47 /// @param Key Access key for new node in KD tree | |
| 48 /// @param Data ptr to data to be stored in new node | |
| 49 /// @param Index index of Key to branch on | |
| 50 KDNODE() = default; | |
| 51 KDNODE(KDTREE *tree, float key[], CLUSTER *data, int Index); | |
| 52 ~KDNODE() { | |
| 53 delete Left; | |
| 54 delete Right; | |
| 55 } | |
| 56 | |
| 57 float *Key; /**< search key */ | |
| 58 CLUSTER *Data; /**< data that corresponds to key */ | |
| 59 float BranchPoint; /**< needed to make deletes work efficiently */ | |
| 60 float LeftBranch; /**< used to optimize search pruning */ | |
| 61 float RightBranch; /**< used to optimize search pruning */ | |
| 62 KDNODE *Left; /**< ptrs for KD tree structure */ | |
| 63 KDNODE *Right; | |
| 64 }; | |
| 65 | |
| 66 struct KDTREE { | |
| 67 KDTREE(size_t n) : KeySize(n), KeyDesc(n) { | |
| 68 } | |
| 69 | |
| 70 // The destructor frees all memory which is allocated to the | |
| 71 // specified KD-tree. This includes the data structure for | |
| 72 // the kd-tree itself plus the data structures for each node | |
| 73 // in the tree. It does not include the Key and Data items | |
| 74 // which are pointed to by the nodes. This memory is left | |
| 75 // untouched. | |
| 76 ~KDTREE() { | |
| 77 } | |
| 78 | |
| 79 // TODO: KeySize might be replaced by KeyDesc.size(). | |
| 80 int16_t KeySize = 0; // number of dimensions in the tree | |
| 81 KDNODE Root; // Root.Left points to actual root node | |
| 82 std::vector<PARAM_DESC> KeyDesc; // description of each dimension | |
| 83 }; | |
| 84 | |
| 85 inline KDNODE::KDNODE(KDTREE *tree, float key[], CLUSTER *data, int Index) { | |
| 86 Key = key; | |
| 87 Data = data; | |
| 88 BranchPoint = Key[Index]; | |
| 89 LeftBranch = tree->KeyDesc[Index].Min; | |
| 90 RightBranch = tree->KeyDesc[Index].Max; | |
| 91 Left = nullptr; | |
| 92 Right = nullptr; | |
| 93 } | |
| 94 | |
| 95 /*---------------------------------------------------------------------------- | |
| 96 Macros | |
| 97 -----------------------------------------------------------------------------*/ | |
| 98 #define RootOf(T) ((T)->Root.Left->Data) | |
| 99 | |
| 100 /*----------------------------------------------------------------------------- | |
| 101 Public Function Prototypes | |
| 102 -----------------------------------------------------------------------------*/ | |
| 103 KDTREE *MakeKDTree(int16_t KeySize, const PARAM_DESC KeyDesc[]); | |
| 104 | |
| 105 void KDStore(KDTREE *Tree, float *Key, CLUSTER *Data); | |
| 106 | |
| 107 void KDDelete(KDTREE *Tree, float Key[], void *Data); | |
| 108 | |
| 109 void KDNearestNeighborSearch(KDTREE *Tree, float Query[], int QuerySize, float MaxDistance, | |
| 110 int *NumberOfResults, void **NBuffer, float DBuffer[]); | |
| 111 | |
| 112 void KDWalk(KDTREE *Tree, kdwalk_proc Action, ClusteringContext *context); | |
| 113 | |
| 114 /*----------------------------------------------------------------------------- | |
| 115 Private Function Prototypes | |
| 116 -----------------------------------------------------------------------------*/ | |
| 117 | |
| 118 float DistanceSquared(int k, PARAM_DESC *dim, float p1[], float p2[]); | |
| 119 | |
| 120 TESS_API | |
| 121 float ComputeDistance(int k, PARAM_DESC *dim, float p1[], float p2[]); | |
| 122 | |
| 123 int QueryInSearch(KDTREE *tree); | |
| 124 | |
| 125 void Walk(KDTREE *tree, kdwalk_proc action, ClusteringContext *context, KDNODE *SubTree, int32_t Level); | |
| 126 | |
| 127 void InsertNodes(KDTREE *tree, KDNODE *nodes); | |
| 128 | |
| 129 } // namespace tesseract | |
| 130 | |
| 131 #endif |
