Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/tesseract/src/textord/makerow.cpp @ 29:f76e6575dca9 v1.26.4+1
+++++ v1.26.4+1
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Fri, 19 Sep 2025 19:59:23 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/********************************************************************** * File: makerow.cpp (Formerly makerows.c) * Description: Code to arrange blobs into rows of text. * Author: Ray Smith * * (C) Copyright 1992, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ // Include automatically generated configuration file if running autoconf. #ifdef HAVE_CONFIG_H # include "config_auto.h" #endif #include "makerow.h" #include "blkocc.h" #include "blobbox.h" #include "ccstruct.h" #include "detlinefit.h" #include "drawtord.h" #include "oldbasel.h" #include "sortflts.h" #include "statistc.h" #include "textord.h" #include "tordmain.h" #include "tovars.h" #include "tprintf.h" #include "underlin.h" #include <algorithm> #include <cmath> #include <vector> // for std::vector namespace tesseract { BOOL_VAR(textord_heavy_nr, false, "Vigorously remove noise"); BOOL_VAR(textord_show_initial_rows, false, "Display row accumulation"); BOOL_VAR(textord_show_parallel_rows, false, "Display page correlated rows"); BOOL_VAR(textord_show_expanded_rows, false, "Display rows after expanding"); BOOL_VAR(textord_show_final_rows, false, "Display rows after final fitting"); BOOL_VAR(textord_show_final_blobs, false, "Display blob bounds after pre-ass"); BOOL_VAR(textord_test_landscape, false, "Tests refer to land/port"); BOOL_VAR(textord_parallel_baselines, true, "Force parallel baselines"); BOOL_VAR(textord_straight_baselines, false, "Force straight baselines"); BOOL_VAR(textord_old_baselines, true, "Use old baseline algorithm"); BOOL_VAR(textord_old_xheight, false, "Use old xheight algorithm"); BOOL_VAR(textord_fix_xheight_bug, true, "Use spline baseline"); BOOL_VAR(textord_fix_makerow_bug, true, "Prevent multiple baselines"); BOOL_VAR(textord_debug_xheights, false, "Test xheight algorithms"); static BOOL_VAR(textord_biased_skewcalc, true, "Bias skew estimates with line length"); static BOOL_VAR(textord_interpolating_skew, true, "Interpolate across gaps"); static INT_VAR(textord_skewsmooth_offset, 4, "For smooth factor"); static INT_VAR(textord_skewsmooth_offset2, 1, "For smooth factor"); INT_VAR(textord_test_x, -INT32_MAX, "coord of test pt"); INT_VAR(textord_test_y, -INT32_MAX, "coord of test pt"); INT_VAR(textord_min_blobs_in_row, 4, "Min blobs before gradient counted"); INT_VAR(textord_spline_minblobs, 8, "Min blobs in each spline segment"); INT_VAR(textord_spline_medianwin, 6, "Size of window for spline segmentation"); static INT_VAR(textord_max_blob_overlaps, 4, "Max number of blobs a big blob can overlap"); INT_VAR(textord_min_xheight, 10, "Min credible pixel xheight"); double_VAR(textord_spline_shift_fraction, 0.02, "Fraction of line spacing for quad"); double_VAR(textord_skew_ile, 0.5, "Ile of gradients for page skew"); double_VAR(textord_skew_lag, 0.02, "Lag for skew on row accumulation"); double_VAR(textord_linespace_iqrlimit, 0.2, "Max iqr/median for linespace"); double_VAR(textord_width_limit, 8, "Max width of blobs to make rows"); double_VAR(textord_chop_width, 1.5, "Max width before chopping"); static double_VAR(textord_expansion_factor, 1.0, "Factor to expand rows by in expand_rows"); static double_VAR(textord_overlap_x, 0.375, "Fraction of linespace for good overlap"); double_VAR(textord_minxh, 0.25, "fraction of linesize for min xheight"); double_VAR(textord_min_linesize, 1.25, "* blob height for initial linesize"); double_VAR(textord_excess_blobsize, 1.3, "New row made if blob makes row this big"); double_VAR(textord_occupancy_threshold, 0.4, "Fraction of neighbourhood"); double_VAR(textord_underline_width, 2.0, "Multiple of line_size for underline"); double_VAR(textord_min_blob_height_fraction, 0.75, "Min blob height/top to include blob top into xheight stats"); double_VAR(textord_xheight_mode_fraction, 0.4, "Min pile height to make xheight"); double_VAR(textord_ascheight_mode_fraction, 0.08, "Min pile height to make ascheight"); static double_VAR(textord_descheight_mode_fraction, 0.08, "Min pile height to make descheight"); double_VAR(textord_ascx_ratio_min, 1.25, "Min cap/xheight"); double_VAR(textord_ascx_ratio_max, 1.8, "Max cap/xheight"); double_VAR(textord_descx_ratio_min, 0.25, "Min desc/xheight"); double_VAR(textord_descx_ratio_max, 0.6, "Max desc/xheight"); double_VAR(textord_xheight_error_margin, 0.1, "Accepted variation"); INT_VAR(textord_lms_line_trials, 12, "Number of linew fits to do"); BOOL_VAR(textord_new_initial_xheight, true, "Use test xheight mechanism"); BOOL_VAR(textord_debug_blob, false, "Print test blob information"); #define MAX_HEIGHT_MODES 12 const int kMinLeaderCount = 5; /** * @name row_y_order * * Sort function to sort rows in y from page top. */ static int row_y_order( // sort function const void *item1, // items to compare const void *item2) { // converted ptr const TO_ROW *row1 = *reinterpret_cast<const TO_ROW *const *>(item1); // converted ptr const TO_ROW *row2 = *reinterpret_cast<const TO_ROW *const *>(item2); if (row1->parallel_c() > row2->parallel_c()) { return -1; } else if (row1->parallel_c() < row2->parallel_c()) { return 1; } else { return 0; } } /** * @name row_spacing_order * * Qsort style function to compare 2 TO_ROWS based on their spacing value. */ static int row_spacing_order( // sort function const TO_ROW *row1, // items to compare const TO_ROW *row2) { return row1->spacing < row2->spacing; } // Factored-out helper to build a single row from a list of blobs. // Returns the mean blob size. static float MakeRowFromBlobs(float line_size, BLOBNBOX_IT *blob_it, TO_ROW_IT *row_it) { blob_it->sort(blob_x_order); blob_it->move_to_first(); TO_ROW *row = nullptr; float total_size = 0.0f; int blob_count = 0; // Add all the blobs to a single TO_ROW. for (; !blob_it->empty(); blob_it->forward()) { BLOBNBOX *blob = blob_it->extract(); int top = blob->bounding_box().top(); int bottom = blob->bounding_box().bottom(); if (row == nullptr) { row = new TO_ROW(blob, top, bottom, line_size); row_it->add_before_then_move(row); } else { row->add_blob(blob, top, bottom, line_size); } total_size += top - bottom; ++blob_count; } return blob_count > 0 ? total_size / blob_count : total_size; } // Helper to make a row using the children of a single blob. // Returns the mean size of the blobs created. static float MakeRowFromSubBlobs(TO_BLOCK *block, C_BLOB *blob, TO_ROW_IT *row_it) { // The blobs made from the children will go in the small_blobs list. BLOBNBOX_IT bb_it(&block->small_blobs); C_OUTLINE_IT ol_it(blob->out_list()); // Get the children. ol_it.set_to_list(ol_it.data()->child()); if (ol_it.empty()) { return 0.0f; } for (ol_it.mark_cycle_pt(); !ol_it.cycled_list(); ol_it.forward()) { // Deep copy the child outline and use that to make a blob. blob = new C_BLOB(C_OUTLINE::deep_copy(ol_it.data())); // Correct direction as needed. blob->CheckInverseFlagAndDirection(); auto *bbox = new BLOBNBOX(blob); bb_it.add_after_then_move(bbox); } // Now we can make a row from the blobs. return MakeRowFromBlobs(block->line_size, &bb_it, row_it); } /** * @name make_single_row * * Arrange the blobs into a single row... well actually, if there is * only a single blob, it makes 2 rows, in case the top-level blob * is a container of the real blobs to recognize. */ float make_single_row(ICOORD page_tr, bool allow_sub_blobs, TO_BLOCK *block, TO_BLOCK_LIST *blocks) { BLOBNBOX_IT blob_it = &block->blobs; TO_ROW_IT row_it = block->get_rows(); // Include all the small blobs and large blobs. blob_it.add_list_after(&block->small_blobs); blob_it.add_list_after(&block->noise_blobs); blob_it.add_list_after(&block->large_blobs); if (block->blobs.singleton() && allow_sub_blobs) { blob_it.move_to_first(); float size = MakeRowFromSubBlobs(block, blob_it.data()->cblob(), &row_it); if (size > block->line_size) { block->line_size = size; } } else if (block->blobs.empty()) { // Make a fake blob. C_BLOB *blob = C_BLOB::FakeBlob(block->block->pdblk.bounding_box()); // The blobnbox owns the blob. auto *bblob = new BLOBNBOX(blob); blob_it.add_after_then_move(bblob); } MakeRowFromBlobs(block->line_size, &blob_it, &row_it); // Fit an LMS line to the rows. for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { fit_lms_line(row_it.data()); } float gradient; float fit_error; // Compute the skew based on the fitted line. compute_page_skew(blocks, gradient, fit_error); return gradient; } /** * @name make_rows * * Arrange the blobs into rows. */ float make_rows(ICOORD page_tr, TO_BLOCK_LIST *port_blocks) { float port_m; // global skew float port_err; // global noise TO_BLOCK_IT block_it; // iterator block_it.set_to_list(port_blocks); for (block_it.mark_cycle_pt(); !block_it.cycled_list(); block_it.forward()) { make_initial_textrows(page_tr, block_it.data(), FCOORD(1.0f, 0.0f), !textord_test_landscape); } // compute globally compute_page_skew(port_blocks, port_m, port_err); block_it.set_to_list(port_blocks); for (block_it.mark_cycle_pt(); !block_it.cycled_list(); block_it.forward()) { cleanup_rows_making(page_tr, block_it.data(), port_m, FCOORD(1.0f, 0.0f), block_it.data()->block->pdblk.bounding_box().left(), !textord_test_landscape); } return port_m; // global skew } /** * @name make_initial_textrows * * Arrange the good blobs into rows of text. */ void make_initial_textrows( // find lines ICOORD page_tr, TO_BLOCK *block, // block to do FCOORD rotation, // for drawing bool testing_on // correct orientation ) { TO_ROW_IT row_it = block->get_rows(); #ifndef GRAPHICS_DISABLED ScrollView::Color colour; // of row if (textord_show_initial_rows && testing_on) { if (to_win == nullptr) { create_to_win(page_tr); } } #endif // guess skew assign_blobs_to_rows(block, nullptr, 0, true, true, textord_show_initial_rows && testing_on); row_it.move_to_first(); for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { fit_lms_line(row_it.data()); } #ifndef GRAPHICS_DISABLED if (textord_show_initial_rows && testing_on) { colour = ScrollView::RED; for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { plot_to_row(row_it.data(), colour, rotation); colour = static_cast<ScrollView::Color>(colour + 1); if (colour > ScrollView::MAGENTA) { colour = ScrollView::RED; } } } #endif } /** * @name fit_lms_line * * Fit an LMS line to a row. */ void fit_lms_line(TO_ROW *row) { float m, c; // fitted line tesseract::DetLineFit lms; BLOBNBOX_IT blob_it = row->blob_list(); for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { const TBOX &box = blob_it.data()->bounding_box(); lms.Add(ICOORD((box.left() + box.right()) / 2, box.bottom())); } double error = lms.Fit(&m, &c); row->set_line(m, c, error); } /** * @name compute_page_skew * * Compute the skew over a full page by averaging the gradients over * all the lines. Get the error of the same row. */ void compute_page_skew( // get average gradient TO_BLOCK_LIST *blocks, // list of blocks float &page_m, // average gradient float &page_err // average error ) { int32_t row_count; // total rows int32_t blob_count; // total_blobs int32_t row_err; // integer error int32_t row_index; // of total TO_ROW *row; // current row TO_BLOCK_IT block_it = blocks; // iterator row_count = 0; blob_count = 0; for (block_it.mark_cycle_pt(); !block_it.cycled_list(); block_it.forward()) { POLY_BLOCK *pb = block_it.data()->block->pdblk.poly_block(); if (pb != nullptr && !pb->IsText()) { continue; // Pretend non-text blocks don't exist. } row_count += block_it.data()->get_rows()->length(); // count up rows TO_ROW_IT row_it(block_it.data()->get_rows()); for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { blob_count += row_it.data()->blob_list()->length(); } } if (row_count == 0) { page_m = 0.0f; page_err = 0.0f; return; } // of rows std::vector<float> gradients(blob_count); // of rows std::vector<float> errors(blob_count); row_index = 0; for (block_it.mark_cycle_pt(); !block_it.cycled_list(); block_it.forward()) { POLY_BLOCK *pb = block_it.data()->block->pdblk.poly_block(); if (pb != nullptr && !pb->IsText()) { continue; // Pretend non-text blocks don't exist. } TO_ROW_IT row_it(block_it.data()->get_rows()); for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { row = row_it.data(); blob_count = row->blob_list()->length(); row_err = static_cast<int32_t>(std::ceil(row->line_error())); if (row_err <= 0) { row_err = 1; } if (textord_biased_skewcalc) { blob_count /= row_err; for (blob_count /= row_err; blob_count > 0; blob_count--) { gradients[row_index] = row->line_m(); errors[row_index] = row->line_error(); row_index++; } } else if (blob_count >= textord_min_blobs_in_row) { // get gradient gradients[row_index] = row->line_m(); errors[row_index] = row->line_error(); row_index++; } } } if (row_index == 0) { // desperate for (block_it.mark_cycle_pt(); !block_it.cycled_list(); block_it.forward()) { POLY_BLOCK *pb = block_it.data()->block->pdblk.poly_block(); if (pb != nullptr && !pb->IsText()) { continue; // Pretend non-text blocks don't exist. } TO_ROW_IT row_it(block_it.data()->get_rows()); for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { row = row_it.data(); gradients[row_index] = row->line_m(); errors[row_index] = row->line_error(); row_index++; } } } row_count = row_index; row_index = static_cast<int32_t>(row_count * textord_skew_ile); gradients.resize(row_count); std::nth_element(gradients.begin(), gradients.begin() + row_index, gradients.end()); page_m = gradients[row_index]; row_index = static_cast<int32_t>(row_count * textord_skew_ile); errors.resize(row_count); std::nth_element(errors.begin(), errors.begin() + row_index, errors.end()); page_err = errors[row_index]; } const double kNoiseSize = 0.5; // Fraction of xheight. const int kMinSize = 8; // Min pixels to be xheight. /** * Return true if the dot looks like it is part of the i. * Doesn't work for any other diacritical. */ static bool dot_of_i(BLOBNBOX *dot, BLOBNBOX *i, TO_ROW *row) { const TBOX &ibox = i->bounding_box(); const TBOX &dotbox = dot->bounding_box(); // Must overlap horizontally by enough and be high enough. int overlap = std::min(dotbox.right(), ibox.right()) - std::max(dotbox.left(), ibox.left()); if (ibox.height() <= 2 * dotbox.height() || (overlap * 2 < ibox.width() && overlap < dotbox.width())) { return false; } // If the i is tall and thin then it is good. if (ibox.height() > ibox.width() * 2) { return true; // The i or ! must be tall and thin. } // It might still be tall and thin, but it might be joined to something. // So search the outline for a piece of large height close to the edges // of the dot. const double kHeightFraction = 0.6; double target_height = std::min(dotbox.bottom(), ibox.top()); target_height -= row->line_m() * dotbox.left() + row->line_c(); target_height *= kHeightFraction; int left_min = dotbox.left() - dotbox.width(); int middle = (dotbox.left() + dotbox.right()) / 2; int right_max = dotbox.right() + dotbox.width(); int left_miny = 0; int left_maxy = 0; int right_miny = 0; int right_maxy = 0; bool found_left = false; bool found_right = false; bool in_left = false; bool in_right = false; C_BLOB *blob = i->cblob(); C_OUTLINE_IT o_it = blob->out_list(); for (o_it.mark_cycle_pt(); !o_it.cycled_list(); o_it.forward()) { C_OUTLINE *outline = o_it.data(); int length = outline->pathlength(); ICOORD pos = outline->start_pos(); for (int step = 0; step < length; pos += outline->step(step++)) { int x = pos.x(); int y = pos.y(); if (x >= left_min && x < middle && !found_left) { // We are in the left part so find min and max y. if (in_left) { if (y > left_maxy) { left_maxy = y; } if (y < left_miny) { left_miny = y; } } else { left_maxy = left_miny = y; in_left = true; } } else if (in_left) { // We just left the left so look for size. if (left_maxy - left_miny > target_height) { if (found_right) { return true; } found_left = true; } in_left = false; } if (x <= right_max && x > middle && !found_right) { // We are in the right part so find min and max y. if (in_right) { if (y > right_maxy) { right_maxy = y; } if (y < right_miny) { right_miny = y; } } else { right_maxy = right_miny = y; in_right = true; } } else if (in_right) { // We just left the right so look for size. if (right_maxy - right_miny > target_height) { if (found_left) { return true; } found_right = true; } in_right = false; } } } return false; } void vigorous_noise_removal(TO_BLOCK *block) { TO_ROW_IT row_it = block->get_rows(); for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { TO_ROW *row = row_it.data(); BLOBNBOX_IT b_it = row->blob_list(); // Estimate the xheight on the row. int max_height = 0; for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) { BLOBNBOX *blob = b_it.data(); if (blob->bounding_box().height() > max_height) { max_height = blob->bounding_box().height(); } } STATS hstats(0, max_height); for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) { BLOBNBOX *blob = b_it.data(); int height = blob->bounding_box().height(); if (height >= kMinSize) { hstats.add(blob->bounding_box().height(), 1); } } float xheight = hstats.median(); // Delete small objects. BLOBNBOX *prev = nullptr; for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) { BLOBNBOX *blob = b_it.data(); const TBOX &box = blob->bounding_box(); if (box.height() < kNoiseSize * xheight) { // Small so delete unless it looks like an i dot. if (prev != nullptr) { if (dot_of_i(blob, prev, row)) { continue; // Looks OK. } } if (!b_it.at_last()) { BLOBNBOX *next = b_it.data_relative(1); if (dot_of_i(blob, next, row)) { continue; // Looks OK. } } // It might be noise so get rid of it. delete blob->remove_cblob(); delete b_it.extract(); } else { prev = blob; } } } } /** * cleanup_rows_making * * Remove overlapping rows and fit all the blobs to what's left. */ void cleanup_rows_making( // find lines ICOORD page_tr, // top right TO_BLOCK *block, // block to do float gradient, // gradient to fit FCOORD rotation, // for drawing int32_t block_edge, // edge of block bool testing_on // correct orientation ) { // iterators BLOBNBOX_IT blob_it = &block->blobs; TO_ROW_IT row_it = block->get_rows(); #ifndef GRAPHICS_DISABLED if (textord_show_parallel_rows && testing_on) { if (to_win == nullptr) { create_to_win(page_tr); } } #endif // get row coords fit_parallel_rows(block, gradient, rotation, block_edge, textord_show_parallel_rows && testing_on); delete_non_dropout_rows(block, gradient, rotation, block_edge, textord_show_parallel_rows && testing_on); expand_rows(page_tr, block, gradient, rotation, block_edge, testing_on); blob_it.set_to_list(&block->blobs); row_it.set_to_list(block->get_rows()); for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { blob_it.add_list_after(row_it.data()->blob_list()); } // give blobs back assign_blobs_to_rows(block, &gradient, 1, false, false, false); // now new rows must be genuine blob_it.set_to_list(&block->blobs); blob_it.add_list_after(&block->large_blobs); assign_blobs_to_rows(block, &gradient, 2, true, true, false); // safe to use big ones now blob_it.set_to_list(&block->blobs); // throw all blobs in blob_it.add_list_after(&block->noise_blobs); blob_it.add_list_after(&block->small_blobs); assign_blobs_to_rows(block, &gradient, 3, false, false, false); } /** * delete_non_dropout_rows * * Compute the linespacing and offset. */ void delete_non_dropout_rows( // find lines TO_BLOCK *block, // block to do float gradient, // global skew FCOORD rotation, // deskew vector int32_t block_edge, // left edge bool testing_on // correct orientation ) { TBOX block_box; // deskewed block int32_t max_y; // in block int32_t min_y; int32_t line_index; // of scan line int32_t line_count; // no of scan lines int32_t distance; // to drop-out int32_t xleft; // of block int32_t ybottom; // of block TO_ROW *row; // current row TO_ROW_IT row_it = block->get_rows(); BLOBNBOX_IT blob_it = &block->blobs; if (row_it.empty()) { return; // empty block } block_box = deskew_block_coords(block, gradient); xleft = block->block->pdblk.bounding_box().left(); ybottom = block->block->pdblk.bounding_box().bottom(); min_y = block_box.bottom() - 1; max_y = block_box.top() + 1; for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { line_index = static_cast<int32_t>(std::floor(row_it.data()->intercept())); if (line_index <= min_y) { min_y = line_index - 1; } if (line_index >= max_y) { max_y = line_index + 1; } } line_count = max_y - min_y + 1; if (line_count <= 0) { return; // empty block } // change in occupation std::vector<int32_t> deltas(line_count); // of pixel coords std::vector<int32_t> occupation(line_count); compute_line_occupation(block, gradient, min_y, max_y, &occupation[0], &deltas[0]); compute_occupation_threshold( static_cast<int32_t>(ceil(block->line_spacing * (tesseract::CCStruct::kDescenderFraction + tesseract::CCStruct::kAscenderFraction))), static_cast<int32_t>(ceil(block->line_spacing * (tesseract::CCStruct::kXHeightFraction + tesseract::CCStruct::kAscenderFraction))), max_y - min_y + 1, &occupation[0], &deltas[0]); #ifndef GRAPHICS_DISABLED if (testing_on) { draw_occupation(xleft, ybottom, min_y, max_y, &occupation[0], &deltas[0]); } #endif compute_dropout_distances(&occupation[0], &deltas[0], line_count); for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { row = row_it.data(); line_index = static_cast<int32_t>(std::floor(row->intercept())); distance = deltas[line_index - min_y]; if (find_best_dropout_row(row, distance, block->line_spacing / 2, line_index, &row_it, testing_on)) { #ifndef GRAPHICS_DISABLED if (testing_on) { plot_parallel_row(row, gradient, block_edge, ScrollView::WHITE, rotation); } #endif blob_it.add_list_after(row_it.data()->blob_list()); delete row_it.extract(); // too far away } } for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { blob_it.add_list_after(row_it.data()->blob_list()); } } /** * @name find_best_dropout_row * * Delete this row if it has a neighbour with better dropout characteristics. * true is returned if the row should be deleted. */ bool find_best_dropout_row( // find neighbours TO_ROW *row, // row to test int32_t distance, // dropout dist float dist_limit, // threshold distance int32_t line_index, // index of row TO_ROW_IT *row_it, // current position bool testing_on // correct orientation ) { int32_t next_index; // of neighbouring row int32_t row_offset; // from current row int32_t abs_dist; // absolute distance int8_t row_inc; // increment to row_index TO_ROW *next_row; // nextious row if (testing_on) { tprintf("Row at %g(%g), dropout dist=%d,", row->intercept(), row->parallel_c(), distance); } if (distance < 0) { row_inc = 1; abs_dist = -distance; } else { row_inc = -1; abs_dist = distance; } if (abs_dist > dist_limit) { if (testing_on) { tprintf(" too far - deleting\n"); } return true; } if ((distance < 0 && !row_it->at_last()) || (distance >= 0 && !row_it->at_first())) { row_offset = row_inc; do { next_row = row_it->data_relative(row_offset); next_index = static_cast<int32_t>(std::floor(next_row->intercept())); if ((distance < 0 && next_index < line_index && next_index > line_index + distance + distance) || (distance >= 0 && next_index > line_index && next_index < line_index + distance + distance)) { if (testing_on) { tprintf(" nearer neighbour (%d) at %g\n", line_index + distance - next_index, next_row->intercept()); } return true; // other is nearer } else if (next_index == line_index || next_index == line_index + distance + distance) { if (row->believability() <= next_row->believability()) { if (testing_on) { tprintf(" equal but more believable at %g (%g/%g)\n", next_row->intercept(), row->believability(), next_row->believability()); } return true; // other is more believable } } row_offset += row_inc; } while ((next_index == line_index || next_index == line_index + distance + distance) && row_offset < row_it->length()); if (testing_on) { tprintf(" keeping\n"); } } return false; } /** * @name deskew_block_coords * * Compute the bounding box of all the blobs in the block * if they were deskewed without actually doing it. */ TBOX deskew_block_coords( // block box TO_BLOCK *block, // block to do float gradient // global skew ) { TBOX result; // block bounds TBOX blob_box; // of block FCOORD rotation; // deskew vector float length; // of gradient vector TO_ROW_IT row_it = block->get_rows(); TO_ROW *row; // current row BLOBNBOX *blob; // current blob BLOBNBOX_IT blob_it; // iterator length = std::sqrt(gradient * gradient + 1); rotation = FCOORD(1 / length, -gradient / length); for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { row = row_it.data(); blob_it.set_to_list(row->blob_list()); for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { blob = blob_it.data(); blob_box = blob->bounding_box(); blob_box.rotate(rotation); // de-skew it result += blob_box; } } return result; } /** * @name compute_line_occupation * * Compute the pixel projection back on the y axis given the global * skew. Also compute the 1st derivative. */ void compute_line_occupation( // project blobs TO_BLOCK *block, // block to do float gradient, // global skew int32_t min_y, // min coord in block int32_t max_y, // in block int32_t *occupation, // output projection int32_t *deltas // derivative ) { int32_t line_count; // maxy-miny+1 int32_t line_index; // of scan line int index; // array index for daft compilers TO_ROW *row; // current row TO_ROW_IT row_it = block->get_rows(); BLOBNBOX *blob; // current blob BLOBNBOX_IT blob_it; // iterator float length; // of skew vector TBOX blob_box; // bounding box FCOORD rotation; // inverse of skew line_count = max_y - min_y + 1; length = std::sqrt(gradient * gradient + 1); rotation = FCOORD(1 / length, -gradient / length); for (line_index = 0; line_index < line_count; line_index++) { deltas[line_index] = 0; } for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { row = row_it.data(); blob_it.set_to_list(row->blob_list()); for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { blob = blob_it.data(); blob_box = blob->bounding_box(); blob_box.rotate(rotation); // de-skew it int32_t width = blob_box.right() - blob_box.left(); index = blob_box.bottom() - min_y; ASSERT_HOST(index >= 0 && index < line_count); // count transitions deltas[index] += width; index = blob_box.top() - min_y; ASSERT_HOST(index >= 0 && index < line_count); deltas[index] -= width; } } occupation[0] = deltas[0]; for (line_index = 1; line_index < line_count; line_index++) { occupation[line_index] = occupation[line_index - 1] + deltas[line_index]; } } /** * compute_occupation_threshold * * Compute thresholds for textline or not for the occupation array. */ void compute_occupation_threshold( // project blobs int32_t low_window, // below result point int32_t high_window, // above result point int32_t line_count, // array sizes int32_t *occupation, // input projection int32_t *thresholds // output thresholds ) { int32_t line_index; // of thresholds line int32_t low_index; // in occupation int32_t high_index; // in occupation int32_t sum; // current average int32_t divisor; // to get thresholds int32_t min_index; // of min occ int32_t min_occ; // min in locality int32_t test_index; // for finding min divisor = static_cast<int32_t>(ceil((low_window + high_window) / textord_occupancy_threshold)); if (low_window + high_window < line_count) { for (sum = 0, high_index = 0; high_index < low_window; high_index++) { sum += occupation[high_index]; } for (low_index = 0; low_index < high_window; low_index++, high_index++) { sum += occupation[high_index]; } min_occ = occupation[0]; min_index = 0; for (test_index = 1; test_index < high_index; test_index++) { if (occupation[test_index] <= min_occ) { min_occ = occupation[test_index]; min_index = test_index; // find min in region } } for (line_index = 0; line_index < low_window; line_index++) { thresholds[line_index] = (sum - min_occ) / divisor + min_occ; } // same out to end for (low_index = 0; high_index < line_count; low_index++, high_index++) { sum -= occupation[low_index]; sum += occupation[high_index]; if (occupation[high_index] <= min_occ) { // find min in region min_occ = occupation[high_index]; min_index = high_index; } // lost min from region if (min_index <= low_index) { min_occ = occupation[low_index + 1]; min_index = low_index + 1; for (test_index = low_index + 2; test_index <= high_index; test_index++) { if (occupation[test_index] <= min_occ) { min_occ = occupation[test_index]; // find min in region min_index = test_index; } } } thresholds[line_index++] = (sum - min_occ) / divisor + min_occ; } } else { min_occ = occupation[0]; min_index = 0; for (sum = 0, low_index = 0; low_index < line_count; low_index++) { if (occupation[low_index] < min_occ) { min_occ = occupation[low_index]; min_index = low_index; } sum += occupation[low_index]; } line_index = 0; } for (; line_index < line_count; line_index++) { thresholds[line_index] = (sum - min_occ) / divisor + min_occ; } // same out to end } /** * @name compute_dropout_distances * * Compute the distance from each coordinate to the nearest dropout. */ void compute_dropout_distances( // project blobs int32_t *occupation, // input projection int32_t *thresholds, // output thresholds int32_t line_count // array sizes ) { int32_t line_index; // of thresholds line int32_t distance; // from prev dropout int32_t next_dist; // to next dropout int32_t back_index; // for back filling int32_t prev_threshold; // before overwrite distance = -line_count; line_index = 0; do { do { distance--; prev_threshold = thresholds[line_index]; // distance from prev thresholds[line_index] = distance; line_index++; } while (line_index < line_count && (occupation[line_index] < thresholds[line_index] || occupation[line_index - 1] >= prev_threshold)); if (line_index < line_count) { back_index = line_index - 1; next_dist = 1; while (next_dist < -distance && back_index >= 0) { thresholds[back_index] = next_dist; back_index--; next_dist++; distance++; } distance = 1; } } while (line_index < line_count); } /** * @name expand_rows * * Expand each row to the least of its allowed size and touching its * neighbours. If the expansion would entirely swallow a neighbouring row * then do so. */ void expand_rows( // find lines ICOORD page_tr, // top right TO_BLOCK *block, // block to do float gradient, // gradient to fit FCOORD rotation, // for drawing int32_t block_edge, // edge of block bool testing_on // correct orientation ) { bool swallowed_row; // eaten a neighbour float y_max, y_min; // new row limits float y_bottom, y_top; // allowed limits TO_ROW *test_row; // next row TO_ROW *row; // current row // iterators BLOBNBOX_IT blob_it = &block->blobs; TO_ROW_IT row_it = block->get_rows(); #ifndef GRAPHICS_DISABLED if (textord_show_expanded_rows && testing_on) { if (to_win == nullptr) { create_to_win(page_tr); } } #endif adjust_row_limits(block); // shift min,max. if (textord_new_initial_xheight) { if (block->get_rows()->empty()) { return; } compute_row_stats(block, textord_show_expanded_rows && testing_on); } assign_blobs_to_rows(block, &gradient, 4, true, false, false); // get real membership if (block->get_rows()->empty()) { return; } fit_parallel_rows(block, gradient, rotation, block_edge, textord_show_expanded_rows && testing_on); if (!textord_new_initial_xheight) { compute_row_stats(block, textord_show_expanded_rows && testing_on); } row_it.move_to_last(); do { row = row_it.data(); y_max = row->max_y(); // get current limits y_min = row->min_y(); y_bottom = row->intercept() - block->line_size * textord_expansion_factor * tesseract::CCStruct::kDescenderFraction; y_top = row->intercept() + block->line_size * textord_expansion_factor * (tesseract::CCStruct::kXHeightFraction + tesseract::CCStruct::kAscenderFraction); if (y_min > y_bottom) { // expansion allowed if (textord_show_expanded_rows && testing_on) { tprintf("Expanding bottom of row at %f from %f to %f\n", row->intercept(), y_min, y_bottom); } // expandable swallowed_row = true; while (swallowed_row && !row_it.at_last()) { swallowed_row = false; // get next one test_row = row_it.data_relative(1); // overlaps space if (test_row->max_y() > y_bottom) { if (test_row->min_y() > y_bottom) { if (textord_show_expanded_rows && testing_on) { tprintf("Eating row below at %f\n", test_row->intercept()); } row_it.forward(); #ifndef GRAPHICS_DISABLED if (textord_show_expanded_rows && testing_on) { plot_parallel_row(test_row, gradient, block_edge, ScrollView::WHITE, rotation); } #endif blob_it.set_to_list(row->blob_list()); blob_it.add_list_after(test_row->blob_list()); // swallow complete row delete row_it.extract(); row_it.backward(); swallowed_row = true; } else if (test_row->max_y() < y_min) { // shorter limit y_bottom = test_row->max_y(); if (textord_show_expanded_rows && testing_on) { tprintf("Truncating limit to %f due to touching row at %f\n", y_bottom, test_row->intercept()); } } else { y_bottom = y_min; // can't expand it if (textord_show_expanded_rows && testing_on) { tprintf("Not expanding limit beyond %f due to touching row at %f\n", y_bottom, test_row->intercept()); } } } } y_min = y_bottom; // expand it } if (y_max < y_top) { // expansion allowed if (textord_show_expanded_rows && testing_on) { tprintf("Expanding top of row at %f from %f to %f\n", row->intercept(), y_max, y_top); } swallowed_row = true; while (swallowed_row && !row_it.at_first()) { swallowed_row = false; // get one above test_row = row_it.data_relative(-1); if (test_row->min_y() < y_top) { if (test_row->max_y() < y_top) { if (textord_show_expanded_rows && testing_on) { tprintf("Eating row above at %f\n", test_row->intercept()); } row_it.backward(); blob_it.set_to_list(row->blob_list()); #ifndef GRAPHICS_DISABLED if (textord_show_expanded_rows && testing_on) { plot_parallel_row(test_row, gradient, block_edge, ScrollView::WHITE, rotation); } #endif blob_it.add_list_after(test_row->blob_list()); // swallow complete row delete row_it.extract(); row_it.forward(); swallowed_row = true; } else if (test_row->min_y() < y_max) { // shorter limit y_top = test_row->min_y(); if (textord_show_expanded_rows && testing_on) { tprintf("Truncating limit to %f due to touching row at %f\n", y_top, test_row->intercept()); } } else { y_top = y_max; // can't expand it if (textord_show_expanded_rows && testing_on) { tprintf("Not expanding limit beyond %f due to touching row at %f\n", y_top, test_row->intercept()); } } } } y_max = y_top; } // new limits row->set_limits(y_min, y_max); row_it.backward(); } while (!row_it.at_last()); } /** * adjust_row_limits * * Change the limits of rows to suit the default fractions. */ void adjust_row_limits( // tidy limits TO_BLOCK *block // block to do ) { TO_ROW *row; // current row float size; // size of row float ymax; // top of row float ymin; // bottom of row TO_ROW_IT row_it = block->get_rows(); if (textord_show_expanded_rows) { tprintf("Adjusting row limits for block(%d,%d)\n", block->block->pdblk.bounding_box().left(), block->block->pdblk.bounding_box().top()); } for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { row = row_it.data(); size = row->max_y() - row->min_y(); if (textord_show_expanded_rows) { tprintf("Row at %f has min %f, max %f, size %f\n", row->intercept(), row->min_y(), row->max_y(), size); } size /= tesseract::CCStruct::kXHeightFraction + tesseract::CCStruct::kAscenderFraction + tesseract::CCStruct::kDescenderFraction; ymax = size * (tesseract::CCStruct::kXHeightFraction + tesseract::CCStruct::kAscenderFraction); ymin = -size * tesseract::CCStruct::kDescenderFraction; row->set_limits(row->intercept() + ymin, row->intercept() + ymax); row->merged = false; } } /** * @name compute_row_stats * * Compute the linespacing and offset. */ void compute_row_stats( // find lines TO_BLOCK *block, // block to do bool testing_on // correct orientation ) { int32_t row_index; // of median TO_ROW *row; // current row TO_ROW *prev_row; // previous row float iqr; // inter quartile range TO_ROW_IT row_it = block->get_rows(); // number of rows int16_t rowcount = row_it.length(); // for choose nth std::vector<TO_ROW *> rows(rowcount); rowcount = 0; prev_row = nullptr; row_it.move_to_last(); // start at bottom do { row = row_it.data(); if (prev_row != nullptr) { rows[rowcount++] = prev_row; prev_row->spacing = row->intercept() - prev_row->intercept(); if (prev_row->spacing < 0.1 && prev_row->spacing > -0.1) { // Avoid small spacing values which give a small disp_quant_factor_. // That can cause large memory allocations with out-of-memory. prev_row->spacing = 0; } if (testing_on) { tprintf("Row at %g yields spacing of %g\n", row->intercept(), prev_row->spacing); } } prev_row = row; row_it.backward(); } while (!row_it.at_last()); block->key_row = prev_row; block->baseline_offset = std::fmod(prev_row->parallel_c(), block->line_spacing); if (testing_on) { tprintf("Blob based spacing=(%g,%g), offset=%g", block->line_size, block->line_spacing, block->baseline_offset); } if (rowcount > 0) { rows.resize(rowcount); row_index = rowcount * 3 / 4; std::nth_element(rows.begin(), rows.begin() + row_index, rows.end(), row_spacing_order); iqr = rows[row_index]->spacing; row_index = rowcount / 4; std::nth_element(rows.begin(), rows.begin() + row_index, rows.end(), row_spacing_order); iqr -= rows[row_index]->spacing; row_index = rowcount / 2; std::nth_element(rows.begin(), rows.begin() + row_index, rows.end(), row_spacing_order); block->key_row = rows[row_index]; if (testing_on) { tprintf(" row based=%g(%g)", rows[row_index]->spacing, iqr); } if (rowcount > 2 && iqr < rows[row_index]->spacing * textord_linespace_iqrlimit) { if (!textord_new_initial_xheight) { if (rows[row_index]->spacing < block->line_spacing && rows[row_index]->spacing > block->line_size) { // within range block->line_size = rows[row_index]->spacing; // spacing=size } else if (rows[row_index]->spacing > block->line_spacing) { block->line_size = block->line_spacing; } // too big so use max } else { if (rows[row_index]->spacing < block->line_spacing) { block->line_size = rows[row_index]->spacing; } else { block->line_size = block->line_spacing; } // too big so use max } if (block->line_size < textord_min_xheight) { block->line_size = (float)textord_min_xheight; } block->line_spacing = rows[row_index]->spacing; block->max_blob_size = block->line_spacing * textord_excess_blobsize; } block->baseline_offset = std::fmod(rows[row_index]->intercept(), block->line_spacing); } if (testing_on) { tprintf("\nEstimate line size=%g, spacing=%g, offset=%g\n", block->line_size, block->line_spacing, block->baseline_offset); } } /** * @name compute_block_xheight * * Compute the xheight of the individual rows, then correlate them * and interpret ascenderless lines, correcting xheights. * * First we compute our best guess of the x-height of each row independently * with compute_row_xheight(), which looks for a pair of commonly occurring * heights that could be x-height and ascender height. This function also * attempts to find descenders of lowercase letters (i.e. not the small * descenders that could appear in upper case letters as Q,J). * * After this computation each row falls into one of the following categories: * ROW_ASCENDERS_FOUND: we found xheight and ascender modes, so this must be * a regular row; we'll use its xheight to compute * xheight and ascrise estimates for the block * ROW_DESCENDERS_FOUND: no ascenders, so we do not have a high confidence in * the xheight of this row (don't use it for estimating * block xheight), but this row can't contain all caps * ROW_UNKNOWN: a row with no ascenders/descenders, could be all lowercase * (or mostly lowercase for fonts with very few ascenders), * all upper case or small caps * ROW_INVALID: no meaningful xheight could be found for this row * * We then run correct_row_xheight() and use the computed xheight and ascrise * averages to correct xheight values of the rows in ROW_DESCENDERS_FOUND, * ROW_UNKNOWN and ROW_INVALID categories. * */ void Textord::compute_block_xheight(TO_BLOCK *block, float gradient) { TO_ROW *row; // current row float asc_frac_xheight = CCStruct::kAscenderFraction / CCStruct::kXHeightFraction; float desc_frac_xheight = CCStruct::kDescenderFraction / CCStruct::kXHeightFraction; int32_t min_height, max_height; // limits on xheight TO_ROW_IT row_it = block->get_rows(); if (row_it.empty()) { return; // no rows } // Compute the best guess of xheight of each row individually. // Use xheight and ascrise values of the rows where ascenders were found. get_min_max_xheight(block->line_size, &min_height, &max_height); STATS row_asc_xheights(min_height, max_height); STATS row_asc_ascrise(static_cast<int>(min_height * asc_frac_xheight), static_cast<int>(max_height * asc_frac_xheight)); int min_desc_height = static_cast<int>(min_height * desc_frac_xheight); int max_desc_height = static_cast<int>(max_height * desc_frac_xheight); STATS row_asc_descdrop(min_desc_height, max_desc_height); STATS row_desc_xheights(min_height, max_height); STATS row_desc_descdrop(min_desc_height, max_desc_height); STATS row_cap_xheights(min_height, max_height); STATS row_cap_floating_xheights(min_height, max_height); for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { row = row_it.data(); // Compute the xheight of this row if it has not been computed before. if (row->xheight <= 0) { compute_row_xheight(row, block->block->classify_rotation(), gradient, block->line_size); } ROW_CATEGORY row_category = get_row_category(row); if (row_category == ROW_ASCENDERS_FOUND) { row_asc_xheights.add(static_cast<int32_t>(row->xheight), row->xheight_evidence); row_asc_ascrise.add(static_cast<int32_t>(row->ascrise), row->xheight_evidence); row_asc_descdrop.add(static_cast<int32_t>(-row->descdrop), row->xheight_evidence); } else if (row_category == ROW_DESCENDERS_FOUND) { row_desc_xheights.add(static_cast<int32_t>(row->xheight), row->xheight_evidence); row_desc_descdrop.add(static_cast<int32_t>(-row->descdrop), row->xheight_evidence); } else if (row_category == ROW_UNKNOWN) { fill_heights(row, gradient, min_height, max_height, &row_cap_xheights, &row_cap_floating_xheights); } } float xheight = 0.0; float ascrise = 0.0; float descdrop = 0.0; // Compute our best guess of xheight of this block. if (row_asc_xheights.get_total() > 0) { // Determine xheight from rows where ascenders were found. xheight = row_asc_xheights.median(); ascrise = row_asc_ascrise.median(); descdrop = -row_asc_descdrop.median(); } else if (row_desc_xheights.get_total() > 0) { // Determine xheight from rows where descenders were found. xheight = row_desc_xheights.median(); descdrop = -row_desc_descdrop.median(); } else if (row_cap_xheights.get_total() > 0) { // All the rows in the block were (a/de)scenderless. // Try to search for two modes in row_cap_heights that could // be the xheight and the capheight (e.g. some of the rows // were lowercase, but did not have enough (a/de)scenders. // If such two modes cannot be found, this block is most // likely all caps (or all small caps, in which case the code // still works as intended). compute_xheight_from_modes( &row_cap_xheights, &row_cap_floating_xheights, textord_single_height_mode && block->block->classify_rotation().y() == 0.0, min_height, max_height, &(xheight), &(ascrise)); if (ascrise == 0) { // assume only caps in the whole block xheight = row_cap_xheights.median() * CCStruct::kXHeightCapRatio; } } else { // default block sizes xheight = block->line_size * CCStruct::kXHeightFraction; } // Correct xheight, ascrise and descdrop if necessary. bool corrected_xheight = false; if (xheight < textord_min_xheight) { xheight = static_cast<float>(textord_min_xheight); corrected_xheight = true; } if (corrected_xheight || ascrise <= 0) { ascrise = xheight * asc_frac_xheight; } if (corrected_xheight || descdrop >= 0) { descdrop = -(xheight * desc_frac_xheight); } block->xheight = xheight; if (textord_debug_xheights) { tprintf("Block average xheight=%.4f, ascrise=%.4f, descdrop=%.4f\n", xheight, ascrise, descdrop); } // Correct xheight, ascrise, descdrop of rows based on block averages. for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { correct_row_xheight(row_it.data(), xheight, ascrise, descdrop); } } /** * @name compute_row_xheight * * Estimate the xheight of this row. * Compute the ascender rise and descender drop at the same time. * Set xheigh_evidence to the number of blobs with the chosen xheight * that appear in this row. */ void Textord::compute_row_xheight(TO_ROW *row, // row to do const FCOORD &rotation, float gradient, // global skew int block_line_size) { // Find blobs representing repeated characters in rows and mark them. // This information is used for computing row xheight and at a later // stage when words are formed by make_words. if (!row->rep_chars_marked()) { mark_repeated_chars(row); } int min_height, max_height; get_min_max_xheight(block_line_size, &min_height, &max_height); STATS heights(min_height, max_height); STATS floating_heights(min_height, max_height); fill_heights(row, gradient, min_height, max_height, &heights, &floating_heights); row->ascrise = 0.0f; row->xheight = 0.0f; row->xheight_evidence = compute_xheight_from_modes( &heights, &floating_heights, textord_single_height_mode && rotation.y() == 0.0, min_height, max_height, &(row->xheight), &(row->ascrise)); row->descdrop = 0.0f; if (row->xheight > 0) { row->descdrop = static_cast<float>(compute_row_descdrop(row, gradient, row->xheight_evidence, &heights)); } } /** * @name fill_heights * * Fill the given heights with heights of the blobs that are legal * candidates for estimating xheight. */ void fill_heights(TO_ROW *row, float gradient, int min_height, int max_height, STATS *heights, STATS *floating_heights) { float xcentre; // centre of blob float top; // top y coord of blob float height; // height of blob BLOBNBOX *blob; // current blob int repeated_set; BLOBNBOX_IT blob_it = row->blob_list(); if (blob_it.empty()) { return; // no blobs in this row } bool has_rep_chars = row->rep_chars_marked() && row->num_repeated_sets() > 0; do { blob = blob_it.data(); if (!blob->joined_to_prev()) { xcentre = (blob->bounding_box().left() + blob->bounding_box().right()) / 2.0f; top = blob->bounding_box().top(); height = blob->bounding_box().height(); if (textord_fix_xheight_bug) { top -= row->baseline.y(xcentre); } else { top -= gradient * xcentre + row->parallel_c(); } if (top >= min_height && top <= max_height) { heights->add(static_cast<int32_t>(floor(top + 0.5)), 1); if (height / top < textord_min_blob_height_fraction) { floating_heights->add(static_cast<int32_t>(floor(top + 0.5)), 1); } } } // Skip repeated chars, since they are likely to skew the height stats. if (has_rep_chars && blob->repeated_set() != 0) { repeated_set = blob->repeated_set(); blob_it.forward(); while (!blob_it.at_first() && blob_it.data()->repeated_set() == repeated_set) { blob_it.forward(); if (textord_debug_xheights) { tprintf("Skipping repeated char when computing xheight\n"); } } } else { blob_it.forward(); } } while (!blob_it.at_first()); } /** * @name compute_xheight_from_modes * * Given a STATS object heights, looks for two most frequently occurring * heights that look like xheight and xheight + ascrise. If found, sets * the values of *xheight and *ascrise accordingly, otherwise sets xheight * to any most frequently occurring height and sets *ascrise to 0. * Returns the number of times xheight occurred in heights. * For each mode that is considered for being an xheight the count of * floating blobs (stored in floating_heights) is subtracted from the * total count of the blobs of this height. This is done because blobs * that sit far above the baseline could represent valid ascenders, but * it is highly unlikely that such a character's height will be an xheight * (e.g. -, ', =, ^, `, ", ', etc) * If cap_only, then force finding of only the top mode. */ int compute_xheight_from_modes(STATS *heights, STATS *floating_heights, bool cap_only, int min_height, int max_height, float *xheight, float *ascrise) { int blob_index = heights->mode(); // find mode int blob_count = heights->pile_count(blob_index); // get count of mode if (textord_debug_xheights) { tprintf("min_height=%d, max_height=%d, mode=%d, count=%d, total=%d\n", min_height, max_height, blob_index, blob_count, heights->get_total()); heights->print(); floating_heights->print(); } if (blob_count == 0) { return 0; } int modes[MAX_HEIGHT_MODES]; // biggest piles bool in_best_pile = false; int prev_size = -INT32_MAX; int best_count = 0; int mode_count = compute_height_modes(heights, min_height, max_height, modes, MAX_HEIGHT_MODES); if (cap_only && mode_count > 1) { mode_count = 1; } int x; if (textord_debug_xheights) { tprintf("found %d modes: ", mode_count); for (x = 0; x < mode_count; x++) { tprintf("%d ", modes[x]); } tprintf("\n"); } for (x = 0; x < mode_count - 1; x++) { if (modes[x] != prev_size + 1) { in_best_pile = false; // had empty height } int modes_x_count = heights->pile_count(modes[x]) - floating_heights->pile_count(modes[x]); if ((modes_x_count >= blob_count * textord_xheight_mode_fraction) && (in_best_pile || modes_x_count > best_count)) { for (int asc = x + 1; asc < mode_count; asc++) { float ratio = static_cast<float>(modes[asc]) / static_cast<float>(modes[x]); if (textord_ascx_ratio_min < ratio && ratio < textord_ascx_ratio_max && (heights->pile_count(modes[asc]) >= blob_count * textord_ascheight_mode_fraction)) { if (modes_x_count > best_count) { in_best_pile = true; best_count = modes_x_count; } if (textord_debug_xheights) { tprintf("X=%d, asc=%d, count=%d, ratio=%g\n", modes[x], modes[asc] - modes[x], modes_x_count, ratio); } prev_size = modes[x]; *xheight = static_cast<float>(modes[x]); *ascrise = static_cast<float>(modes[asc] - modes[x]); } } } } if (*xheight == 0) { // single mode // Remove counts of the "floating" blobs (the one whose height is too // small in relation to it's top end of the bounding box) from heights // before computing the single-mode xheight. // Restore the counts in heights after the mode is found, since // floating blobs might be useful for determining potential ascenders // in compute_row_descdrop(). if (floating_heights->get_total() > 0) { for (x = min_height; x < max_height; ++x) { heights->add(x, -(floating_heights->pile_count(x))); } blob_index = heights->mode(); // find the modified mode for (x = min_height; x < max_height; ++x) { heights->add(x, floating_heights->pile_count(x)); } } *xheight = static_cast<float>(blob_index); *ascrise = 0.0f; best_count = heights->pile_count(blob_index); if (textord_debug_xheights) { tprintf("Single mode xheight set to %g\n", *xheight); } } else if (textord_debug_xheights) { tprintf("Multi-mode xheight set to %g, asc=%g\n", *xheight, *ascrise); } return best_count; } /** * @name compute_row_descdrop * * Estimates the descdrop of this row. This function looks for * "significant" descenders of lowercase letters (those that could * not just be the small descenders of upper case letters like Q,J). * The function also takes into account how many potential ascenders * this row might contain. If the number of potential ascenders along * with descenders is close to the expected fraction of the total * number of blobs in the row, the function returns the descender * height, returns 0 otherwise. */ int32_t compute_row_descdrop(TO_ROW *row, float gradient, int xheight_blob_count, STATS *asc_heights) { // Count how many potential ascenders are in this row. int i_min = asc_heights->min_bucket(); if ((i_min / row->xheight) < textord_ascx_ratio_min) { i_min = static_cast<int>(floor(row->xheight * textord_ascx_ratio_min + 0.5)); } int i_max = asc_heights->max_bucket(); if ((i_max / row->xheight) > textord_ascx_ratio_max) { i_max = static_cast<int>(floor(row->xheight * textord_ascx_ratio_max)); } int num_potential_asc = 0; for (int i = i_min; i <= i_max; ++i) { num_potential_asc += asc_heights->pile_count(i); } auto min_height = static_cast<int32_t>(floor(row->xheight * textord_descx_ratio_min + 0.5)); auto max_height = static_cast<int32_t>(floor(row->xheight * textord_descx_ratio_max)); float xcentre; // centre of blob float height; // height of blob BLOBNBOX_IT blob_it = row->blob_list(); BLOBNBOX *blob; // current blob STATS heights(min_height, max_height); for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { blob = blob_it.data(); if (!blob->joined_to_prev()) { xcentre = (blob->bounding_box().left() + blob->bounding_box().right()) / 2.0f; height = (gradient * xcentre + row->parallel_c() - blob->bounding_box().bottom()); if (height >= min_height && height <= max_height) { heights.add(static_cast<int>(floor(height + 0.5)), 1); } } } int blob_index = heights.mode(); // find mode int blob_count = heights.pile_count(blob_index); // get count of mode float total_fraction = (textord_descheight_mode_fraction + textord_ascheight_mode_fraction); if (static_cast<float>(blob_count + num_potential_asc) < xheight_blob_count * total_fraction) { blob_count = 0; } int descdrop = blob_count > 0 ? -blob_index : 0; if (textord_debug_xheights) { tprintf("Descdrop: %d (potential ascenders %d, descenders %d)\n", descdrop, num_potential_asc, blob_count); heights.print(); } return descdrop; } /** * @name compute_height_modes * * Find the top maxmodes values in the input array and put their * indices in the output in the order in which they occurred. */ int32_t compute_height_modes(STATS *heights, // stats to search int32_t min_height, // bottom of range int32_t max_height, // top of range int32_t *modes, // output array int32_t maxmodes) { // size of modes int32_t pile_count; // no in source pile int32_t src_count; // no of source entries int32_t src_index; // current entry int32_t least_count; // height of smalllest int32_t least_index; // index of least int32_t dest_count; // index in modes src_count = max_height + 1 - min_height; dest_count = 0; least_count = INT32_MAX; least_index = -1; for (src_index = 0; src_index < src_count; src_index++) { pile_count = heights->pile_count(min_height + src_index); if (pile_count > 0) { if (dest_count < maxmodes) { if (pile_count < least_count) { // find smallest in array least_count = pile_count; least_index = dest_count; } modes[dest_count++] = min_height + src_index; } else if (pile_count >= least_count) { while (least_index < maxmodes - 1) { modes[least_index] = modes[least_index + 1]; // shuffle up least_index++; } // new one on end modes[maxmodes - 1] = min_height + src_index; if (pile_count == least_count) { // new smallest least_index = maxmodes - 1; } else { least_count = heights->pile_count(modes[0]); least_index = 0; for (dest_count = 1; dest_count < maxmodes; dest_count++) { pile_count = heights->pile_count(modes[dest_count]); if (pile_count < least_count) { // find smallest least_count = pile_count; least_index = dest_count; } } } } } } return dest_count; } /** * @name correct_row_xheight * * Adjust the xheight etc of this row if not within reasonable limits * of the average for the block. */ void correct_row_xheight(TO_ROW *row, float xheight, float ascrise, float descdrop) { ROW_CATEGORY row_category = get_row_category(row); if (textord_debug_xheights) { tprintf( "correcting row xheight: row->xheight %.4f" ", row->acrise %.4f row->descdrop %.4f\n", row->xheight, row->ascrise, row->descdrop); } bool normal_xheight = within_error_margin(row->xheight, xheight, textord_xheight_error_margin); bool cap_xheight = within_error_margin(row->xheight, xheight + ascrise, textord_xheight_error_margin); // Use the average xheight/ascrise for the following cases: // -- the xheight of the row could not be determined at all // -- the row has descenders (e.g. "many groups", "ISBN 12345 p.3") // and its xheight is close to either cap height or average xheight // -- the row does not have ascenders or descenders, but its xheight // is close to the average block xheight (e.g. row with "www.mmm.com") if (row_category == ROW_ASCENDERS_FOUND) { if (row->descdrop >= 0) { row->descdrop = row->xheight * (descdrop / xheight); } } else if (row_category == ROW_INVALID || (row_category == ROW_DESCENDERS_FOUND && (normal_xheight || cap_xheight)) || (row_category == ROW_UNKNOWN && normal_xheight)) { if (textord_debug_xheights) { tprintf("using average xheight\n"); } row->xheight = xheight; row->ascrise = ascrise; row->descdrop = descdrop; } else if (row_category == ROW_DESCENDERS_FOUND) { // Assume this is a row with mostly lowercase letters and it's xheight // is computed correctly (unfortunately there is no way to distinguish // this from the case when descenders are found, but the most common // height is capheight). if (textord_debug_xheights) { tprintf("lowercase, corrected ascrise\n"); } row->ascrise = row->xheight * (ascrise / xheight); } else if (row_category == ROW_UNKNOWN) { // Otherwise assume this row is an all-caps or small-caps row // and adjust xheight and ascrise of the row. row->all_caps = true; if (cap_xheight) { // regular all caps if (textord_debug_xheights) { tprintf("all caps\n"); } row->xheight = xheight; row->ascrise = ascrise; row->descdrop = descdrop; } else { // small caps or caps with an odd xheight if (textord_debug_xheights) { if (row->xheight < xheight + ascrise && row->xheight > xheight) { tprintf("small caps\n"); } else { tprintf("all caps with irregular xheight\n"); } } row->ascrise = row->xheight * (ascrise / (xheight + ascrise)); row->xheight -= row->ascrise; row->descdrop = row->xheight * (descdrop / xheight); } } if (textord_debug_xheights) { tprintf( "corrected row->xheight = %.4f, row->acrise = %.4f, row->descdrop" " = %.4f\n", row->xheight, row->ascrise, row->descdrop); } } static int CountOverlaps(const TBOX &box, int min_height, BLOBNBOX_LIST *blobs) { int overlaps = 0; BLOBNBOX_IT blob_it(blobs); for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { BLOBNBOX *blob = blob_it.data(); const TBOX &blob_box = blob->bounding_box(); if (blob_box.height() >= min_height && box.major_overlap(blob_box)) { ++overlaps; } } return overlaps; } /** * @name separate_underlines * * Test wide objects for being potential underlines. If they are then * put them in a separate list in the block. */ void separate_underlines(TO_BLOCK *block, // block to do float gradient, // skew angle FCOORD rotation, // inverse landscape bool testing_on) { // correct orientation BLOBNBOX *blob; // current blob C_BLOB *rotated_blob; // rotated blob TO_ROW *row; // current row float length; // of g_vec TBOX blob_box; FCOORD blob_rotation; // inverse of rotation FCOORD g_vec; // skew rotation BLOBNBOX_IT blob_it; // iterator // iterator BLOBNBOX_IT under_it = &block->underlines; BLOBNBOX_IT large_it = &block->large_blobs; TO_ROW_IT row_it = block->get_rows(); int min_blob_height = static_cast<int>(textord_min_blob_height_fraction * block->line_size + 0.5); // length of vector length = std::sqrt(1 + gradient * gradient); g_vec = FCOORD(1 / length, -gradient / length); blob_rotation = FCOORD(rotation.x(), -rotation.y()); blob_rotation.rotate(g_vec); // undoing everything for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { row = row_it.data(); // get blobs blob_it.set_to_list(row->blob_list()); for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { blob = blob_it.data(); blob_box = blob->bounding_box(); if (blob_box.width() > block->line_size * textord_underline_width) { ASSERT_HOST(blob->cblob() != nullptr); rotated_blob = crotate_cblob(blob->cblob(), blob_rotation); if (test_underline(testing_on && textord_show_final_rows, rotated_blob, static_cast<int16_t>(row->intercept()), static_cast<int16_t>(block->line_size * (tesseract::CCStruct::kXHeightFraction + tesseract::CCStruct::kAscenderFraction / 2.0f)))) { under_it.add_after_then_move(blob_it.extract()); if (testing_on && textord_show_final_rows) { tprintf("Underlined blob at:"); rotated_blob->bounding_box().print(); tprintf("Was:"); blob_box.print(); } } else if (CountOverlaps(blob->bounding_box(), min_blob_height, row->blob_list()) > textord_max_blob_overlaps) { large_it.add_after_then_move(blob_it.extract()); if (testing_on && textord_show_final_rows) { tprintf("Large blob overlaps %d blobs at:", CountOverlaps(blob_box, min_blob_height, row->blob_list())); blob_box.print(); } } delete rotated_blob; } } } } /** * @name pre_associate_blobs * * Associate overlapping blobs and fake chop wide blobs. */ void pre_associate_blobs( // make rough chars ICOORD page_tr, // top right TO_BLOCK *block, // block to do FCOORD rotation, // inverse landscape bool testing_on // correct orientation ) { #ifndef GRAPHICS_DISABLED ScrollView::Color colour; // of boxes #endif BLOBNBOX *blob; // current blob BLOBNBOX *nextblob; // next in list TBOX blob_box; FCOORD blob_rotation; // inverse of rotation BLOBNBOX_IT blob_it; // iterator BLOBNBOX_IT start_it; // iterator TO_ROW_IT row_it = block->get_rows(); #ifndef GRAPHICS_DISABLED colour = ScrollView::RED; #endif blob_rotation = FCOORD(rotation.x(), -rotation.y()); for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { // get blobs blob_it.set_to_list(row_it.data()->blob_list()); for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { blob = blob_it.data(); blob_box = blob->bounding_box(); start_it = blob_it; // save start point // if (testing_on && textord_show_final_blobs) // { // tprintf("Blob at (%d,%d)->(%d,%d), // addr=%x, count=%d\n", // blob_box.left(),blob_box.bottom(), // blob_box.right(),blob_box.top(), // (void*)blob,blob_it.length()); // } bool overlap; do { overlap = false; if (!blob_it.at_last()) { nextblob = blob_it.data_relative(1); overlap = blob_box.major_x_overlap(nextblob->bounding_box()); if (overlap) { blob->merge(nextblob); // merge new blob blob_box = blob->bounding_box(); // get bigger box blob_it.forward(); } } } while (overlap); blob->chop(&start_it, &blob_it, blob_rotation, block->line_size * tesseract::CCStruct::kXHeightFraction * textord_chop_width); // attempt chop } #ifndef GRAPHICS_DISABLED if (testing_on && textord_show_final_blobs) { if (to_win == nullptr) { create_to_win(page_tr); } to_win->Pen(colour); for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { blob = blob_it.data(); blob_box = blob->bounding_box(); blob_box.rotate(rotation); if (!blob->joined_to_prev()) { to_win->Rectangle(blob_box.left(), blob_box.bottom(), blob_box.right(), blob_box.top()); } } colour = static_cast<ScrollView::Color>(colour + 1); if (colour > ScrollView::MAGENTA) { colour = ScrollView::RED; } } #endif } } /** * @name fit_parallel_rows * * Re-fit the rows in the block to the given gradient. */ void fit_parallel_rows( // find lines TO_BLOCK *block, // block to do float gradient, // gradient to fit FCOORD rotation, // for drawing int32_t block_edge, // edge of block bool testing_on // correct orientation ) { #ifndef GRAPHICS_DISABLED ScrollView::Color colour; // of row #endif TO_ROW_IT row_it = block->get_rows(); row_it.move_to_first(); for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { if (row_it.data()->blob_list()->empty()) { delete row_it.extract(); // nothing in it } else { fit_parallel_lms(gradient, row_it.data()); } } #ifndef GRAPHICS_DISABLED if (testing_on) { colour = ScrollView::RED; for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { plot_parallel_row(row_it.data(), gradient, block_edge, colour, rotation); colour = static_cast<ScrollView::Color>(colour + 1); if (colour > ScrollView::MAGENTA) { colour = ScrollView::RED; } } } #endif row_it.sort(row_y_order); // may have gone out of order } /** * @name fit_parallel_lms * * Fit an LMS line to a row. * Make the fit parallel to the given gradient and set the * row accordingly. */ void fit_parallel_lms(float gradient, TO_ROW *row) { float c; // fitted line int blobcount; // no of blobs tesseract::DetLineFit lms; BLOBNBOX_IT blob_it = row->blob_list(); blobcount = 0; for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { if (!blob_it.data()->joined_to_prev()) { const TBOX &box = blob_it.data()->bounding_box(); lms.Add(ICOORD((box.left() + box.right()) / 2, box.bottom())); blobcount++; } } double error = lms.ConstrainedFit(gradient, &c); row->set_parallel_line(gradient, c, error); if (textord_straight_baselines && blobcount > textord_lms_line_trials) { error = lms.Fit(&gradient, &c); } // set the other too row->set_line(gradient, c, error); } /** * @name make_spline_rows * * Re-fit the rows in the block to the given gradient. */ void Textord::make_spline_rows(TO_BLOCK *block, // block to do float gradient, // gradient to fit bool testing_on) { #ifndef GRAPHICS_DISABLED ScrollView::Color colour; // of row if (testing_on && to_win == nullptr) { create_to_win(page_tr_); } #endif TO_ROW_IT row_it = block->get_rows(); row_it.move_to_first(); for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { if (row_it.data()->blob_list()->empty()) { delete row_it.extract(); // nothing in it } else { make_baseline_spline(row_it.data(), block); } } if (textord_old_baselines) { #ifndef GRAPHICS_DISABLED if (testing_on) { colour = ScrollView::RED; for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { row_it.data()->baseline.plot(to_win, colour); colour = static_cast<ScrollView::Color>(colour + 1); if (colour > ScrollView::MAGENTA) { colour = ScrollView::RED; } } } #endif make_old_baselines(block, testing_on, gradient); } #ifndef GRAPHICS_DISABLED if (testing_on) { colour = ScrollView::RED; for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { row_it.data()->baseline.plot(to_win, colour); colour = static_cast<ScrollView::Color>(colour + 1); if (colour > ScrollView::MAGENTA) { colour = ScrollView::RED; } } } #endif } /** * @name make_baseline_spline * * Fit an LMS line to a row. * Make the fit parallel to the given gradient and set the * row accordingly. */ void make_baseline_spline(TO_ROW *row, // row to fit TO_BLOCK *block) { double *coeffs; // quadratic coeffs int32_t segments; // no of segments // spline boundaries auto *xstarts = new int32_t[row->blob_list()->length() + 1]; if (segment_baseline(row, block, segments, xstarts) && !textord_straight_baselines && !textord_parallel_baselines) { coeffs = linear_spline_baseline(row, block, segments, xstarts); } else { xstarts[1] = xstarts[segments]; segments = 1; coeffs = new double[3]; coeffs[0] = 0; coeffs[1] = row->line_m(); coeffs[2] = row->line_c(); } row->baseline = QSPLINE(segments, xstarts, coeffs); delete[] coeffs; delete[] xstarts; } /** * @name segment_baseline * * Divide the baseline up into segments which require a different * quadratic fitted to them. * Return true if enough blobs were far enough away to need a quadratic. */ bool segment_baseline( // split baseline TO_ROW *row, // row to fit TO_BLOCK *block, // block it came from int32_t &segments, // no fo segments int32_t *xstarts // coords of segments ) { bool needs_curve; // needs curved line int blobcount; // no of blobs int blobindex; // current blob int last_state; // above, on , below int state; // of current blob float yshift; // from baseline TBOX box; // blob box TBOX new_box; // new_it box float middle; // xcentre of blob // blobs BLOBNBOX_IT blob_it = row->blob_list(); BLOBNBOX_IT new_it = blob_it; // front end SORTED_FLOATS yshifts; // shifts from baseline needs_curve = false; box = box_next_pre_chopped(&blob_it); xstarts[0] = box.left(); segments = 1; blobcount = row->blob_list()->length(); if (textord_oldbl_debug) { tprintf("Segmenting baseline of %d blobs at (%d,%d)\n", blobcount, box.left(), box.bottom()); } if (blobcount <= textord_spline_medianwin || blobcount < textord_spline_minblobs) { blob_it.move_to_last(); box = blob_it.data()->bounding_box(); xstarts[1] = box.right(); return false; } last_state = 0; new_it.mark_cycle_pt(); for (blobindex = 0; blobindex < textord_spline_medianwin; blobindex++) { new_box = box_next_pre_chopped(&new_it); middle = (new_box.left() + new_box.right()) / 2.0; yshift = new_box.bottom() - row->line_m() * middle - row->line_c(); // record shift yshifts.add(yshift, blobindex); if (new_it.cycled_list()) { xstarts[1] = new_box.right(); return false; } } for (blobcount = 0; blobcount < textord_spline_medianwin / 2; blobcount++) { box = box_next_pre_chopped(&blob_it); } do { new_box = box_next_pre_chopped(&new_it); // get middle one yshift = yshifts[textord_spline_medianwin / 2]; if (yshift > textord_spline_shift_fraction * block->line_size) { state = 1; } else if (-yshift > textord_spline_shift_fraction * block->line_size) { state = -1; } else { state = 0; } if (state != 0) { needs_curve = true; } // tprintf("State=%d, prev=%d, shift=%g\n", // state,last_state,yshift); if (state != last_state && blobcount > textord_spline_minblobs) { xstarts[segments++] = box.left(); blobcount = 0; } last_state = state; yshifts.remove(blobindex - textord_spline_medianwin); box = box_next_pre_chopped(&blob_it); middle = (new_box.left() + new_box.right()) / 2.0; yshift = new_box.bottom() - row->line_m() * middle - row->line_c(); yshifts.add(yshift, blobindex); blobindex++; blobcount++; } while (!new_it.cycled_list()); if (blobcount > textord_spline_minblobs || segments == 1) { xstarts[segments] = new_box.right(); } else { xstarts[--segments] = new_box.right(); } if (textord_oldbl_debug) { tprintf("Made %d segments on row at (%d,%d)\n", segments, box.right(), box.bottom()); } return needs_curve; } /** * @name linear_spline_baseline * * Divide the baseline up into segments which require a different * quadratic fitted to them. * @return true if enough blobs were far enough away to need a quadratic. */ double *linear_spline_baseline( // split baseline TO_ROW *row, // row to fit TO_BLOCK *block, // block it came from int32_t &segments, // no fo segments int32_t xstarts[] // coords of segments ) { int blobcount; // no of blobs int blobindex; // current blob int index1, index2; // blob numbers int blobs_per_segment; // blobs in each TBOX box; // blob box TBOX new_box; // new_it box // blobs BLOBNBOX_IT blob_it = row->blob_list(); BLOBNBOX_IT new_it = blob_it; // front end float b, c; // fitted curve tesseract::DetLineFit lms; int32_t segment; // current segment box = box_next_pre_chopped(&blob_it); xstarts[0] = box.left(); blobcount = 1; while (!blob_it.at_first()) { blobcount++; box = box_next_pre_chopped(&blob_it); } segments = blobcount / textord_spline_medianwin; if (segments < 1) { segments = 1; } blobs_per_segment = blobcount / segments; // quadratic coeffs auto *coeffs = new double[segments * 3]; if (textord_oldbl_debug) { tprintf( "Linear splining baseline of %d blobs at (%d,%d), into %d segments of " "%d blobs\n", blobcount, box.left(), box.bottom(), segments, blobs_per_segment); } segment = 1; for (index2 = 0; index2 < blobs_per_segment / 2; index2++) { box_next_pre_chopped(&new_it); } index1 = 0; blobindex = index2; do { blobindex += blobs_per_segment; lms.Clear(); while (index1 < blobindex || (segment == segments && index1 < blobcount)) { box = box_next_pre_chopped(&blob_it); int middle = (box.left() + box.right()) / 2; lms.Add(ICOORD(middle, box.bottom())); index1++; if (index1 == blobindex - blobs_per_segment / 2 || index1 == blobcount - 1) { xstarts[segment] = box.left(); } } lms.Fit(&b, &c); coeffs[segment * 3 - 3] = 0; coeffs[segment * 3 - 2] = b; coeffs[segment * 3 - 1] = c; segment++; if (segment > segments) { break; } blobindex += blobs_per_segment; lms.Clear(); while (index2 < blobindex || (segment == segments && index2 < blobcount)) { new_box = box_next_pre_chopped(&new_it); int middle = (new_box.left() + new_box.right()) / 2; lms.Add(ICOORD(middle, new_box.bottom())); index2++; if (index2 == blobindex - blobs_per_segment / 2 || index2 == blobcount - 1) { xstarts[segment] = new_box.left(); } } lms.Fit(&b, &c); coeffs[segment * 3 - 3] = 0; coeffs[segment * 3 - 2] = b; coeffs[segment * 3 - 1] = c; segment++; } while (segment <= segments); return coeffs; } /** * @name assign_blobs_to_rows * * Make enough rows to allocate all the given blobs to one. * If a block skew is given, use that, else attempt to track it. */ void assign_blobs_to_rows( // find lines TO_BLOCK *block, // block to do float *gradient, // block skew int pass, // identification bool reject_misses, // chuck big ones out bool make_new_rows, // add rows for unmatched bool drawing_skew // draw smoothed skew ) { OVERLAP_STATE overlap_result; // what to do with it float ycoord; // current y float top, bottom; // of blob float g_length = 1.0f; // from gradient int16_t row_count; // no of rows int16_t left_x; // left edge int16_t last_x; // previous edge float block_skew; // y delta float smooth_factor; // for new coords float near_dist; // dist to nearest row ICOORD testpt; // testing only BLOBNBOX *blob; // current blob TO_ROW *row; // current row TO_ROW *dest_row = nullptr; // row to put blob in // iterators BLOBNBOX_IT blob_it = &block->blobs; TO_ROW_IT row_it = block->get_rows(); ycoord = (block->block->pdblk.bounding_box().bottom() + block->block->pdblk.bounding_box().top()) / 2.0f; if (gradient != nullptr) { g_length = std::sqrt(1 + *gradient * *gradient); } #ifndef GRAPHICS_DISABLED if (drawing_skew) { to_win->SetCursor(block->block->pdblk.bounding_box().left(), ycoord); } #endif testpt = ICOORD(textord_test_x, textord_test_y); blob_it.sort(blob_x_order); smooth_factor = 1.0; block_skew = 0.0f; row_count = row_it.length(); // might have rows if (!blob_it.empty()) { left_x = blob_it.data()->bounding_box().left(); } else { left_x = block->block->pdblk.bounding_box().left(); } last_x = left_x; for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { blob = blob_it.data(); if (gradient != nullptr) { block_skew = (1 - 1 / g_length) * blob->bounding_box().bottom() + *gradient / g_length * blob->bounding_box().left(); } else if (blob->bounding_box().left() - last_x > block->line_size / 2 && last_x - left_x > block->line_size * 2 && textord_interpolating_skew) { // tprintf("Interpolating skew from %g",block_skew); block_skew *= static_cast<float>(blob->bounding_box().left() - left_x) / (last_x - left_x); // tprintf("to %g\n",block_skew); } last_x = blob->bounding_box().left(); top = blob->bounding_box().top() - block_skew; bottom = blob->bounding_box().bottom() - block_skew; #ifndef GRAPHICS_DISABLED if (drawing_skew) { to_win->DrawTo(blob->bounding_box().left(), ycoord + block_skew); } #endif if (!row_it.empty()) { for (row_it.move_to_first(); !row_it.at_last() && row_it.data()->min_y() > top; row_it.forward()) { } row = row_it.data(); if (row->min_y() <= top && row->max_y() >= bottom) { // any overlap dest_row = row; overlap_result = most_overlapping_row(&row_it, dest_row, top, bottom, block->line_size, blob->bounding_box().contains(testpt)); if (overlap_result == NEW_ROW && !reject_misses) { overlap_result = ASSIGN; } } else { overlap_result = NEW_ROW; if (!make_new_rows) { near_dist = row_it.data_relative(-1)->min_y() - top; // below bottom if (bottom < row->min_y()) { if (row->min_y() - bottom <= (block->line_spacing - block->line_size) * tesseract::CCStruct::kDescenderFraction) { // done it overlap_result = ASSIGN; dest_row = row; } } else if (near_dist > 0 && near_dist < bottom - row->max_y()) { row_it.backward(); dest_row = row_it.data(); if (dest_row->min_y() - bottom <= (block->line_spacing - block->line_size) * tesseract::CCStruct::kDescenderFraction) { // done it overlap_result = ASSIGN; } } else { if (top - row->max_y() <= (block->line_spacing - block->line_size) * (textord_overlap_x + tesseract::CCStruct::kAscenderFraction)) { // done it overlap_result = ASSIGN; dest_row = row; } } } } if (overlap_result == ASSIGN) { dest_row->add_blob(blob_it.extract(), top, bottom, block->line_size); } if (overlap_result == NEW_ROW) { if (make_new_rows && top - bottom < block->max_blob_size) { dest_row = new TO_ROW(blob_it.extract(), top, bottom, block->line_size); row_count++; if (bottom > row_it.data()->min_y()) { row_it.add_before_then_move(dest_row); // insert in right place } else { row_it.add_after_then_move(dest_row); } smooth_factor = 1.0 / (row_count * textord_skew_lag + textord_skewsmooth_offset); } else { overlap_result = REJECT; } } } else if (make_new_rows && top - bottom < block->max_blob_size) { overlap_result = NEW_ROW; dest_row = new TO_ROW(blob_it.extract(), top, bottom, block->line_size); row_count++; row_it.add_after_then_move(dest_row); smooth_factor = 1.0 / (row_count * textord_skew_lag + textord_skewsmooth_offset2); } else { overlap_result = REJECT; } if (blob->bounding_box().contains(testpt) && textord_debug_blob) { if (overlap_result != REJECT) { tprintf("Test blob assigned to row at (%g,%g) on pass %d\n", dest_row->min_y(), dest_row->max_y(), pass); } else { tprintf("Test blob assigned to no row on pass %d\n", pass); } } if (overlap_result != REJECT) { while (!row_it.at_first() && row_it.data()->min_y() > row_it.data_relative(-1)->min_y()) { row = row_it.extract(); row_it.backward(); row_it.add_before_then_move(row); } while (!row_it.at_last() && row_it.data()->min_y() < row_it.data_relative(1)->min_y()) { row = row_it.extract(); row_it.forward(); // Keep rows in order. row_it.add_after_then_move(row); } BLOBNBOX_IT added_blob_it(dest_row->blob_list()); added_blob_it.move_to_last(); TBOX prev_box = added_blob_it.data_relative(-1)->bounding_box(); if (dest_row->blob_list()->singleton() || !prev_box.major_x_overlap(blob->bounding_box())) { block_skew = (1 - smooth_factor) * block_skew + smooth_factor * (blob->bounding_box().bottom() - dest_row->initial_min_y()); } } } for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { if (row_it.data()->blob_list()->empty()) { delete row_it.extract(); // Discard empty rows. } } } /** * @name most_overlapping_row * * Return the row which most overlaps the blob. */ OVERLAP_STATE most_overlapping_row( // find best row TO_ROW_IT *row_it, // iterator TO_ROW *&best_row, // output row float top, // top of blob float bottom, // bottom of blob float rowsize, // max row size bool testing_blob // test stuff ) { OVERLAP_STATE result; // result of tests float overlap; // of blob & row float bestover; // nearest row float merge_top, merge_bottom; // size of merged row ICOORD testpt; // testing only TO_ROW *row; // current row TO_ROW *test_row; // for multiple overlaps BLOBNBOX_IT blob_it; // for merging rows result = ASSIGN; row = row_it->data(); bestover = top - bottom; if (top > row->max_y()) { bestover -= top - row->max_y(); } if (bottom < row->min_y()) { // compute overlap bestover -= row->min_y() - bottom; } if (testing_blob && textord_debug_blob) { tprintf("Test blob y=(%g,%g), row=(%f,%f), size=%g, overlap=%f\n", bottom, top, row->min_y(), row->max_y(), rowsize, bestover); } test_row = row; do { if (!row_it->at_last()) { row_it->forward(); test_row = row_it->data(); if (test_row->min_y() <= top && test_row->max_y() >= bottom) { merge_top = std::max(test_row->max_y(),row->max_y()); merge_bottom = std::min(test_row->min_y(),row->min_y()); if (merge_top - merge_bottom <= rowsize) { if (testing_blob && textord_debug_blob) { tprintf("Merging rows at (%g,%g), (%g,%g)\n", row->min_y(), row->max_y(), test_row->min_y(), test_row->max_y()); } test_row->set_limits(merge_bottom, merge_top); blob_it.set_to_list(test_row->blob_list()); blob_it.add_list_after(row->blob_list()); blob_it.sort(blob_x_order); row_it->backward(); delete row_it->extract(); row_it->forward(); bestover = -1.0f; // force replacement } overlap = top - bottom; if (top > test_row->max_y()) { overlap -= top - test_row->max_y(); } if (bottom < test_row->min_y()) { overlap -= test_row->min_y() - bottom; } if (bestover >= rowsize - 1 && overlap >= rowsize - 1) { result = REJECT; } if (overlap > bestover) { bestover = overlap; // find biggest overlap row = test_row; } if (testing_blob && textord_debug_blob) { tprintf("Test blob y=(%g,%g), row=(%f,%f), size=%g, overlap=%f->%f\n", bottom, top, test_row->min_y(), test_row->max_y(), rowsize, overlap, bestover); } } } } while (!row_it->at_last() && test_row->min_y() <= top && test_row->max_y() >= bottom); while (row_it->data() != row) { row_it->backward(); // make it point to row } // doesn't overlap much if (top - bottom - bestover > rowsize * textord_overlap_x && (!textord_fix_makerow_bug || bestover < rowsize * textord_overlap_x) && result == ASSIGN) { result = NEW_ROW; // doesn't overlap enough } best_row = row; return result; } /** * @name blob_x_order * * Sort function to sort blobs in x from page left. */ int blob_x_order( // sort function const void *item1, // items to compare const void *item2) { // converted ptr const BLOBNBOX *blob1 = *reinterpret_cast<const BLOBNBOX *const *>(item1); // converted ptr const BLOBNBOX *blob2 = *reinterpret_cast<const BLOBNBOX *const *>(item2); if (blob1->bounding_box().left() < blob2->bounding_box().left()) { return -1; } else if (blob1->bounding_box().left() > blob2->bounding_box().left()) { return 1; } else { return 0; } } /** * @name mark_repeated_chars * * Mark blobs marked with BTFT_LEADER in repeated sets using the * repeated_set member of BLOBNBOX. */ void mark_repeated_chars(TO_ROW *row) { BLOBNBOX_IT box_it(row->blob_list()); // Iterator. int num_repeated_sets = 0; if (!box_it.empty()) { do { BLOBNBOX *bblob = box_it.data(); int repeat_length = 1; if (bblob->flow() == BTFT_LEADER && !bblob->joined_to_prev() && bblob->cblob() != nullptr) { BLOBNBOX_IT test_it(box_it); for (test_it.forward(); !test_it.at_first();) { bblob = test_it.data(); if (bblob->flow() != BTFT_LEADER) { break; } test_it.forward(); bblob = test_it.data(); if (bblob->joined_to_prev() || bblob->cblob() == nullptr) { repeat_length = 0; break; } ++repeat_length; } } if (repeat_length >= kMinLeaderCount) { num_repeated_sets++; for (; repeat_length > 0; box_it.forward(), --repeat_length) { bblob = box_it.data(); bblob->set_repeated_set(num_repeated_sets); } } else { bblob->set_repeated_set(0); box_it.forward(); } } while (!box_it.at_first()); // until all done } row->set_num_repeated_sets(num_repeated_sets); } } // namespace tesseract
