Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/freeglut/src/fg_teapot.c @ 22:d77477b4e151
Let _int_rc() also handle (i.e. ignore) a local version suffix
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Fri, 19 Sep 2025 12:05:57 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/* * fg_teapot.c * * Teapot(tm) rendering code. * * Copyright (c) 1999-2000 Pawel W. Olszta. All Rights Reserved. * Written by Pawel W. Olszta, <olszta@sourceforge.net> * Creation date: Fri Dec 24 1999 * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PAWEL W. OLSZTA BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* notes: * the (very little) required math is found here: http://www.gamasutra.com/view/feature/131848/tessellation_of_4x4_bezier_patches_.php?print=1 * a much more optimized version is here, didn't bother to implement that: http://www.gamasutra.com/view/feature/131794/an_indepth_look_at_bicubic_bezier_.php?print=1 */ #include <GL/freeglut.h> #include "fg_internal.h" #include "fg_teapot_data.h" /* -- STATIC VARS: CACHES ---------------------------------------------------- */ /* General defs */ #define GLUT_SOLID_N_SUBDIV 8 #define GLUT_WIRE_N_SUBDIV 10 /* Bernstein coefficients only have to be precomputed once (number of patch subdivisions is fixed) * Can thus define arrays for them here, they will be filled upon first use. * 3rd order Bezier surfaces have 4 Bernstein coeffs. * Have separate caches for solid and wire as they use a different number of subdivisions * _0 is for Bernstein polynomials, _1 for their first derivative (which we need for normals) */ static GLfloat bernWire_0 [GLUT_WIRE_N_SUBDIV] [4]; static GLfloat bernWire_1 [GLUT_WIRE_N_SUBDIV] [4]; static GLfloat bernSolid_0[GLUT_SOLID_N_SUBDIV][4]; static GLfloat bernSolid_1[GLUT_SOLID_N_SUBDIV][4]; /* Teapot defs */ #define GLUT_TEAPOT_N_PATCHES (6*4 + 4*2) /* 6 patches are reproduced (rotated) 4 times, 4 patches (flipped) 2 times */ #define GLUT_SOLID_TEAPOT_N_VERT GLUT_SOLID_N_SUBDIV*GLUT_SOLID_N_SUBDIV * GLUT_TEAPOT_N_PATCHES /* N_SUBDIV^2 vertices per patch */ #define GLUT_SOLID_TEAPOT_N_TRI (GLUT_SOLID_N_SUBDIV-1)*(GLUT_SOLID_N_SUBDIV-1) * GLUT_TEAPOT_N_PATCHES * 2 /* if e.g. 7x7 vertices for each patch, there are 6*6 squares for each patch. Each square is decomposed into 2 triangles */ #define GLUT_WIRE_TEAPOT_N_VERT GLUT_WIRE_N_SUBDIV*GLUT_WIRE_N_SUBDIV * GLUT_TEAPOT_N_PATCHES /* N_SUBDIV^2 vertices per patch */ /* Bit of caching: * vertex indices and normals only need to be generated once for * a given number of subdivisions as they don't change with scale. * Vertices can be cached and reused if scale didn't change. */ static GLushort vertIdxsTeapotS[GLUT_SOLID_TEAPOT_N_TRI*3]; static GLfloat normsTeapotS [GLUT_SOLID_TEAPOT_N_VERT*3]; static GLfloat vertsTeapotS [GLUT_SOLID_TEAPOT_N_VERT*3]; static GLfloat texcsTeapotS [GLUT_SOLID_TEAPOT_N_VERT*2]; static GLfloat lastScaleTeapotS = 0.f; static GLboolean initedTeapotS = GL_FALSE; static GLushort vertIdxsTeapotW[GLUT_WIRE_TEAPOT_N_VERT*2]; static GLfloat normsTeapotW [GLUT_WIRE_TEAPOT_N_VERT*3]; static GLfloat vertsTeapotW [GLUT_WIRE_TEAPOT_N_VERT*3]; static GLfloat lastScaleTeapotW = 0.f; static GLboolean initedTeapotW = GL_FALSE; /* Teacup defs */ #define GLUT_TEACUP_N_PATCHES (6*4 + 1*2) /* 6 patches are reproduced (rotated) 4 times, 1 patch (flipped) 2 times */ #define GLUT_SOLID_TEACUP_N_VERT GLUT_SOLID_N_SUBDIV*GLUT_SOLID_N_SUBDIV * GLUT_TEACUP_N_PATCHES /* N_SUBDIV^2 vertices per patch */ #define GLUT_SOLID_TEACUP_N_TRI (GLUT_SOLID_N_SUBDIV-1)*(GLUT_SOLID_N_SUBDIV-1) * GLUT_TEACUP_N_PATCHES * 2 /* if e.g. 7x7 vertices for each patch, there are 6*6 squares for each patch. Each square is decomposed into 2 triangles */ #define GLUT_WIRE_TEACUP_N_VERT GLUT_WIRE_N_SUBDIV*GLUT_WIRE_N_SUBDIV * GLUT_TEACUP_N_PATCHES /* N_SUBDIV^2 vertices per patch */ /* Bit of caching: * vertex indices and normals only need to be generated once for * a given number of subdivisions as they don't change with scale. * Vertices can be cached and reused if scale didn't change. */ static GLushort vertIdxsTeacupS[GLUT_SOLID_TEACUP_N_TRI*3]; static GLfloat normsTeacupS [GLUT_SOLID_TEACUP_N_VERT*3]; static GLfloat vertsTeacupS [GLUT_SOLID_TEACUP_N_VERT*3]; static GLfloat texcsTeacupS [GLUT_SOLID_TEACUP_N_VERT*2]; static GLfloat lastScaleTeacupS = 0.f; static GLboolean initedTeacupS = GL_FALSE; static GLushort vertIdxsTeacupW[GLUT_WIRE_TEACUP_N_VERT*2]; static GLfloat normsTeacupW [GLUT_WIRE_TEACUP_N_VERT*3]; static GLfloat vertsTeacupW [GLUT_WIRE_TEACUP_N_VERT*3]; static GLfloat lastScaleTeacupW = 0.f; static GLboolean initedTeacupW = GL_FALSE; /* Teaspoon defs */ #define GLUT_TEASPOON_N_PATCHES GLUT_TEASPOON_N_INPUT_PATCHES #define GLUT_SOLID_TEASPOON_N_VERT GLUT_SOLID_N_SUBDIV*GLUT_SOLID_N_SUBDIV * GLUT_TEASPOON_N_PATCHES /* N_SUBDIV^2 vertices per patch */ #define GLUT_SOLID_TEASPOON_N_TRI (GLUT_SOLID_N_SUBDIV-1)*(GLUT_SOLID_N_SUBDIV-1) * GLUT_TEASPOON_N_PATCHES * 2 /* if e.g. 7x7 vertices for each patch, there are 6*6 squares for each patch. Each square is decomposed into 2 triangles */ #define GLUT_WIRE_TEASPOON_N_VERT GLUT_WIRE_N_SUBDIV*GLUT_WIRE_N_SUBDIV * GLUT_TEASPOON_N_PATCHES /* N_SUBDIV^2 vertices per patch */ /* Bit of caching: * vertex indices and normals only need to be generated once for * a given number of subdivisions as they don't change with scale. * Vertices can be cached and reused if scale didn't change. */ static GLushort vertIdxsTeaspoonS[GLUT_SOLID_TEASPOON_N_TRI*3]; static GLfloat normsTeaspoonS [GLUT_SOLID_TEASPOON_N_VERT*3]; static GLfloat vertsTeaspoonS [GLUT_SOLID_TEASPOON_N_VERT*3]; static GLfloat texcsTeaspoonS [GLUT_SOLID_TEASPOON_N_VERT*2]; static GLfloat lastScaleTeaspoonS = 0.f; static GLboolean initedTeaspoonS = GL_FALSE; static GLushort vertIdxsTeaspoonW[GLUT_WIRE_TEASPOON_N_VERT*2]; static GLfloat normsTeaspoonW [GLUT_WIRE_TEASPOON_N_VERT*3]; static GLfloat vertsTeaspoonW [GLUT_WIRE_TEASPOON_N_VERT*3]; static GLfloat lastScaleTeaspoonW = 0.f; static GLboolean initedTeaspoonW = GL_FALSE; /* -- PRIVATE FUNCTIONS ---------------------------------------------------- */ extern void fghDrawGeometrySolid(GLfloat *vertices, GLfloat *normals, GLfloat *textcs, GLsizei numVertices, GLushort *vertIdxs, GLsizei numParts, GLsizei numVertIdxsPerPart); extern void fghDrawGeometryWire(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, GLushort *vertIdxs, GLsizei numParts, GLsizei numVertPerPart, GLenum vertexMode, GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2); /* evaluate 3rd order Bernstein polynomial and its 1st deriv */ static void bernstein3(int i, GLfloat x, GLfloat *r0, GLfloat *r1) { float invx = 1.f - x; /* r0: zero order coeff, r1: first deriv coeff */ switch (i) { GLfloat temp; case 0: temp = invx*invx; *r0 = invx * temp; /* invx * invx * invx */ *r1 = -3 * temp; /* -3 * invx * invx */ break; case 1: temp = invx*invx; *r0 = 3 * x * temp; /* 3 * x * invx * invx */ *r1 = 3 * temp - 6 * x * invx; /* 3 * invx * invx - 6 * x * invx */ break; case 2: temp = x*x; *r0 = 3 * temp * invx; /* 3 * x * x * invx */ *r1 = 6 * x * invx - 3 * temp; /* 6 * x * invx - 3 * x * x */ break; case 3: temp = x*x; *r0 = x * temp; /* x * x * x */ *r1 = 3 * temp; /* 3 * x * x */ break; default: *r0 = *r1 = 0; } } static void pregenBernstein(int nSubDivs, GLfloat (*bern_0)[4], GLfloat (*bern_1)[4]) { int s,i; for (s=0; s<nSubDivs; s++) { GLfloat x = s/(nSubDivs-1.f); for (i=0; i<4; i++) /* 3rd order polynomial */ bernstein3(i,x,bern_0[s]+i,bern_1[s]+i); } } /* based on flag either rotate patches around y axis to other 3 quadrants (flag=4) or reflect patch across x-y plane (flag=2) */ static void rotOrReflect(int flag, int nVals, int nSubDivs, GLfloat *vals) { int u,i,o; if (flag==4) { int i1=nVals, i2=nVals*2, i3=nVals*3; for (o=0; o<nVals; o+=3) { /* 90� rotation */ vals[i1+o+0] = vals[o+2]; vals[i1+o+1] = vals[o+1]; vals[i1+o+2] = -vals[o+0]; /* 180� rotation */ vals[i2+o+0] = -vals[o+0]; vals[i2+o+1] = vals[o+1]; vals[i2+o+2] = -vals[o+2]; /* 270� rotation */ vals[i3+o+0] = -vals[o+2]; vals[i3+o+1] = vals[o+1]; vals[i3+o+2] = vals[o+0]; } } else if (flag==2) { /* copy over values, reversing row order to keep winding correct, and negating z to perform the flip */ for (u=0; u<nSubDivs; u++) /* per row */ { int off = (nSubDivs-u-1)*nSubDivs*3; /* read last row first from the already existing rows */ o = nVals + u *nSubDivs*3; /* write last row as first row to output */ for (i=0; i<nSubDivs*3; i+=3, o+=3) /* each row has nSubDivs points consisting of three values */ { vals[o+0] = vals[off+i+0]; vals[o+1] = vals[off+i+1]; vals[o+2] = -vals[off+i+2]; } } } } /* verts array should be initialized to 0! */ static int evalBezierWithNorm(GLfloat cp[4][4][3], int nSubDivs, float (*bern_0)[4], float (*bern_1)[4], int flag, int normalFix, GLfloat *verts, GLfloat *norms) { int nVerts = nSubDivs*nSubDivs; int nVertVals = nVerts*3; /* number of values output for one patch, flag (2 or 4) indicates how many times we will write this to output */ int u,v,i,j,o; /* generate vertices and coordinates for the patch */ for (u=0,o=0; u<nSubDivs; u++) { for (v=0; v<nSubDivs; v++, o+=3) { /* for normals, get two tangents at the vertex using partial derivatives of 2D Bezier grid */ float tan1[3]={0}, tan2[3]={0}, len; for (i=0; i<=3; i++) { float vert_0[3]={0}, vert_1[3]={0}; for (j=0; j<=3; j++) { vert_0[0] += bern_0[v][j] * cp[i][j][0]; vert_0[1] += bern_0[v][j] * cp[i][j][1]; vert_0[2] += bern_0[v][j] * cp[i][j][2]; vert_1[0] += bern_1[v][j] * cp[i][j][0]; vert_1[1] += bern_1[v][j] * cp[i][j][1]; vert_1[2] += bern_1[v][j] * cp[i][j][2]; } verts[o+0] += bern_0[u][i]*vert_0[0]; verts[o+1] += bern_0[u][i]*vert_0[1]; verts[o+2] += bern_0[u][i]*vert_0[2]; tan1[0] += bern_0[u][i]*vert_1[0]; tan1[1] += bern_0[u][i]*vert_1[1]; tan1[2] += bern_0[u][i]*vert_1[2]; tan2[0] += bern_1[u][i]*vert_0[0]; tan2[1] += bern_1[u][i]*vert_0[1]; tan2[2] += bern_1[u][i]*vert_0[2]; } /* get normal through cross product of the two tangents of the vertex */ norms[o+0] = tan1[1] * tan2[2] - tan1[2] * tan2[1]; norms[o+1] = tan1[2] * tan2[0] - tan1[0] * tan2[2]; norms[o+2] = tan1[0] * tan2[1] - tan1[1] * tan2[0]; len = (GLfloat)sqrt(norms[o+0] * norms[o+0] + norms[o+1] * norms[o+1] + norms[o+2] * norms[o+2]); norms[o+0] /= len; norms[o+1] /= len; norms[o+2] /= len; } } /* Fix normal vector if needed */ if (normalFix) { for (o=0; o<nSubDivs*3; o+=3) /* whole first row (first nSubDivs normals) is broken: replace normals for the whole row */ { norms[o+0] = 0.f; norms[o+1] = normalFix==1? 1.f:-1.f; norms[o+2] = 0.f; } } /* now based on flag either rotate patches around y axis to other 3 quadrants (flag=4) or reflect patch across x-y plane (flag=2) */ rotOrReflect(flag, nVertVals, nSubDivs, verts); rotOrReflect(flag, nVertVals, nSubDivs, norms); return nVertVals*flag; } /* verts array should be initialized to 0! */ static int evalBezier(GLfloat cp[4][4][3], int nSubDivs, float (*bern_0)[4], int flag, GLfloat *verts) { int nVerts = nSubDivs*nSubDivs; int nVertVals = nVerts*3; /* number of values output for one patch, flag (2 or 4) indicates how many times we will write this to output */ int u,v,i,j,o; /* generate vertices and coordinates for the patch */ for (u=0,o=0; u<nSubDivs; u++) { for (v=0; v<nSubDivs; v++, o+=3) { for (i=0; i<=3; i++) { float vert_0[3]={0}; for (j=0; j<=3; j++) { vert_0[0] += bern_0[v][j] * cp[i][j][0]; vert_0[1] += bern_0[v][j] * cp[i][j][1]; vert_0[2] += bern_0[v][j] * cp[i][j][2]; } verts[o+0] += bern_0[u][i]*vert_0[0]; verts[o+1] += bern_0[u][i]*vert_0[1]; verts[o+2] += bern_0[u][i]*vert_0[2]; } } } /* now based on flag either rotate patches around y axis to other 3 quadrants (flag=4) or reflect patch across x-y plane (flag=2) */ rotOrReflect(flag, nVertVals, nSubDivs, verts); return nVertVals*flag; } static void fghTeaset( GLfloat scale, GLboolean useWireMode, GLfloat (*cpdata)[3], int (*patchdata)[16], GLushort *vertIdxs, GLfloat *verts, GLfloat *norms, GLfloat *texcs, GLfloat *lastScale, GLboolean *inited, GLboolean needNormalFix, GLboolean rotFlip, GLfloat zOffset, int nVerts, int nInputPatches, int nPatches, int nTriangles ) { /* for internal use */ int p,o; GLfloat cp[4][4][3]; /* to hold pointers to static vars/arrays */ GLfloat (*bern_0)[4], (*bern_1)[4]; int nSubDivs; /* Get relevant static arrays and variables */ bern_0 = useWireMode ? bernWire_0 : bernSolid_0; bern_1 = useWireMode ? bernWire_1 : bernSolid_1; nSubDivs = useWireMode ? GLUT_WIRE_N_SUBDIV : GLUT_SOLID_N_SUBDIV; /* check if need to generate vertices */ if (!*inited || scale != *lastScale) { /* set vertex array to all 0 (not necessary for normals and vertex indices) */ memset(verts,0,nVerts*3*sizeof(GLfloat)); /* pregen Berstein polynomials and their first derivatives (for normals) */ if (!*inited) pregenBernstein(nSubDivs,bern_0,bern_1); /* generate vertices and normals */ for (p=0, o=0; p<nInputPatches; p++) { /* set flags for evalBezier function */ int flag = rotFlip?p<6?4:2:1; /* For teapot and teacup, first six patches get 3 copies (rotations), others get 2 copies (flips). No rotating or flipping at all for teaspoon */ int normalFix = needNormalFix?p==3?1:p==5?2:0:0; /* For teapot, fix normal vectors for vertices on top of lid (patch 4) and on middle of bottom (patch 6). Different flag value as different normal needed */ /* collect control points */ int i; for (i=0; i<16; i++) { /* Original code draws with a 270� rot around X axis, a scaling and a translation along the Z-axis. * Incorporating these in the control points is much cheaper than transforming all the vertices. * Original: * glRotated( 270.0, 1.0, 0.0, 0.0 ); * glScaled( 0.5 * scale, 0.5 * scale, 0.5 * scale ); * glTranslated( 0.0, 0.0, -zOffset ); -> was 1.5 for teapot, but should be 1.575 to center it on the Z axis. Teacup and teaspoon have different offsets */ cp[i/4][i%4][0] = cpdata[patchdata[p][i]][0] *scale/2.f; cp[i/4][i%4][1] = (cpdata[patchdata[p][i]][2]-zOffset)*scale/2.f; cp[i/4][i%4][2] = -cpdata[patchdata[p][i]][1] *scale/2.f; } /* eval bezier patch */ if (!*inited) /* first time, generate normals as well */ o += evalBezierWithNorm(cp,nSubDivs,bern_0,bern_1, flag, normalFix, verts+o,norms+o); else /* only need to regen vertices */ o += evalBezier(cp,nSubDivs,bern_0, flag, verts+o); } *lastScale = scale; if (!*inited) { int r,c; /* generate texture coordinates if solid teapot/teacup/teaspoon */ if (!useWireMode) { /* generate for first patch */ for (r=0,o=0; r<nSubDivs; r++) { GLfloat u = r/(nSubDivs-1.f); for (c=0; c<nSubDivs; c++, o+=2) { GLfloat v = c/(nSubDivs-1.f); texcs[o+0] = u; texcs[o+1] = v; } } /* copy it over for all the other patches */ for (p=1; p<nPatches; p++) memcpy(texcs+p*nSubDivs*nSubDivs*2,texcs,nSubDivs*nSubDivs*2*sizeof(GLfloat)); } /* build vertex index array */ if (useWireMode) { /* build vertex indices to draw teapot/teacup/teaspoon as line strips */ /* first strips along increasing u, constant v */ for (p=0, o=0; p<nPatches; p++) { int idx = nSubDivs*nSubDivs*p; for (c=0; c<nSubDivs; c++) for (r=0; r<nSubDivs; r++, o++) vertIdxs[o] = idx+r*nSubDivs+c; } /* then strips along increasing v, constant u */ for (p=0; p<nPatches; p++) /* don't reset o, we continue appending! */ { int idx = nSubDivs*nSubDivs*p; for (r=0; r<nSubDivs; r++) { int loc = r*nSubDivs; for (c=0; c<nSubDivs; c++, o++) vertIdxs[o] = idx+loc+c; } } } else { /* build vertex indices to draw teapot/teacup/teaspoon as triangles */ for (p=0,o=0; p<nPatches; p++) { int idx = nSubDivs*nSubDivs*p; for (r=0; r<nSubDivs-1; r++) { int loc = r*nSubDivs; for (c=0; c<nSubDivs-1; c++, o+=6) { /* ABC ACD, where B and C are one row lower */ int row1 = idx+loc+c; int row2 = row1+nSubDivs; vertIdxs[o+0] = row1+0; vertIdxs[o+1] = row2+0; vertIdxs[o+2] = row2+1; vertIdxs[o+3] = row1+0; vertIdxs[o+4] = row2+1; vertIdxs[o+5] = row1+1; } } } } *inited = GL_TRUE; } } /* draw */ if (useWireMode) fghDrawGeometryWire (verts, norms, nVerts, vertIdxs, nPatches*nSubDivs*2, nSubDivs, GL_LINE_STRIP, NULL,0,0); else fghDrawGeometrySolid(verts, norms, texcs, nVerts, vertIdxs,1,nTriangles*3); } /* -- INTERFACE FUNCTIONS -------------------------------------------------- */ /* * Renders a wired teapot... */ void FGAPIENTRY glutWireTeapot( double size ) { FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireTeapot" ); fghTeaset( (GLfloat)size, GL_TRUE, cpdata_teapot, patchdata_teapot, vertIdxsTeapotW, vertsTeapotW, normsTeapotW, NULL, &lastScaleTeapotW, &initedTeapotW, GL_TRUE, GL_TRUE, 1.575f, GLUT_WIRE_TEAPOT_N_VERT, GLUT_TEAPOT_N_INPUT_PATCHES, GLUT_TEAPOT_N_PATCHES, 0); } /* * Renders a filled teapot... */ void FGAPIENTRY glutSolidTeapot( double size ) { FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidTeapot" ); fghTeaset( (GLfloat)size, GL_FALSE, cpdata_teapot, patchdata_teapot, vertIdxsTeapotS, vertsTeapotS, normsTeapotS, texcsTeapotS, &lastScaleTeapotS, &initedTeapotS, GL_TRUE, GL_TRUE, 1.575f, GLUT_SOLID_TEAPOT_N_VERT, GLUT_TEAPOT_N_INPUT_PATCHES, GLUT_TEAPOT_N_PATCHES, GLUT_SOLID_TEAPOT_N_TRI); } /* * Renders a wired teacup... */ void FGAPIENTRY glutWireTeacup( double size ) { FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireTeacup" ); fghTeaset( (GLfloat)size/2.5f, GL_TRUE, cpdata_teacup, patchdata_teacup, vertIdxsTeacupW, vertsTeacupW, normsTeacupW, NULL, &lastScaleTeacupW, &initedTeacupW, GL_FALSE, GL_TRUE, 1.5121f, GLUT_WIRE_TEACUP_N_VERT, GLUT_TEACUP_N_INPUT_PATCHES, GLUT_TEACUP_N_PATCHES, 0); } /* * Renders a filled teacup... */ void FGAPIENTRY glutSolidTeacup( double size ) { FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidTeacup" ); fghTeaset( (GLfloat)size/2.5f, GL_FALSE, cpdata_teacup, patchdata_teacup, vertIdxsTeacupS, vertsTeacupS, normsTeacupS, texcsTeacupS, &lastScaleTeacupS, &initedTeacupS, GL_FALSE, GL_TRUE, 1.5121f, GLUT_SOLID_TEACUP_N_VERT, GLUT_TEACUP_N_INPUT_PATCHES, GLUT_TEACUP_N_PATCHES, GLUT_SOLID_TEACUP_N_TRI); } /* * Renders a wired teaspoon... */ void FGAPIENTRY glutWireTeaspoon( double size ) { FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireTeaspoon" ); fghTeaset( (GLfloat)size/2.5f, GL_TRUE, cpdata_teaspoon, patchdata_teaspoon, vertIdxsTeaspoonW, vertsTeaspoonW, normsTeaspoonW, NULL, &lastScaleTeaspoonW, &initedTeaspoonW, GL_FALSE, GL_FALSE, -0.0315f, GLUT_WIRE_TEASPOON_N_VERT, GLUT_TEASPOON_N_INPUT_PATCHES, GLUT_TEASPOON_N_PATCHES, 0); } /* * Renders a filled teaspoon... */ void FGAPIENTRY glutSolidTeaspoon( double size ) { FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidTeaspoon" ); fghTeaset( (GLfloat)size/2.5f, GL_FALSE, cpdata_teaspoon, patchdata_teaspoon, vertIdxsTeaspoonS, vertsTeaspoonS, normsTeaspoonS, texcsTeaspoonS, &lastScaleTeaspoonS, &initedTeaspoonS, GL_FALSE, GL_FALSE, -0.0315f, GLUT_SOLID_TEASPOON_N_VERT, GLUT_TEASPOON_N_INPUT_PATCHES, GLUT_TEASPOON_N_PATCHES, GLUT_SOLID_TEASPOON_N_TRI); } /*** END OF FILE ***/
