view mupdf-source/source/fitz/crypt-md5.c @ 16:bd5bb0742cc3

A "check" target that checks for all venv and host prerequisites
author Franz Glasner <fzglas.hg@dom66.de>
date Wed, 17 Sep 2025 21:11:25 +0200
parents b50eed0cc0ef
children
line wrap: on
line source

/*
 * This is an implementation of the RSA Data Security, Inc. * MD5
 * Message-Digest Algorithm (RFC 1321).
 *
 * Homepage:
 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
 *
 * Author:
 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
 *
 * This software was written by Alexander Peslyak in 2001. No copyright is
 * claimed, and the software is hereby placed in the public domain.
 * In case this attempt to disclaim copyright and place the software in the
 * public domain is deemed null and void, then the software is
 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
 * general public under the following terms:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted.
 *
 * There's ABSOLUTELY NO WARRANTY, express or implied.
 *
 * (This is a heavily cut-down "BSD license".)
 *
 * This differs from Colin Plumb's older public domain implementation in that
 * no exactly 32-bit integer data type is required (any 32-bit or wider
 * unsigned integer data type will do), there's no compile-time endianness
 * configuration, and the function prototypes match OpenSSL's. No code from
 * Colin Plumb's implementation has been reused; this comment merely compares
 * the properties of the two independent implementations.
 *
 * The primary goals of this implementation are portability and ease of use.
 * It is meant to be fast, but not as fast as possible. Some known
 * optimizations are not included to reduce source code size and avoid
 * compile-time configuration.
 */

#include "mupdf/fitz.h"

#include <string.h>

/*
 * The basic MD5 functions.
 *
 * F and G are optimized compared to their RFC 1321 definitions for
 * architectures that lack an AND-NOT instruction, just like in Colin Plumb's
 * implementation.
 */
#define F(x, y, z)		((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z)		((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z)		(((x) ^ (y)) ^ (z))
#define H2(x, y, z)		((x) ^ ((y) ^ (z)))
#define I(x, y, z)		((y) ^ ((x) | ~(z)))

/*
 * The MD5 transformation for all four rounds.
 */
#define STEP(f, a, b, c, d, x, t, s) \
	(a) += f((b), (c), (d)) + (x) + (t); \
	(a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
	(a) += (b)

/*
 * SET reads 4 input bytes in little-endian byte order and stores them in a
 * properly aligned word in host byte order.
 */
#define SET(n) \
	(block[(n)] = \
		(uint32_t)ptr[(n) * 4] | \
		((uint32_t)ptr[(n) * 4 + 1] << 8) | \
		((uint32_t)ptr[(n) * 4 + 2] << 16) | \
		((uint32_t)ptr[(n) * 4 + 3] << 24))
#define GET(n) \
	(block[(n)])

/*
 * This processes one or more 64-byte data blocks, but does NOT update the bit
 * counters. There are no alignment requirements.
 */
static const unsigned char *body(fz_md5 *ctx, const unsigned char *ptr, uint32_t size)
{
	uint32_t a, b, c, d;
	uint32_t saved_a, saved_b, saved_c, saved_d;
	uint32_t block[16];

	a = ctx->a;
	b = ctx->b;
	c = ctx->c;
	d = ctx->d;

	do {
		saved_a = a;
		saved_b = b;
		saved_c = c;
		saved_d = d;

		/* Round 1 */
		STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7);
		STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12);
		STEP(F, c, d, a, b, SET(2), 0x242070db, 17);
		STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22);
		STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7);
		STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12);
		STEP(F, c, d, a, b, SET(6), 0xa8304613, 17);
		STEP(F, b, c, d, a, SET(7), 0xfd469501, 22);
		STEP(F, a, b, c, d, SET(8), 0x698098d8, 7);
		STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12);
		STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17);
		STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22);
		STEP(F, a, b, c, d, SET(12), 0x6b901122, 7);
		STEP(F, d, a, b, c, SET(13), 0xfd987193, 12);
		STEP(F, c, d, a, b, SET(14), 0xa679438e, 17);
		STEP(F, b, c, d, a, SET(15), 0x49b40821, 22);

		/* Round 2 */
		STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5);
		STEP(G, d, a, b, c, GET(6), 0xc040b340, 9);
		STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14);
		STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20);
		STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5);
		STEP(G, d, a, b, c, GET(10), 0x02441453, 9);
		STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14);
		STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20);
		STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5);
		STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9);
		STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14);
		STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20);
		STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5);
		STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9);
		STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14);
		STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20);

		/* Round 3 */
		STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4);
		STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11);
		STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16);
		STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23);
		STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4);
		STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11);
		STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16);
		STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23);
		STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4);
		STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11);
		STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16);
		STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23);
		STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4);
		STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11);
		STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16);
		STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23);

		/* Round 4 */
		STEP(I, a, b, c, d, GET(0), 0xf4292244, 6);
		STEP(I, d, a, b, c, GET(7), 0x432aff97, 10);
		STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15);
		STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21);
		STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6);
		STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10);
		STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15);
		STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21);
		STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6);
		STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10);
		STEP(I, c, d, a, b, GET(6), 0xa3014314, 15);
		STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21);
		STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6);
		STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10);
		STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15);
		STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21);

		a += saved_a;
		b += saved_b;
		c += saved_c;
		d += saved_d;

		ptr += 64;
	} while (size -= 64);

	ctx->a = a;
	ctx->b = b;
	ctx->c = c;
	ctx->d = d;

	return ptr;
}

void fz_md5_init(fz_md5 *ctx)
{
	ctx->a = 0x67452301;
	ctx->b = 0xefcdab89;
	ctx->c = 0x98badcfe;
	ctx->d = 0x10325476;

	ctx->lo = 0;
	ctx->hi = 0;
}

void fz_md5_update(fz_md5 *ctx, const unsigned char *data, size_t size)
{
	uint32_t saved_lo;
	uint32_t used, available;

	saved_lo = ctx->lo;
	if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
		ctx->hi++;
	ctx->hi += (uint32_t)(size >> 29);

	used = saved_lo & 0x3f;

	if (used) {
		available = 64 - used;

		if (size < available) {
			memcpy(&ctx->buffer[used], data, size);
			return;
		}

		memcpy(&ctx->buffer[used], data, available);
		data = data + available;
		size -= available;
		body(ctx, ctx->buffer, 64);
	}

	if (size >= 64) {
		data = body(ctx, data, size & ~(uint32_t)0x3f);
		size &= 0x3f;
	}

	memcpy(ctx->buffer, data, size);
}

#define OUT(dst, src) \
	(dst)[0] = (src); \
	(dst)[1] = (src >> 8); \
	(dst)[2] = (src >> 16); \
	(dst)[3] = (src >> 24)

void fz_md5_final(fz_md5 *ctx, unsigned char result[16])
{
	uint32_t used, available;

	used = ctx->lo & 0x3f;

	ctx->buffer[used++] = 0x80;

	available = 64 - used;

	if (available < 8) {
		memset(&ctx->buffer[used], 0, available);
		body(ctx, ctx->buffer, 64);
		used = 0;
		available = 64;
	}

	memset(&ctx->buffer[used], 0, available - 8);

	ctx->lo <<= 3;
	OUT(&ctx->buffer[56], ctx->lo);
	OUT(&ctx->buffer[60], ctx->hi);

	body(ctx, ctx->buffer, 64);

	OUT(&result[0], ctx->a);
	OUT(&result[4], ctx->b);
	OUT(&result[8], ctx->c);
	OUT(&result[12], ctx->d);

	memset(ctx, 0, sizeof(*ctx));
}

void fz_md5_update_int64(fz_md5 *context, int64_t i)
{
	unsigned char c[8];

	c[0] = (unsigned char)(i);
	c[1] = (unsigned char)(i>>8);
	c[2] = (unsigned char)(i>>16);
	c[3] = (unsigned char)(i>>24);
	c[4] = (unsigned char)(i>>32);
	c[5] = (unsigned char)(i>>40);
	c[6] = (unsigned char)(i>>48);
	c[7] = (unsigned char)(i>>56);

	fz_md5_update(context, &c[0], sizeof(c));
}