Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/leptonica/src/dnabasic.c @ 40:aa33339d6b8a upstream
ADD: MuPDF v1.26.10: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.5.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Sat, 11 Oct 2025 11:31:38 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/*====================================================================* - Copyright (C) 2001 Leptonica. All rights reserved. - - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions - are met: - 1. Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - 2. Redistributions in binary form must reproduce the above - copyright notice, this list of conditions and the following - disclaimer in the documentation and/or other materials - provided with the distribution. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *====================================================================*/ /*! * \file dnabasic.c * <pre> * * Dna creation, destruction, copy, clone, etc. * L_DNA *l_dnaCreate() * L_DNA *l_dnaCreateFromIArray() * L_DNA *l_dnaCreateFromDArray() * L_DNA *l_dnaMakeSequence() * void *l_dnaDestroy() * L_DNA *l_dnaCopy() * L_DNA *l_dnaClone() * l_int32 l_dnaEmpty() * * Dna: add/remove number and extend array * l_int32 l_dnaAddNumber() * static l_int32 l_dnaExtendArray() * l_int32 l_dnaInsertNumber() * l_int32 l_dnaRemoveNumber() * l_int32 l_dnaReplaceNumber() * * Dna accessors * l_int32 l_dnaGetCount() * l_int32 l_dnaSetCount() * l_int32 l_dnaGetIValue() * l_int32 l_dnaGetDValue() * l_int32 l_dnaSetValue() * l_int32 l_dnaShiftValue() * l_int32 *l_dnaGetIArray() * l_float64 *l_dnaGetDArray() * l_int32 l_dnaGetParameters() * l_int32 l_dnaSetParameters() * l_int32 l_dnaCopyParameters() * * Serialize Dna for I/O * L_DNA *l_dnaRead() * L_DNA *l_dnaReadStream() * L_DNA *l_dnaReadMem() * l_int32 l_dnaWrite() * l_int32 l_dnaWriteStream() * l_int32 l_dnaWriteStderr() * l_int32 l_dnaWriteMem() * * Dnaa creation, destruction * L_DNAA *l_dnaaCreate() * L_DNAA *l_dnaaCreateFull() * l_int32 l_dnaaTruncate() * void *l_dnaaDestroy() * * Add Dna to Dnaa * l_int32 l_dnaaAddDna() * static l_int32 l_dnaaExtendArray() * * Dnaa accessors * l_int32 l_dnaaGetCount() * l_int32 l_dnaaGetDnaCount() * l_int32 l_dnaaGetNumberCount() * L_DNA *l_dnaaGetDna() * L_DNA *l_dnaaReplaceDna() * l_int32 l_dnaaGetValue() * l_int32 l_dnaaAddNumber() * * Serialize Dnaa for I/O * L_DNAA *l_dnaaRead() * L_DNAA *l_dnaaReadStream() * L_DNAA *l_dnaaReadMem() * l_int32 l_dnaaWrite() * l_int32 l_dnaaWriteStream() * l_int32 l_dnaaWriteMem() * * (1) The Dna is a struct holding an array of doubles. It can also * be used to store l_int32 values, up to the full precision * of int32. Always use it whenever integers larger than a * few million need to be stored. * * (2) Always use the accessors in this file, never the fields directly. * * (3) Storing and retrieving numbers: * * * to append a new number to the array, use l_dnaAddNumber(). If * the number is an int, it will will automatically be converted * to l_float64 and stored. * * * to reset a value stored in the array, use l_dnaSetValue(). * * * to increment or decrement a value stored in the array, * use l_dnaShiftValue(). * * * to obtain a value from the array, use either l_dnaGetIValue() * or l_dnaGetDValue(), depending on whether you are retrieving * an integer or a float64. This avoids doing an explicit cast, * such as * (a) return a l_float64 and cast it to an l_int32 * (b) cast the return directly to (l_float64 *) to * satisfy the function prototype, as in * l_dnaGetDValue(da, index, (l_float64 *)&ival); [ugly!] * * (4) int <--> double conversions: * * Conversions go automatically from l_int32 --> l_float64, * without loss of precision. You must cast (l_int32) * to go from l_float64 --> l_int32 because you're truncating * to the integer value. * * (5) As with other arrays in leptonica, the l_dna has both an allocated * size and a count of the stored numbers. When you add a number, it * goes on the end of the array, and causes a realloc if the array * is already filled. However, in situations where you want to * add numbers randomly into an array, such as when you build a * histogram, you must set the count of stored numbers in advance. * This is done with l_dnaSetCount(). If you set a count larger * than the allocated array, it does a realloc to the size requested. * * (6) In situations where the data in a l_dna correspond to a function * y(x), the values can be either at equal spacings in x or at * arbitrary spacings. For the former, we can represent all x values * by two parameters: startx (corresponding to y[0]) and delx * for the change in x for adjacent values y[i] and y[i+1]. * startx and delx are initialized to 0.0 and 1.0, rsp. * For arbitrary spacings, we use a second l_dna, and the two * l_dnas are typically denoted dnay and dnax. * </pre> */ #ifdef HAVE_CONFIG_H #include <config_auto.h> #endif /* HAVE_CONFIG_H */ #include <string.h> #include <math.h> #include "allheaders.h" #include "array_internal.h" /* Bounds on initial array size */ static const l_uint32 MaxDoubleArraySize = 100000000; /* for dna */ static const l_uint32 MaxPtrArraySize = 1000000; /* for dnaa */ static const l_int32 InitialArraySize = 50; /*!< n'importe quoi */ /* Static functions */ static l_int32 l_dnaExtendArray(L_DNA *da); static l_int32 l_dnaaExtendArray(L_DNAA *daa); /*--------------------------------------------------------------------------* * Dna creation, destruction, copy, clone, etc. * *--------------------------------------------------------------------------*/ /*! * \brief l_dnaCreate() * * \param[in] n size of number array to be alloc'd; 0 for default * \return da, or NULL on error */ L_DNA * l_dnaCreate(l_int32 n) { L_DNA *da; if (n <= 0 || n > MaxDoubleArraySize) n = InitialArraySize; da = (L_DNA *)LEPT_CALLOC(1, sizeof(L_DNA)); if ((da->array = (l_float64 *)LEPT_CALLOC(n, sizeof(l_float64))) == NULL) { l_dnaDestroy(&da); return (L_DNA *)ERROR_PTR("double array not made", __func__, NULL); } da->nalloc = n; da->n = 0; da->refcount = 1; da->startx = 0.0; da->delx = 1.0; return da; } /*! * \brief l_dnaCreateFromIArray() * * \param[in] iarray integer array * \param[in] size of the array * \return da, or NULL on error * * <pre> * Notes: * (1) We can't insert this int array into the l_dna, because a l_dna * takes a double array. So this just copies the data from the * input array into the l_dna. The input array continues to be * owned by the caller. * </pre> */ L_DNA * l_dnaCreateFromIArray(l_int32 *iarray, l_int32 size) { l_int32 i; L_DNA *da; if (!iarray) return (L_DNA *)ERROR_PTR("iarray not defined", __func__, NULL); if (size <= 0) return (L_DNA *)ERROR_PTR("size must be > 0", __func__, NULL); da = l_dnaCreate(size); for (i = 0; i < size; i++) l_dnaAddNumber(da, iarray[i]); return da; } /*! * \brief l_dnaCreateFromDArray() * * \param[in] darray float * \param[in] size of the array * \param[in] copyflag L_INSERT or L_COPY * \return da, or NULL on error * * <pre> * Notes: * (1) With L_INSERT, ownership of the input array is transferred * to the returned l_dna, and all %size elements are considered * to be valid. * </pre> */ L_DNA * l_dnaCreateFromDArray(l_float64 *darray, l_int32 size, l_int32 copyflag) { l_int32 i; L_DNA *da; if (!darray) return (L_DNA *)ERROR_PTR("darray not defined", __func__, NULL); if (size <= 0) return (L_DNA *)ERROR_PTR("size must be > 0", __func__, NULL); if (copyflag != L_INSERT && copyflag != L_COPY) return (L_DNA *)ERROR_PTR("invalid copyflag", __func__, NULL); da = l_dnaCreate(size); if (copyflag == L_INSERT) { if (da->array) LEPT_FREE(da->array); da->array = darray; da->n = size; } else { /* just copy the contents */ for (i = 0; i < size; i++) l_dnaAddNumber(da, darray[i]); } return da; } /*! * \brief l_dnaMakeSequence() * * \param[in] startval * \param[in] increment * \param[in] size of sequence * \return l_dna of sequence of evenly spaced values, or NULL on error */ L_DNA * l_dnaMakeSequence(l_float64 startval, l_float64 increment, l_int32 size) { l_int32 i; l_float64 val; L_DNA *da; if ((da = l_dnaCreate(size)) == NULL) return (L_DNA *)ERROR_PTR("da not made", __func__, NULL); for (i = 0; i < size; i++) { val = startval + i * increment; l_dnaAddNumber(da, val); } return da; } /*! * \brief l_dnaDestroy() * * \param[in,out] pda will be set to null before returning * \return void * * <pre> * Notes: * (1) Decrements the ref count and, if 0, destroys the l_dna. * (2) Always nulls the input ptr. * </pre> */ void l_dnaDestroy(L_DNA **pda) { L_DNA *da; if (pda == NULL) { L_WARNING("ptr address is NULL\n", __func__); return; } if ((da = *pda) == NULL) return; /* Decrement the ref count. If it is 0, destroy the l_dna. */ if (--da->refcount == 0) { if (da->array) LEPT_FREE(da->array); LEPT_FREE(da); } *pda = NULL; } /*! * \brief l_dnaCopy() * * \param[in] da * \return copy of da, or NULL on error * * <pre> * Notes: * (1) This removes unused ptrs above da->n. * </pre> */ L_DNA * l_dnaCopy(L_DNA *da) { l_int32 i; L_DNA *dac; if (!da) return (L_DNA *)ERROR_PTR("da not defined", __func__, NULL); if ((dac = l_dnaCreate(da->n)) == NULL) return (L_DNA *)ERROR_PTR("dac not made", __func__, NULL); dac->startx = da->startx; dac->delx = da->delx; for (i = 0; i < da->n; i++) l_dnaAddNumber(dac, da->array[i]); return dac; } /*! * \brief l_dnaClone() * * \param[in] da * \return ptr to same da, or NULL on error */ L_DNA * l_dnaClone(L_DNA *da) { if (!da) return (L_DNA *)ERROR_PTR("da not defined", __func__, NULL); ++da->refcount; return da; } /*! * \brief l_dnaEmpty() * * \param[in] da * \return 0 if OK; 1 on error * * <pre> * Notes: * (1) This does not change the allocation of the array. * It just clears the number of stored numbers, so that * the array appears to be empty. * </pre> */ l_ok l_dnaEmpty(L_DNA *da) { if (!da) return ERROR_INT("da not defined", __func__, 1); da->n = 0; return 0; } /*--------------------------------------------------------------------------* * Dna: add/remove number and extend array * *--------------------------------------------------------------------------*/ /*! * \brief l_dnaAddNumber() * * \param[in] da * \param[in] val float or int to be added; stored as a float * \return 0 if OK, 1 on error */ l_ok l_dnaAddNumber(L_DNA *da, l_float64 val) { l_int32 n; if (!da) return ERROR_INT("da not defined", __func__, 1); n = l_dnaGetCount(da); if (n >= da->nalloc) { if (l_dnaExtendArray(da)) return ERROR_INT("extension failed", __func__, 1); } da->array[n] = val; da->n++; return 0; } /*! * \brief l_dnaExtendArray() * * \param[in] da * \return 0 if OK, 1 on error * * <pre> * Notes: * (1) Doubles the size of the array. * (2) The max number of doubles is 100M. * </pre> */ static l_int32 l_dnaExtendArray(L_DNA *da) { size_t oldsize, newsize; if (!da) return ERROR_INT("da not defined", __func__, 1); if (da->nalloc > MaxDoubleArraySize) return ERROR_INT("da at maximum size; can't extend", __func__, 1); oldsize = da->nalloc * sizeof(l_float64); if (da->nalloc > MaxDoubleArraySize / 2) { newsize = MaxDoubleArraySize * sizeof(l_float64); da->nalloc = MaxDoubleArraySize; } else { newsize = 2 * oldsize; da->nalloc *= 2; } if ((da->array = (l_float64 *)reallocNew((void **)&da->array, oldsize, newsize)) == NULL) return ERROR_INT("new ptr array not returned", __func__, 1); return 0; } /*! * \brief l_dnaInsertNumber() * * \param[in] da * \param[in] index location in da to insert new value * \param[in] val float64 or integer to be added * \return 0 if OK, 1 on error * * <pre> * Notes: * (1) This shifts da[i] --> da[i + 1] for all i >= %index, * and then inserts %val as da[%index]. * (2) It should not be used repeatedly on large arrays, * because the function is O(n). * * </pre> */ l_ok l_dnaInsertNumber(L_DNA *da, l_int32 index, l_float64 val) { l_int32 i, n; if (!da) return ERROR_INT("da not defined", __func__, 1); n = l_dnaGetCount(da); if (index < 0 || index > n) { L_ERROR("index %d not in [0,...,%d]\n", __func__, index, n); return 1; } if (n >= da->nalloc) { if (l_dnaExtendArray(da)) return ERROR_INT("extension failed", __func__, 1); } for (i = n; i > index; i--) da->array[i] = da->array[i - 1]; da->array[index] = val; da->n++; return 0; } /*! * \brief l_dnaRemoveNumber() * * \param[in] da * \param[in] index element to be removed * \return 0 if OK, 1 on error * * <pre> * Notes: * (1) This shifts da[i] --> da[i - 1] for all i > %index. * (2) It should not be used repeatedly on large arrays, * because the function is O(n). * </pre> */ l_ok l_dnaRemoveNumber(L_DNA *da, l_int32 index) { l_int32 i, n; if (!da) return ERROR_INT("da not defined", __func__, 1); n = l_dnaGetCount(da); if (index < 0 || index >= n) { L_ERROR("index %d not in [0,...,%d]\n", __func__, index, n - 1); return 1; } for (i = index + 1; i < n; i++) da->array[i - 1] = da->array[i]; da->n--; return 0; } /*! * \brief l_dnaReplaceNumber() * * \param[in] da * \param[in] index element to be replaced * \param[in] val new value to replace old one * \return 0 if OK, 1 on error */ l_ok l_dnaReplaceNumber(L_DNA *da, l_int32 index, l_float64 val) { l_int32 n; if (!da) return ERROR_INT("da not defined", __func__, 1); n = l_dnaGetCount(da); if (index < 0 || index >= n) { L_ERROR("index %d not in [0,...,%d]\n", __func__, index, n - 1); return 1; } da->array[index] = val; return 0; } /*----------------------------------------------------------------------* * Dna accessors * *----------------------------------------------------------------------*/ /*! * \brief l_dnaGetCount() * * \param[in] da * \return count, or 0 if no numbers or on error */ l_int32 l_dnaGetCount(L_DNA *da) { if (!da) return ERROR_INT("da not defined", __func__, 0); return da->n; } /*! * \brief l_dnaSetCount() * * \param[in] da * \param[in] newcount * \return 0 if OK, 1 on error * * <pre> * Notes: * (1) If %newcount <= da->nalloc, this resets da->n. * Using %newcount = 0 is equivalent to l_dnaEmpty(). * (2) If %newcount > da->nalloc, this causes a realloc * to a size da->nalloc = %newcount. * (3) All the previously unused values in da are set to 0.0. * </pre> */ l_ok l_dnaSetCount(L_DNA *da, l_int32 newcount) { if (!da) return ERROR_INT("da not defined", __func__, 1); if (newcount > da->nalloc) { if ((da->array = (l_float64 *)reallocNew((void **)&da->array, sizeof(l_float64) * da->nalloc, sizeof(l_float64) * newcount)) == NULL) return ERROR_INT("new ptr array not returned", __func__, 1); da->nalloc = newcount; } da->n = newcount; return 0; } /*! * \brief l_dnaGetDValue() * * \param[in] da * \param[in] index into l_dna * \param[out] pval double value; 0.0 on error * \return 0 if OK; 1 on error * * <pre> * Notes: * (1) Caller may need to check the function return value to * decide if a 0.0 in the returned ival is valid. * </pre> */ l_ok l_dnaGetDValue(L_DNA *da, l_int32 index, l_float64 *pval) { if (!pval) return ERROR_INT("&val not defined", __func__, 1); *pval = 0.0; if (!da) return ERROR_INT("da not defined", __func__, 1); if (index < 0 || index >= da->n) return ERROR_INT("index not valid", __func__, 1); *pval = da->array[index]; return 0; } /*! * \brief l_dnaGetIValue() * * \param[in] da * \param[in] index into l_dna * \param[out] pival integer value; 0 on error * \return 0 if OK; 1 on error * * <pre> * Notes: * (1) Caller may need to check the function return value to * decide if a 0 in the returned ival is valid. * </pre> */ l_ok l_dnaGetIValue(L_DNA *da, l_int32 index, l_int32 *pival) { l_float64 val; if (!pival) return ERROR_INT("&ival not defined", __func__, 1); *pival = 0; if (!da) return ERROR_INT("da not defined", __func__, 1); if (index < 0 || index >= da->n) return ERROR_INT("index not valid", __func__, 1); val = da->array[index]; *pival = (l_int32)(val + L_SIGN(val) * 0.5); return 0; } /*! * \brief l_dnaSetValue() * * \param[in] da * \param[in] index to element to be set * \param[in] val to set element * \return 0 if OK; 1 on error */ l_ok l_dnaSetValue(L_DNA *da, l_int32 index, l_float64 val) { if (!da) return ERROR_INT("da not defined", __func__, 1); if (index < 0 || index >= da->n) return ERROR_INT("index not valid", __func__, 1); da->array[index] = val; return 0; } /*! * \brief l_dnaShiftValue() * * \param[in] da * \param[in] index to element to change relative to the current value * \param[in] diff increment if diff > 0 or decrement if diff < 0 * \return 0 if OK; 1 on error */ l_ok l_dnaShiftValue(L_DNA *da, l_int32 index, l_float64 diff) { if (!da) return ERROR_INT("da not defined", __func__, 1); if (index < 0 || index >= da->n) return ERROR_INT("index not valid", __func__, 1); da->array[index] += diff; return 0; } /*! * \brief l_dnaGetIArray() * * \param[in] da * \return a copy of the bare internal array, integerized * by rounding, or NULL on error * <pre> * Notes: * (1) A copy of the array is made, because we need to * generate an integer array from the bare double array. * The caller is responsible for freeing the array. * (2) The array size is determined by the number of stored numbers, * not by the size of the allocated array in the l_dna. * (3) This function is provided to simplify calculations * using the bare internal array, rather than continually * calling accessors on the l_dna. It is typically used * on an array of size 256. * </pre> */ l_int32 * l_dnaGetIArray(L_DNA *da) { l_int32 i, n, ival; l_int32 *array; if (!da) return (l_int32 *)ERROR_PTR("da not defined", __func__, NULL); n = l_dnaGetCount(da); if ((array = (l_int32 *)LEPT_CALLOC(n, sizeof(l_int32))) == NULL) return (l_int32 *)ERROR_PTR("array not made", __func__, NULL); for (i = 0; i < n; i++) { l_dnaGetIValue(da, i, &ival); array[i] = ival; } return array; } /*! * \brief l_dnaGetDArray() * * \param[in] da * \param[in] copyflag L_NOCOPY or L_COPY * \return either the bare internal array or a copy of it, or NULL on error * * <pre> * Notes: * (1) If %copyflag == L_COPY, it makes a copy which the caller * is responsible for freeing. Otherwise, it operates * directly on the bare array of the l_dna. * (2) Very important: for L_NOCOPY, any writes to the array * will be in the l_dna. Do not write beyond the size of * the count field, because it will not be accessible * from the l_dna! If necessary, be sure to set the count * field to a larger number (such as the alloc size) * BEFORE calling this function. Creating with l_dnaMakeConstant() * is another way to insure full initialization. * </pre> */ l_float64 * l_dnaGetDArray(L_DNA *da, l_int32 copyflag) { l_int32 i, n; l_float64 *array; if (!da) return (l_float64 *)ERROR_PTR("da not defined", __func__, NULL); if (copyflag == L_NOCOPY) { array = da->array; } else { /* copyflag == L_COPY */ n = l_dnaGetCount(da); if ((array = (l_float64 *)LEPT_CALLOC(n, sizeof(l_float64))) == NULL) return (l_float64 *)ERROR_PTR("array not made", __func__, NULL); for (i = 0; i < n; i++) array[i] = da->array[i]; } return array; } /*! * \brief l_dnaGetParameters() * * \param[in] da * \param[out] pstartx [optional] startx * \param[out] pdelx [optional] delx * \return 0 if OK, 1 on error */ l_ok l_dnaGetParameters(L_DNA *da, l_float64 *pstartx, l_float64 *pdelx) { if (pstartx) *pstartx = 0.0; if (pdelx) *pdelx = 1.0; if (!pstartx && !pdelx) return ERROR_INT("neither &startx nor &delx are defined", __func__, 1); if (!da) return ERROR_INT("da not defined", __func__, 1); if (pstartx) *pstartx = da->startx; if (pdelx) *pdelx = da->delx; return 0; } /*! * \brief l_dnaSetParameters() * * \param[in] da * \param[in] startx x value corresponding to da[0] * \param[in] delx difference in x values for the situation where the * elements of da correspond to the evaluation of a * function at equal intervals of size %delx * \return 0 if OK, 1 on error */ l_ok l_dnaSetParameters(L_DNA *da, l_float64 startx, l_float64 delx) { if (!da) return ERROR_INT("da not defined", __func__, 1); da->startx = startx; da->delx = delx; return 0; } /*! * \brief l_dnaCopyParameters() * * \param[in] dad destination DNuma * \param[in] das source DNuma * \return 0 if OK, 1 on error */ l_ok l_dnaCopyParameters(L_DNA *dad, L_DNA *das) { l_float64 start, binsize; if (!das || !dad) return ERROR_INT("das and dad not both defined", __func__, 1); l_dnaGetParameters(das, &start, &binsize); l_dnaSetParameters(dad, start, binsize); return 0; } /*----------------------------------------------------------------------* * Serialize Dna for I/O * *----------------------------------------------------------------------*/ /*! * \brief l_dnaRead() * * \param[in] filename * \return da, or NULL on error */ L_DNA * l_dnaRead(const char *filename) { FILE *fp; L_DNA *da; if (!filename) return (L_DNA *)ERROR_PTR("filename not defined", __func__, NULL); if ((fp = fopenReadStream(filename)) == NULL) return (L_DNA *)ERROR_PTR_1("stream not opened", filename, __func__, NULL); da = l_dnaReadStream(fp); fclose(fp); if (!da) return (L_DNA *)ERROR_PTR_1("da not read", filename, __func__, NULL); return da; } /*! * \brief l_dnaReadStream() * * \param[in] fp file stream * \return da, or NULL on error * * <pre> * Notes: * (1) fscanf takes %lf to read a double; fprintf takes %f to write it. * (2) It is OK for the dna to be empty. * </pre> */ L_DNA * l_dnaReadStream(FILE *fp) { l_int32 i, n, index, ret, version; l_float64 val, startx, delx; L_DNA *da; if (!fp) return (L_DNA *)ERROR_PTR("stream not defined", __func__, NULL); ret = fscanf(fp, "\nL_Dna Version %d\n", &version); if (ret != 1) return (L_DNA *)ERROR_PTR("not a l_dna file", __func__, NULL); if (version != DNA_VERSION_NUMBER) return (L_DNA *)ERROR_PTR("invalid l_dna version", __func__, NULL); if (fscanf(fp, "Number of numbers = %d\n", &n) != 1) return (L_DNA *)ERROR_PTR("invalid number of numbers", __func__, NULL); if (n < 0) return (L_DNA *)ERROR_PTR("num doubles < 0", __func__, NULL); if (n > MaxDoubleArraySize) return (L_DNA *)ERROR_PTR("too many doubles", __func__, NULL); if (n == 0) L_INFO("the dna is empty\n", __func__); if ((da = l_dnaCreate(n)) == NULL) return (L_DNA *)ERROR_PTR("da not made", __func__, NULL); for (i = 0; i < n; i++) { if (fscanf(fp, " [%d] = %lf\n", &index, &val) != 2) { l_dnaDestroy(&da); return (L_DNA *)ERROR_PTR("bad input data", __func__, NULL); } l_dnaAddNumber(da, val); } /* Optional data */ if (fscanf(fp, "startx = %lf, delx = %lf\n", &startx, &delx) == 2) l_dnaSetParameters(da, startx, delx); return da; } /*! * \brief l_dnaReadMem() * * \param[in] data dna serialization; in ascii * \param[in] size of data; can use strlen to get it * \return da, or NULL on error */ L_DNA * l_dnaReadMem(const l_uint8 *data, size_t size) { FILE *fp; L_DNA *da; if (!data) return (L_DNA *)ERROR_PTR("data not defined", __func__, NULL); if ((fp = fopenReadFromMemory(data, size)) == NULL) return (L_DNA *)ERROR_PTR("stream not opened", __func__, NULL); da = l_dnaReadStream(fp); fclose(fp); if (!da) L_ERROR("dna not read\n", __func__); return da; } /*! * \brief l_dnaWrite() * * \param[in] filename * \param[in] da * \return 0 if OK, 1 on error */ l_ok l_dnaWrite(const char *filename, L_DNA *da) { l_int32 ret; FILE *fp; if (!filename) return ERROR_INT("filename not defined", __func__, 1); if (!da) return ERROR_INT("da not defined", __func__, 1); if ((fp = fopenWriteStream(filename, "w")) == NULL) return ERROR_INT_1("stream not opened", filename, __func__, 1); ret = l_dnaWriteStream(fp, da); fclose(fp); if (ret) return ERROR_INT_1("da not written to stream", filename, __func__, 1); return 0; } /*! * \brief l_dnaWriteStream() * * \param[in] fp file stream; use NULL to write to stderr * \param[in] da * \return 0 if OK, 1 on error */ l_ok l_dnaWriteStream(FILE *fp, L_DNA *da) { l_int32 i, n; l_float64 startx, delx; if (!da) return ERROR_INT("da not defined", __func__, 1); if (!fp) return l_dnaWriteStderr(da); n = l_dnaGetCount(da); fprintf(fp, "\nL_Dna Version %d\n", DNA_VERSION_NUMBER); fprintf(fp, "Number of numbers = %d\n", n); for (i = 0; i < n; i++) fprintf(fp, " [%d] = %f\n", i, da->array[i]); fprintf(fp, "\n"); /* Optional data */ l_dnaGetParameters(da, &startx, &delx); if (startx != 0.0 || delx != 1.0) fprintf(fp, "startx = %f, delx = %f\n", startx, delx); return 0; } /*! * \brief l_dnaWriteStrderr() * * \param[in] da * \return 0 if OK, 1 on error */ l_ok l_dnaWriteStderr(L_DNA *da) { l_int32 i, n; l_float64 startx, delx; if (!da) return ERROR_INT("da not defined", __func__, 1); n = l_dnaGetCount(da); lept_stderr("\nL_Dna Version %d\n", DNA_VERSION_NUMBER); lept_stderr("Number of numbers = %d\n", n); for (i = 0; i < n; i++) lept_stderr(" [%d] = %f\n", i, da->array[i]); lept_stderr("\n"); /* Optional data */ l_dnaGetParameters(da, &startx, &delx); if (startx != 0.0 || delx != 1.0) lept_stderr("startx = %f, delx = %f\n", startx, delx); return 0; } /*! * \brief l_dnaWriteMem() * * \param[out] pdata data of serialized dna; ascii * \param[out] psize size of returned data * \param[in] da * \return 0 if OK, 1 on error * * <pre> * Notes: * (1) Serializes a dna in memory and puts the result in a buffer. * </pre> */ l_ok l_dnaWriteMem(l_uint8 **pdata, size_t *psize, L_DNA *da) { l_int32 ret; FILE *fp; if (pdata) *pdata = NULL; if (psize) *psize = 0; if (!pdata) return ERROR_INT("&data not defined", __func__, 1); if (!psize) return ERROR_INT("&size not defined", __func__, 1); if (!da) return ERROR_INT("da not defined", __func__, 1); #if HAVE_FMEMOPEN if ((fp = open_memstream((char **)pdata, psize)) == NULL) return ERROR_INT("stream not opened", __func__, 1); ret = l_dnaWriteStream(fp, da); fputc('\0', fp); fclose(fp); if (*psize > 0) *psize = *psize - 1; #else L_INFO("no fmemopen API --> work-around: write to temp file\n", __func__); #ifdef _WIN32 if ((fp = fopenWriteWinTempfile()) == NULL) return ERROR_INT("tmpfile stream not opened", __func__, 1); #else if ((fp = tmpfile()) == NULL) return ERROR_INT("tmpfile stream not opened", __func__, 1); #endif /* _WIN32 */ ret = l_dnaWriteStream(fp, da); rewind(fp); *pdata = l_binaryReadStream(fp, psize); fclose(fp); #endif /* HAVE_FMEMOPEN */ return ret; } /*--------------------------------------------------------------------------* * Dnaa creation, destruction * *--------------------------------------------------------------------------*/ /*! * \brief l_dnaaCreate() * * \param[in] n size of l_dna ptr array to be alloc'd 0 for default * \return daa, or NULL on error * */ L_DNAA * l_dnaaCreate(l_int32 n) { L_DNAA *daa; if (n <= 0 || n > MaxPtrArraySize) n = InitialArraySize; daa = (L_DNAA *)LEPT_CALLOC(1, sizeof(L_DNAA)); if ((daa->dna = (L_DNA **)LEPT_CALLOC(n, sizeof(L_DNA *))) == NULL) { l_dnaaDestroy(&daa); return (L_DNAA *)ERROR_PTR("l_dna ptr array not made", __func__, NULL); } daa->nalloc = n; daa->n = 0; return daa; } /*! * \brief l_dnaaCreateFull() * * \param[in] nptr size of dna ptr array to be alloc'd * \param[in] n size of individual dna arrays to be alloc'd 0 for default * \return daa, or NULL on error * * <pre> * Notes: * (1) This allocates a dnaa and fills the array with allocated dnas. * In use, after calling this function, use * l_dnaaAddNumber(dnaa, index, val); * to add val to the index-th dna in dnaa. * </pre> */ L_DNAA * l_dnaaCreateFull(l_int32 nptr, l_int32 n) { l_int32 i; L_DNAA *daa; L_DNA *da; daa = l_dnaaCreate(nptr); for (i = 0; i < nptr; i++) { da = l_dnaCreate(n); l_dnaaAddDna(daa, da, L_INSERT); } return daa; } /*! * \brief l_dnaaTruncate() * * \param[in] daa * \return 0 if OK, 1 on error * * <pre> * Notes: * (1) This identifies the largest index containing a dna that * has any numbers within it, destroys all dna beyond that * index, and resets the count. * </pre> */ l_ok l_dnaaTruncate(L_DNAA *daa) { l_int32 i, n, nn; L_DNA *da; if (!daa) return ERROR_INT("daa not defined", __func__, 1); n = l_dnaaGetCount(daa); for (i = n - 1; i >= 0; i--) { da = l_dnaaGetDna(daa, i, L_CLONE); if (!da) continue; nn = l_dnaGetCount(da); l_dnaDestroy(&da); /* the clone */ if (nn == 0) l_dnaDestroy(&daa->dna[i]); else break; } daa->n = i + 1; return 0; } /*! * \brief l_dnaaDestroy() * * \param[in,out] pdaa will be set to null before returning * \return void */ void l_dnaaDestroy(L_DNAA **pdaa) { l_int32 i; L_DNAA *daa; if (pdaa == NULL) { L_WARNING("ptr address is NULL!\n", __func__); return; } if ((daa = *pdaa) == NULL) return; for (i = 0; i < daa->n; i++) l_dnaDestroy(&daa->dna[i]); LEPT_FREE(daa->dna); LEPT_FREE(daa); *pdaa = NULL; } /*--------------------------------------------------------------------------* * Add Dna to Dnaa * *--------------------------------------------------------------------------*/ /*! * \brief l_dnaaAddDna() * * \param[in] daa * \param[in] da to be added * \param[in] copyflag L_INSERT, L_COPY, L_CLONE * \return 0 if OK, 1 on error */ l_ok l_dnaaAddDna(L_DNAA *daa, L_DNA *da, l_int32 copyflag) { l_int32 n; L_DNA *dac; if (!daa) return ERROR_INT("daa not defined", __func__, 1); if (!da) return ERROR_INT("da not defined", __func__, 1); if (copyflag == L_INSERT) { dac = da; } else if (copyflag == L_COPY) { if ((dac = l_dnaCopy(da)) == NULL) return ERROR_INT("dac not made", __func__, 1); } else if (copyflag == L_CLONE) { dac = l_dnaClone(da); } else { return ERROR_INT("invalid copyflag", __func__, 1); } n = l_dnaaGetCount(daa); if (n >= daa->nalloc) { if (l_dnaaExtendArray(daa)) { if (copyflag != L_INSERT) l_dnaDestroy(&dac); return ERROR_INT("extension failed", __func__, 1); } } daa->dna[n] = dac; daa->n++; return 0; } /*! * \brief l_dnaaExtendArray() * * \param[in] daa * \return 0 if OK, 1 on error * * <pre> * Notes: * (1) Doubles the number of dna ptrs. * (2) The max size of the dna array is 1M ptrs. * </pre> */ static l_int32 l_dnaaExtendArray(L_DNAA *daa) { size_t oldsize, newsize; if (!daa) return ERROR_INT("daa not defined", __func__, 1); if (daa->nalloc > MaxPtrArraySize) /* belt & suspenders */ return ERROR_INT("daa has too many ptrs", __func__, 1); oldsize = daa->nalloc * sizeof(L_DNA *); newsize = 2 * oldsize; if (newsize > 8 * MaxPtrArraySize) return ERROR_INT("newsize > 8 MB; too large", __func__, 1); if ((daa->dna = (L_DNA **)reallocNew((void **)&daa->dna, oldsize, newsize)) == NULL) return ERROR_INT("new ptr array not returned", __func__, 1); daa->nalloc *= 2; return 0; } /*----------------------------------------------------------------------* * DNumaa accessors * *----------------------------------------------------------------------*/ /*! * \brief l_dnaaGetCount() * * \param[in] daa * \return count number of l_dna, or 0 if no l_dna or on error */ l_int32 l_dnaaGetCount(L_DNAA *daa) { if (!daa) return ERROR_INT("daa not defined", __func__, 0); return daa->n; } /*! * \brief l_dnaaGetDnaCount() * * \param[in] daa * \param[in] index of l_dna in daa * \return count of numbers in the referenced l_dna, or 0 on error. */ l_int32 l_dnaaGetDnaCount(L_DNAA *daa, l_int32 index) { if (!daa) return ERROR_INT("daa not defined", __func__, 0); if (index < 0 || index >= daa->n) return ERROR_INT("invalid index into daa", __func__, 0); return l_dnaGetCount(daa->dna[index]); } /*! * \brief l_dnaaGetNumberCount() * * \param[in] daa * \return count total number of numbers in the l_dnaa, * or 0 if no numbers or on error */ l_int32 l_dnaaGetNumberCount(L_DNAA *daa) { L_DNA *da; l_int32 n, sum, i; if (!daa) return ERROR_INT("daa not defined", __func__, 0); n = l_dnaaGetCount(daa); for (sum = 0, i = 0; i < n; i++) { da = l_dnaaGetDna(daa, i, L_CLONE); sum += l_dnaGetCount(da); l_dnaDestroy(&da); } return sum; } /*! * \brief l_dnaaGetDna() * * \param[in] daa * \param[in] index to the index-th l_dna * \param[in] accessflag L_COPY or L_CLONE * \return l_dna, or NULL on error */ L_DNA * l_dnaaGetDna(L_DNAA *daa, l_int32 index, l_int32 accessflag) { if (!daa) return (L_DNA *)ERROR_PTR("daa not defined", __func__, NULL); if (index < 0 || index >= daa->n) return (L_DNA *)ERROR_PTR("index not valid", __func__, NULL); if (accessflag == L_COPY) return l_dnaCopy(daa->dna[index]); else if (accessflag == L_CLONE) return l_dnaClone(daa->dna[index]); else return (L_DNA *)ERROR_PTR("invalid accessflag", __func__, NULL); } /*! * \brief l_dnaaReplaceDna() * * \param[in] daa * \param[in] index to the index-th l_dna * \param[in] da insert and replace any existing one * \return 0 if OK, 1 on error * * <pre> * Notes: * (1) Any existing l_dna is destroyed, and the input one * is inserted in its place. * (2) If %index is invalid, return 1 (error) * </pre> */ l_ok l_dnaaReplaceDna(L_DNAA *daa, l_int32 index, L_DNA *da) { l_int32 n; if (!daa) return ERROR_INT("daa not defined", __func__, 1); if (!da) return ERROR_INT("da not defined", __func__, 1); n = l_dnaaGetCount(daa); if (index < 0 || index >= n) return ERROR_INT("index not valid", __func__, 1); l_dnaDestroy(&daa->dna[index]); daa->dna[index] = da; return 0; } /*! * \brief l_dnaaGetValue() * * \param[in] daa * \param[in] i index of l_dna within l_dnaa * \param[in] j index into l_dna * \param[out] pval double value * \return 0 if OK, 1 on error */ l_ok l_dnaaGetValue(L_DNAA *daa, l_int32 i, l_int32 j, l_float64 *pval) { l_int32 n; L_DNA *da; if (!pval) return ERROR_INT("&val not defined", __func__, 1); *pval = 0.0; if (!daa) return ERROR_INT("daa not defined", __func__, 1); n = l_dnaaGetCount(daa); if (i < 0 || i >= n) return ERROR_INT("invalid index into daa", __func__, 1); da = daa->dna[i]; if (j < 0 || j >= da->n) return ERROR_INT("invalid index into da", __func__, 1); *pval = da->array[j]; return 0; } /*! * \brief l_dnaaAddNumber() * * \param[in] daa * \param[in] index of l_dna within l_dnaa * \param[in] val number to be added; stored as a double * \return 0 if OK, 1 on error * * <pre> * Notes: * (1) Adds to an existing l_dna only. * </pre> */ l_ok l_dnaaAddNumber(L_DNAA *daa, l_int32 index, l_float64 val) { l_int32 n; L_DNA *da; if (!daa) return ERROR_INT("daa not defined", __func__, 1); n = l_dnaaGetCount(daa); if (index < 0 || index >= n) return ERROR_INT("invalid index in daa", __func__, 1); da = l_dnaaGetDna(daa, index, L_CLONE); l_dnaAddNumber(da, val); l_dnaDestroy(&da); return 0; } /*----------------------------------------------------------------------* * Serialize Dna for I/O * *----------------------------------------------------------------------*/ /*! * \brief l_dnaaRead() * * \param[in] filename * \return daa, or NULL on error */ L_DNAA * l_dnaaRead(const char *filename) { FILE *fp; L_DNAA *daa; if (!filename) return (L_DNAA *)ERROR_PTR("filename not defined", __func__, NULL); if ((fp = fopenReadStream(filename)) == NULL) return (L_DNAA *)ERROR_PTR_1("stream not opened", filename, __func__, NULL); daa = l_dnaaReadStream(fp); fclose(fp); if (!daa) return (L_DNAA *)ERROR_PTR_1("daa not read", filename, __func__, NULL); return daa; } /*! * \brief l_dnaaReadStream() * * \param[in] fp file stream * \return daa, or NULL on error * * <pre> * Notes: * (1) It is OK for the dnaa to be empty. * </pre> */ L_DNAA * l_dnaaReadStream(FILE *fp) { l_int32 i, n, index, ret, version; L_DNA *da; L_DNAA *daa; if (!fp) return (L_DNAA *)ERROR_PTR("stream not defined", __func__, NULL); ret = fscanf(fp, "\nL_Dnaa Version %d\n", &version); if (ret != 1) return (L_DNAA *)ERROR_PTR("not a l_dna file", __func__, NULL); if (version != DNA_VERSION_NUMBER) return (L_DNAA *)ERROR_PTR("invalid l_dnaa version", __func__, NULL); if (fscanf(fp, "Number of L_Dna = %d\n\n", &n) != 1) return (L_DNAA *)ERROR_PTR("invalid number of l_dna", __func__, NULL); if (n < 0) return (L_DNAA *)ERROR_PTR("num l_dna <= 0", __func__, NULL); if (n > MaxPtrArraySize) return (L_DNAA *)ERROR_PTR("too many l_dna", __func__, NULL); if (n == 0) L_INFO("the dnaa is empty\n", __func__); if ((daa = l_dnaaCreate(n)) == NULL) return (L_DNAA *)ERROR_PTR("daa not made", __func__, NULL); for (i = 0; i < n; i++) { if (fscanf(fp, "L_Dna[%d]:", &index) != 1) { l_dnaaDestroy(&daa); return (L_DNAA *)ERROR_PTR("invalid l_dna header", __func__, NULL); } if ((da = l_dnaReadStream(fp)) == NULL) { l_dnaaDestroy(&daa); return (L_DNAA *)ERROR_PTR("da not made", __func__, NULL); } l_dnaaAddDna(daa, da, L_INSERT); } return daa; } /*! * \brief l_dnaaReadMem() * * \param[in] data dnaa serialization; in ascii * \param[in] size of data; can use strlen to get it * \return daa, or NULL on error */ L_DNAA * l_dnaaReadMem(const l_uint8 *data, size_t size) { FILE *fp; L_DNAA *daa; if (!data) return (L_DNAA *)ERROR_PTR("data not defined", __func__, NULL); if ((fp = fopenReadFromMemory(data, size)) == NULL) return (L_DNAA *)ERROR_PTR("stream not opened", __func__, NULL); daa = l_dnaaReadStream(fp); fclose(fp); if (!daa) L_ERROR("daa not read\n", __func__); return daa; } /*! * \brief l_dnaaWrite() * * \param[in] filename * \param[in] daa * \return 0 if OK, 1 on error */ l_ok l_dnaaWrite(const char *filename, L_DNAA *daa) { l_int32 ret; FILE *fp; if (!filename) return ERROR_INT("filename not defined", __func__, 1); if (!daa) return ERROR_INT("daa not defined", __func__, 1); if ((fp = fopenWriteStream(filename, "w")) == NULL) return ERROR_INT_1("stream not opened", filename, __func__, 1); ret = l_dnaaWriteStream(fp, daa); fclose(fp); if (ret) return ERROR_INT_1("daa not written to stream", filename, __func__, 1); return 0; } /*! * \brief l_dnaaWriteStream() * * \param[in] fp file stream * \param[in] daa * \return 0 if OK, 1 on error */ l_ok l_dnaaWriteStream(FILE *fp, L_DNAA *daa) { l_int32 i, n; L_DNA *da; if (!fp) return ERROR_INT("stream not defined", __func__, 1); if (!daa) return ERROR_INT("daa not defined", __func__, 1); n = l_dnaaGetCount(daa); fprintf(fp, "\nL_Dnaa Version %d\n", DNA_VERSION_NUMBER); fprintf(fp, "Number of L_Dna = %d\n\n", n); for (i = 0; i < n; i++) { if ((da = l_dnaaGetDna(daa, i, L_CLONE)) == NULL) return ERROR_INT("da not found", __func__, 1); fprintf(fp, "L_Dna[%d]:", i); l_dnaWriteStream(fp, da); l_dnaDestroy(&da); } return 0; } /*! * \brief l_dnaaWriteMem() * * \param[out] pdata data of serialized dnaa; ascii * \param[out] psize size of returned data * \param[in] daa * \return 0 if OK, 1 on error * * <pre> * Notes: * (1) Serializes a dnaa in memory and puts the result in a buffer. * </pre> */ l_ok l_dnaaWriteMem(l_uint8 **pdata, size_t *psize, L_DNAA *daa) { l_int32 ret; FILE *fp; if (pdata) *pdata = NULL; if (psize) *psize = 0; if (!pdata) return ERROR_INT("&data not defined", __func__, 1); if (!psize) return ERROR_INT("&size not defined", __func__, 1); if (!daa) return ERROR_INT("daa not defined", __func__, 1); #if HAVE_FMEMOPEN if ((fp = open_memstream((char **)pdata, psize)) == NULL) return ERROR_INT("stream not opened", __func__, 1); ret = l_dnaaWriteStream(fp, daa); fputc('\0', fp); fclose(fp); if (*psize > 0) *psize = *psize - 1; #else L_INFO("no fmemopen API --> work-around: write to temp file\n", __func__); #ifdef _WIN32 if ((fp = fopenWriteWinTempfile()) == NULL) return ERROR_INT("tmpfile stream not opened", __func__, 1); #else if ((fp = tmpfile()) == NULL) return ERROR_INT("tmpfile stream not opened", __func__, 1); #endif /* _WIN32 */ ret = l_dnaaWriteStream(fp, daa); rewind(fp); *pdata = l_binaryReadStream(fp, psize); fclose(fp); #endif /* HAVE_FMEMOPEN */ return ret; }
