view mupdf-source/thirdparty/tesseract/src/dict/dawg.h @ 17:dd9cdb856310

Remove PKG-INFO from the because it is regenerated automatically for the sdist
author Franz Glasner <fzglas.hg@dom66.de>
date Thu, 18 Sep 2025 17:40:40 +0200
parents b50eed0cc0ef
children
line wrap: on
line source

/******************************************************************************
 *
 * File:         dawg.h
 * Description:  Definition of a class that represents Directed Acyclic Word
 *               Graph (DAWG), functions to build and manipulate the DAWG.
 * Author:       Mark Seaman, SW Productivity
 *
 * (c) Copyright 1987, Hewlett-Packard Company.
 ** Licensed under the Apache License, Version 2.0 (the "License");
 ** you may not use this file except in compliance with the License.
 ** You may obtain a copy of the License at
 ** http://www.apache.org/licenses/LICENSE-2.0
 ** Unless required by applicable law or agreed to in writing, software
 ** distributed under the License is distributed on an "AS IS" BASIS,
 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 ** See the License for the specific language governing permissions and
 ** limitations under the License.
 *
 *****************************************************************************/

#ifndef DICT_DAWG_H_
#define DICT_DAWG_H_

/*----------------------------------------------------------------------
              I n c l u d e s
----------------------------------------------------------------------*/

#include <cinttypes>  // for PRId64
#include <functional> // for std::function
#include <memory>
#include "elst.h"
#include "params.h"
#include "ratngs.h"

#ifndef __GNUC__
#  ifdef _WIN32
#    define NO_EDGE static_cast<int64_t>(0xffffffffffffffffi64)
#  endif /*_WIN32*/
#else
#  define NO_EDGE static_cast<int64_t>(0xffffffffffffffffll)
#endif /*__GNUC__*/

namespace tesseract {

class UNICHARSET;

using EDGE_RECORD = uint64_t;
using EDGE_ARRAY = EDGE_RECORD *;
using EDGE_REF = int64_t;
using NODE_REF = int64_t;
using NODE_MAP = EDGE_REF *;

struct NodeChild {
  UNICHAR_ID unichar_id;
  EDGE_REF edge_ref;
  NodeChild(UNICHAR_ID id, EDGE_REF ref) : unichar_id(id), edge_ref(ref) {}
  NodeChild() : unichar_id(INVALID_UNICHAR_ID), edge_ref(NO_EDGE) {}
};

using NodeChildVector = std::vector<NodeChild>;
using SuccessorList = std::vector<int>;
using SuccessorListsVector = std::vector<SuccessorList *>;

enum DawgType {
  DAWG_TYPE_PUNCTUATION,
  DAWG_TYPE_WORD,
  DAWG_TYPE_NUMBER,
  DAWG_TYPE_PATTERN,

  DAWG_TYPE_COUNT // number of enum entries
};

/*----------------------------------------------------------------------
              C o n s t a n t s
----------------------------------------------------------------------*/

#define FORWARD_EDGE static_cast<int32_t>(0)
#define BACKWARD_EDGE static_cast<int32_t>(1)
#define MAX_NODE_EDGES_DISPLAY static_cast<int64_t>(100)
#define MARKER_FLAG static_cast<int64_t>(1)
#define DIRECTION_FLAG static_cast<int64_t>(2)
#define WERD_END_FLAG static_cast<int64_t>(4)
#define LETTER_START_BIT 0
#define NUM_FLAG_BITS 3
#define REFFORMAT "%" PRId64

static const bool kDawgSuccessors[DAWG_TYPE_COUNT][DAWG_TYPE_COUNT] = {
    {false, true, true, false},   // for DAWG_TYPE_PUNCTUATION
    {true, false, false, false},  // for DAWG_TYPE_WORD
    {true, false, false, false},  // for DAWG_TYPE_NUMBER
    {false, false, false, false}, // for DAWG_TYPE_PATTERN
};

static const char kWildcard[] = "*";

/*----------------------------------------------------------------------
              C l a s s e s   a n d   S t r u c t s
----------------------------------------------------------------------*/
//
/// Abstract class (an interface) that declares methods needed by the
/// various tesseract classes to operate on SquishedDawg and Trie objects.
///
/// This class initializes all the edge masks (since their usage by
/// SquishedDawg and Trie is identical) and implements simple accessors
/// for each of the fields encoded in an EDGE_RECORD.
/// This class also implements word_in_dawg() and check_for_words()
/// (since they use only the public methods of SquishedDawg and Trie
/// classes that are inherited from the Dawg base class).
//
class TESS_API Dawg {
public:
  /// Magic number to determine endianness when reading the Dawg from file.
  static const int16_t kDawgMagicNumber = 42;
  /// A special unichar id that indicates that any appropriate pattern
  /// (e.g.dictionary word, 0-9 digit, etc) can be inserted instead
  /// Used for expressing patterns in punctuation and number Dawgs.
  static const UNICHAR_ID kPatternUnicharID = 0;

  inline DawgType type() const {
    return type_;
  }
  inline const std::string &lang() const {
    return lang_;
  }
  inline PermuterType permuter() const {
    return perm_;
  }

  virtual ~Dawg();

  /// Returns true if the given word is in the Dawg.
  bool word_in_dawg(const WERD_CHOICE &word) const;

  // Returns true if the given word prefix is not contraindicated by the dawg.
  // If requires_complete is true, then the exact complete word must be present.
  bool prefix_in_dawg(const WERD_CHOICE &prefix, bool requires_complete) const;

  /// Checks the Dawg for the words that are listed in the requested file.
  /// Returns the number of words in the given file missing from the Dawg.
  int check_for_words(const char *filename, const UNICHARSET &unicharset,
                      bool enable_wildcard) const;

  // For each word in the Dawg, call the given (permanent) callback with the
  // text (UTF-8) version of the word.
  void iterate_words(const UNICHARSET &unicharset,
                     std::function<void(const WERD_CHOICE *)> cb) const;

  // For each word in the Dawg, call the given (permanent) callback with the
  // text (UTF-8) version of the word.
  void iterate_words(const UNICHARSET &unicharset,
                     const std::function<void(const char *)> &cb) const;

  // Pure virtual function that should be implemented by the derived classes.

  /// Returns the edge that corresponds to the letter out of this node.
  virtual EDGE_REF edge_char_of(NODE_REF node, UNICHAR_ID unichar_id,
                                bool word_end) const = 0;

  /// Fills the given NodeChildVector with all the unichar ids (and the
  /// corresponding EDGE_REFs) for which there is an edge out of this node.
  virtual void unichar_ids_of(NODE_REF node, NodeChildVector *vec,
                              bool word_end) const = 0;

  /// Returns the next node visited by following the edge
  /// indicated by the given EDGE_REF.
  virtual NODE_REF next_node(EDGE_REF edge_ref) const = 0;

  /// Returns true if the edge indicated by the given EDGE_REF
  /// marks the end of a word.
  virtual bool end_of_word(EDGE_REF edge_ref) const = 0;

  /// Returns UNICHAR_ID stored in the edge indicated by the given EDGE_REF.
  virtual UNICHAR_ID edge_letter(EDGE_REF edge_ref) const = 0;

  /// Prints the contents of the node indicated by the given NODE_REF.
  /// At most max_num_edges will be printed.
  virtual void print_node(NODE_REF node, int max_num_edges) const = 0;

  /// Fills vec with unichar ids that represent the character classes
  /// of the given unichar_id.
  virtual void unichar_id_to_patterns(UNICHAR_ID unichar_id,
                                      const UNICHARSET &unicharset,
                                      std::vector<UNICHAR_ID> *vec) const {
    (void)unichar_id;
    (void)unicharset;
    (void)vec;
  }

  /// Returns the given EDGE_REF if the EDGE_RECORD that it points to has
  /// a self loop and the given unichar_id matches the unichar_id stored in the
  /// EDGE_RECORD, returns NO_EDGE otherwise.
  virtual EDGE_REF pattern_loop_edge(EDGE_REF edge_ref, UNICHAR_ID unichar_id,
                                     bool word_end) const {
    (void)edge_ref;
    (void)unichar_id;
    (void)word_end;
    return false;
  }

protected:
  Dawg(DawgType type, const std::string &lang, PermuterType perm,
       int debug_level)
      : lang_(lang),
        type_(type),
        perm_(perm),
        unicharset_size_(0),
        debug_level_(debug_level) {}

  /// Returns the next node visited by following this edge.
  inline NODE_REF next_node_from_edge_rec(const EDGE_RECORD &edge_rec) const {
    return ((edge_rec & next_node_mask_) >> next_node_start_bit_);
  }
  /// Returns the marker flag of this edge.
  inline bool marker_flag_from_edge_rec(const EDGE_RECORD &edge_rec) const {
    return (edge_rec & (MARKER_FLAG << flag_start_bit_)) != 0;
  }
  /// Returns the direction flag of this edge.
  inline int direction_from_edge_rec(const EDGE_RECORD &edge_rec) const {
    return ((edge_rec & (DIRECTION_FLAG << flag_start_bit_))) ? BACKWARD_EDGE
                                                              : FORWARD_EDGE;
  }
  /// Returns true if this edge marks the end of a word.
  inline bool end_of_word_from_edge_rec(const EDGE_RECORD &edge_rec) const {
    return (edge_rec & (WERD_END_FLAG << flag_start_bit_)) != 0;
  }
  /// Returns UNICHAR_ID recorded in this edge.
  inline UNICHAR_ID unichar_id_from_edge_rec(
      const EDGE_RECORD &edge_rec) const {
    return ((edge_rec & letter_mask_) >> LETTER_START_BIT);
  }
  /// Sets the next node link for this edge in the Dawg.
  inline void set_next_node_in_edge_rec(EDGE_RECORD *edge_rec, EDGE_REF value) {
    *edge_rec &= (~next_node_mask_);
    *edge_rec |= ((value << next_node_start_bit_) & next_node_mask_);
  }
  /// Sets this edge record to be the last one in a sequence of edges.
  inline void set_marker_flag_in_edge_rec(EDGE_RECORD *edge_rec) {
    *edge_rec |= (MARKER_FLAG << flag_start_bit_);
  }
  /// Sequentially compares the given values of unichar ID, next node
  /// and word end marker with the values in the given EDGE_RECORD.
  /// Returns: 1 if at any step the given input value exceeds
  ///            that of edge_rec (and all the values already
  ///            checked are the same)
  ///          0 if edge_rec_match() returns true
  ///         -1 otherwise
  inline int given_greater_than_edge_rec(NODE_REF next_node, bool word_end,
                                         UNICHAR_ID unichar_id,
                                         const EDGE_RECORD &edge_rec) const {
    UNICHAR_ID curr_unichar_id = unichar_id_from_edge_rec(edge_rec);
    NODE_REF curr_next_node = next_node_from_edge_rec(edge_rec);
    bool curr_word_end = end_of_word_from_edge_rec(edge_rec);
    if (edge_rec_match(next_node, word_end, unichar_id, curr_next_node,
                       curr_word_end, curr_unichar_id)) {
      return 0;
    }
    if (unichar_id > curr_unichar_id) {
      return 1;
    }
    if (unichar_id == curr_unichar_id) {
      if (next_node > curr_next_node) {
        return 1;
      }
      if (next_node == curr_next_node) {
        if (word_end > curr_word_end) {
          return 1;
        }
      }
    }
    return -1;
  }
  /// Returns true if all the values are equal (any value matches
  /// next_node if next_node == NO_EDGE, any value matches word_end
  /// if word_end is false).
  inline bool edge_rec_match(NODE_REF next_node, bool word_end,
                             UNICHAR_ID unichar_id, NODE_REF other_next_node,
                             bool other_word_end,
                             UNICHAR_ID other_unichar_id) const {
    return ((unichar_id == other_unichar_id) &&
            (next_node == NO_EDGE || next_node == other_next_node) &&
            (!word_end || (word_end == other_word_end)));
  }

  /// Sets unicharset_size_.
  /// Initializes the values of various masks from unicharset_size_.
  void init(int unicharset_size);

  /// Matches all of the words that are represented by this string.
  /// If wildcard is set to something other than INVALID_UNICHAR_ID,
  /// the *'s in this string are interpreted as wildcards.
  /// WERD_CHOICE param is not passed by const so that wildcard searches
  /// can modify it and work without having to copy WERD_CHOICEs.
  bool match_words(WERD_CHOICE *word, uint32_t index, NODE_REF node,
                   UNICHAR_ID wildcard) const;

  // Recursively iterate over all words in a dawg (see public iterate_words).
  void iterate_words_rec(
      const WERD_CHOICE &word_so_far, NODE_REF to_explore,
      const std::function<void(const WERD_CHOICE *)> &cb) const;

  // Member Variables.
  std::string lang_;
  DawgType type_;
  /// Permuter code that should be used if the word is found in this Dawg.
  PermuterType perm_;
  // Variables to construct various edge masks. Formerly:
  // #define NEXT_EDGE_MASK (int64_t) 0xfffffff800000000i64
  // #define FLAGS_MASK     (int64_t) 0x0000000700000000i64
  // #define LETTER_MASK    (int64_t) 0x00000000ffffffffi64
  uint64_t next_node_mask_ = 0;
  uint64_t flags_mask_ = 0;
  uint64_t letter_mask_ = 0;
  int unicharset_size_;
  int flag_start_bit_ = 0;
  int next_node_start_bit_ = 0;
  // Level of debug statements to print to stdout.
  int debug_level_;
};

//
// DawgPosition keeps track of where we are in the primary dawg we're searching
// as well as where we may be in the "punctuation dawg" which may provide
// surrounding context.
//
// Example:
//   punctuation dawg  -- space is the "pattern character"
//     " "     // no punctuation
//     "' '"   // leading and trailing apostrophes
//     " '"    // trailing apostrophe
//   word dawg:
//     "cat"
//     "cab"
//     "cat's"
//
//  DawgPosition(dawg_index, dawg_ref, punc_index, punc_ref, rtp)
//
//  DawgPosition(-1, NO_EDGE, p, pe, false)
//    We're in the punctuation dawg, no other dawg has been started.
//    (1) If there's a pattern edge as a punc dawg child of us,
//        for each punc-following dawg starting with ch, produce:
//        Result: DawgPosition(k, w, p', false)
//    (2) If there's a valid continuation in the punc dawg, produce:
//        Result: DawgPosition(-k, NO_EDGE, p', false)
//
//  DawgPosition(k, w, -1, NO_EDGE, false)
//    We're in dawg k.  Going back to punctuation dawg is not an option.
//    Follow ch in dawg k.
//
//  DawgPosition(k, w, p, pe, false)
//    We're in dawg k.  Continue in dawg k and/or go back to the punc dawg.
//    If ending, check that the punctuation dawg is also ok to end here.
//
//  DawgPosition(k, w, p, pe true)
//    We're back in the punctuation dawg.  Continuing there is the only option.
struct DawgPosition {
  DawgPosition() = default;
  DawgPosition(int dawg_idx, EDGE_REF dawgref, int punc_idx, EDGE_REF puncref,
               bool backtopunc)
      : dawg_ref(dawgref),
        punc_ref(puncref),
        dawg_index(dawg_idx),
        punc_index(punc_idx),
        back_to_punc(backtopunc) {}
  bool operator==(const DawgPosition &other) const {
    return dawg_index == other.dawg_index && dawg_ref == other.dawg_ref &&
           punc_index == other.punc_index && punc_ref == other.punc_ref &&
           back_to_punc == other.back_to_punc;
  }

  EDGE_REF dawg_ref = NO_EDGE;
  EDGE_REF punc_ref = NO_EDGE;
  int8_t dawg_index = -1;
  int8_t punc_index = -1;
  // Have we returned to the punc dawg at the end of the word?
  bool back_to_punc = false;
};

class DawgPositionVector : public std::vector<DawgPosition> {
public:
  /// Adds an entry for the given dawg_index with the given node to the vec.
  /// Returns false if the same entry already exists in the vector,
  /// true otherwise.
  inline bool add_unique(const DawgPosition &new_pos, bool debug,
                         const char *debug_msg) {
    for (auto &&position : *this) {
      if (position == new_pos) {
        return false;
      }
    }
    push_back(new_pos);
    if (debug) {
      tprintf("%s[%d, " REFFORMAT "] [punc: " REFFORMAT "%s]\n", debug_msg,
              new_pos.dawg_index, new_pos.dawg_ref, new_pos.punc_ref,
              new_pos.back_to_punc ? " returned" : "");
    }
    return true;
  }
};

//
/// Concrete class that can operate on a compacted (squished) Dawg (read,
/// search and write to file). This class is read-only in the sense that
/// new words cannot be added to an instance of SquishedDawg.
/// The underlying representation of the nodes and edges in SquishedDawg
/// is stored as a contiguous EDGE_ARRAY (read from file or given as an
/// argument to the constructor).
//
class TESS_API SquishedDawg : public Dawg {
public:
  SquishedDawg(DawgType type, const std::string &lang, PermuterType perm,
               int debug_level)
      : Dawg(type, lang, perm, debug_level) {}
  SquishedDawg(const char *filename, DawgType type, const std::string &lang,
               PermuterType perm, int debug_level)
      : Dawg(type, lang, perm, debug_level) {
    TFile file;
    ASSERT_HOST(file.Open(filename, nullptr));
    ASSERT_HOST(read_squished_dawg(&file));
    num_forward_edges_in_node0 = num_forward_edges(0);
  }
  SquishedDawg(EDGE_ARRAY edges, int num_edges, DawgType type,
               const std::string &lang, PermuterType perm, int unicharset_size,
               int debug_level)
      : Dawg(type, lang, perm, debug_level),
        edges_(edges),
        num_edges_(num_edges) {
    init(unicharset_size);
    num_forward_edges_in_node0 = num_forward_edges(0);
    if (debug_level > 3) {
      print_all("SquishedDawg:");
    }
  }
  ~SquishedDawg() override;

  // Loads using the given TFile. Returns false on failure.
  bool Load(TFile *fp) {
    if (!read_squished_dawg(fp)) {
      return false;
    }
    num_forward_edges_in_node0 = num_forward_edges(0);
    return true;
  }

  int NumEdges() {
    return num_edges_;
  }

  /// Returns the edge that corresponds to the letter out of this node.
  EDGE_REF edge_char_of(NODE_REF node, UNICHAR_ID unichar_id,
                        bool word_end) const override;

  /// Fills the given NodeChildVector with all the unichar ids (and the
  /// corresponding EDGE_REFs) for which there is an edge out of this node.
  void unichar_ids_of(NODE_REF node, NodeChildVector *vec,
                      bool word_end) const override {
    EDGE_REF edge = node;
    if (!edge_occupied(edge) || edge == NO_EDGE) {
      return;
    }
    assert(forward_edge(edge)); // we don't expect any backward edges to
    do {                        // be present when this function is called
      if (!word_end || end_of_word_from_edge_rec(edges_[edge])) {
        vec->push_back(NodeChild(unichar_id_from_edge_rec(edges_[edge]), edge));
      }
    } while (!last_edge(edge++));
  }

  /// Returns the next node visited by following the edge
  /// indicated by the given EDGE_REF.
  NODE_REF next_node(EDGE_REF edge) const override {
    return next_node_from_edge_rec((edges_[edge]));
  }

  /// Returns true if the edge indicated by the given EDGE_REF
  /// marks the end of a word.
  bool end_of_word(EDGE_REF edge_ref) const override {
    return end_of_word_from_edge_rec((edges_[edge_ref]));
  }

  /// Returns UNICHAR_ID stored in the edge indicated by the given EDGE_REF.
  UNICHAR_ID edge_letter(EDGE_REF edge_ref) const override {
    return unichar_id_from_edge_rec((edges_[edge_ref]));
  }

  /// Prints the contents of the node indicated by the given NODE_REF.
  /// At most max_num_edges will be printed.
  void print_node(NODE_REF node, int max_num_edges) const override;

  /// Writes the squished/reduced Dawg to a file.
  bool write_squished_dawg(TFile *file);

  /// Opens the file with the given filename and writes the
  /// squished/reduced Dawg to the file.
  bool write_squished_dawg(const char *filename) {
    TFile file;
    file.OpenWrite(nullptr);
    if (!this->write_squished_dawg(&file)) {
      tprintf("Error serializing %s\n", filename);
      return false;
    }
    if (!file.CloseWrite(filename, nullptr)) {
      tprintf("Error writing file %s\n", filename);
      return false;
    }
    return true;
  }

private:
  /// Sets the next node link for this edge.
  inline void set_next_node(EDGE_REF edge_ref, EDGE_REF value) {
    set_next_node_in_edge_rec(&(edges_[edge_ref]), value);
  }
  /// Sets the edge to be empty.
  inline void set_empty_edge(EDGE_REF edge_ref) {
    (edges_[edge_ref] = next_node_mask_);
  }
  /// Goes through all the edges and clears each one out.
  inline void clear_all_edges() {
    for (int edge = 0; edge < num_edges_; edge++) {
      set_empty_edge(edge);
    }
  }
  /// Clears the last flag of this edge.
  inline void clear_marker_flag(EDGE_REF edge_ref) {
    (edges_[edge_ref] &= ~(MARKER_FLAG << flag_start_bit_));
  }
  /// Returns true if this edge is in the forward direction.
  inline bool forward_edge(EDGE_REF edge_ref) const {
    return (edge_occupied(edge_ref) &&
            (FORWARD_EDGE == direction_from_edge_rec(edges_[edge_ref])));
  }
  /// Returns true if this edge is in the backward direction.
  inline bool backward_edge(EDGE_REF edge_ref) const {
    return (edge_occupied(edge_ref) &&
            (BACKWARD_EDGE == direction_from_edge_rec(edges_[edge_ref])));
  }
  /// Returns true if the edge spot in this location is occupied.
  inline bool edge_occupied(EDGE_REF edge_ref) const {
    return (edges_[edge_ref] != next_node_mask_);
  }
  /// Returns true if this edge is the last edge in a sequence.
  inline bool last_edge(EDGE_REF edge_ref) const {
    return (edges_[edge_ref] & (MARKER_FLAG << flag_start_bit_)) != 0;
  }

  /// Counts and returns the number of forward edges in this node.
  int32_t num_forward_edges(NODE_REF node) const;

  /// Reads SquishedDawg from a file.
  bool read_squished_dawg(TFile *file);

  /// Prints the contents of an edge indicated by the given EDGE_REF.
  void print_edge(EDGE_REF edge) const;

  /// Prints the contents of the SquishedDawg.
  void print_all(const char *msg) {
    tprintf("\n__________________________\n%s\n", msg);
    for (int i = 0; i < num_edges_; ++i) {
      print_edge(i);
    }
    tprintf("__________________________\n");
  }
  /// Constructs a mapping from the memory node indices to disk node indices.
  std::unique_ptr<EDGE_REF[]> build_node_map(int32_t *num_nodes) const;

  // Member variables.
  EDGE_ARRAY edges_ = nullptr;
  int32_t num_edges_ = 0;
  int num_forward_edges_in_node0 = 0;
};

} // namespace tesseract

#endif // DICT_DAWG_H_