Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/tesseract/src/classify/trainingsample.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line source
// Copyright 2010 Google Inc. All Rights Reserved. // Author: rays@google.com (Ray Smith) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #define _USE_MATH_DEFINES // for M_PI // Include automatically generated configuration file if running autoconf. #ifdef HAVE_CONFIG_H # include "config_auto.h" #endif #include "trainingsample.h" #include "helpers.h" #include "intfeaturespace.h" #include "normfeat.h" #include "shapetable.h" #include <allheaders.h> #include <cmath> // for M_PI namespace tesseract { // Center of randomizing operations. const int kRandomizingCenter = 128; // Randomizing factors. const int TrainingSample::kYShiftValues[kSampleYShiftSize] = {6, 3, -3, -6, 0}; const double TrainingSample::kScaleValues[kSampleScaleSize] = {1.0625, 0.9375, 1.0}; TrainingSample::~TrainingSample() { delete[] features_; delete[] micro_features_; } // WARNING! Serialize/DeSerialize do not save/restore the "cache" data // members, which is mostly the mapped features, and the weight. // It is assumed these can all be reconstructed from what is saved. // Writes to the given file. Returns false in case of error. bool TrainingSample::Serialize(FILE *fp) const { if (fwrite(&class_id_, sizeof(class_id_), 1, fp) != 1) { return false; } if (fwrite(&font_id_, sizeof(font_id_), 1, fp) != 1) { return false; } if (fwrite(&page_num_, sizeof(page_num_), 1, fp) != 1) { return false; } if (!bounding_box_.Serialize(fp)) { return false; } if (fwrite(&num_features_, sizeof(num_features_), 1, fp) != 1) { return false; } if (fwrite(&num_micro_features_, sizeof(num_micro_features_), 1, fp) != 1) { return false; } if (fwrite(&outline_length_, sizeof(outline_length_), 1, fp) != 1) { return false; } if (fwrite(features_, sizeof(*features_), num_features_, fp) != num_features_) { return false; } if (fwrite(micro_features_, sizeof(*micro_features_), num_micro_features_, fp) != num_micro_features_) { return false; } if (fwrite(cn_feature_, sizeof(*cn_feature_), kNumCNParams, fp) != kNumCNParams) { return false; } if (fwrite(geo_feature_, sizeof(*geo_feature_), GeoCount, fp) != GeoCount) { return false; } return true; } // Creates from the given file. Returns nullptr in case of error. // If swap is true, assumes a big/little-endian swap is needed. TrainingSample *TrainingSample::DeSerializeCreate(bool swap, FILE *fp) { auto *sample = new TrainingSample; if (sample->DeSerialize(swap, fp)) { return sample; } delete sample; return nullptr; } // Reads from the given file. Returns false in case of error. // If swap is true, assumes a big/little-endian swap is needed. bool TrainingSample::DeSerialize(bool swap, FILE *fp) { if (fread(&class_id_, sizeof(class_id_), 1, fp) != 1) { return false; } if (fread(&font_id_, sizeof(font_id_), 1, fp) != 1) { return false; } if (fread(&page_num_, sizeof(page_num_), 1, fp) != 1) { return false; } if (!bounding_box_.DeSerialize(swap, fp)) { return false; } if (fread(&num_features_, sizeof(num_features_), 1, fp) != 1) { return false; } if (fread(&num_micro_features_, sizeof(num_micro_features_), 1, fp) != 1) { return false; } if (fread(&outline_length_, sizeof(outline_length_), 1, fp) != 1) { return false; } if (swap) { ReverseN(&class_id_, sizeof(class_id_)); ReverseN(&num_features_, sizeof(num_features_)); ReverseN(&num_micro_features_, sizeof(num_micro_features_)); ReverseN(&outline_length_, sizeof(outline_length_)); } // Arbitrarily limit the number of elements to protect against bad data. if (num_features_ > UINT16_MAX) { return false; } if (num_micro_features_ > UINT16_MAX) { return false; } delete[] features_; features_ = new INT_FEATURE_STRUCT[num_features_]; if (fread(features_, sizeof(*features_), num_features_, fp) != num_features_) { return false; } delete[] micro_features_; micro_features_ = new MicroFeature[num_micro_features_]; if (fread(micro_features_, sizeof(*micro_features_), num_micro_features_, fp) != num_micro_features_) { return false; } if (fread(cn_feature_, sizeof(*cn_feature_), kNumCNParams, fp) != kNumCNParams) { return false; } if (fread(geo_feature_, sizeof(*geo_feature_), GeoCount, fp) != GeoCount) { return false; } return true; } // Saves the given features into a TrainingSample. TrainingSample *TrainingSample::CopyFromFeatures(const INT_FX_RESULT_STRUCT &fx_info, const TBOX &bounding_box, const INT_FEATURE_STRUCT *features, int num_features) { auto *sample = new TrainingSample; sample->num_features_ = num_features; sample->features_ = new INT_FEATURE_STRUCT[num_features]; sample->outline_length_ = fx_info.Length; memcpy(sample->features_, features, num_features * sizeof(features[0])); sample->geo_feature_[GeoBottom] = bounding_box.bottom(); sample->geo_feature_[GeoTop] = bounding_box.top(); sample->geo_feature_[GeoWidth] = bounding_box.width(); // Generate the cn_feature_ from the fx_info. sample->cn_feature_[CharNormY] = MF_SCALE_FACTOR * (fx_info.Ymean - kBlnBaselineOffset); sample->cn_feature_[CharNormLength] = MF_SCALE_FACTOR * fx_info.Length / LENGTH_COMPRESSION; sample->cn_feature_[CharNormRx] = MF_SCALE_FACTOR * fx_info.Rx; sample->cn_feature_[CharNormRy] = MF_SCALE_FACTOR * fx_info.Ry; sample->features_are_indexed_ = false; sample->features_are_mapped_ = false; return sample; } // Returns the cn_feature as a FEATURE_STRUCT* needed by cntraining. FEATURE_STRUCT *TrainingSample::GetCNFeature() const { auto feature = new FEATURE_STRUCT(&CharNormDesc); for (int i = 0; i < kNumCNParams; ++i) { feature->Params[i] = cn_feature_[i]; } return feature; } // Constructs and returns a copy randomized by the method given by // the randomizer index. If index is out of [0, kSampleRandomSize) then // an exact copy is returned. TrainingSample *TrainingSample::RandomizedCopy(int index) const { TrainingSample *sample = Copy(); if (index >= 0 && index < kSampleRandomSize) { ++index; // Remove the first combination. const int yshift = kYShiftValues[index / kSampleScaleSize]; double scaling = kScaleValues[index % kSampleScaleSize]; for (uint32_t i = 0; i < num_features_; ++i) { double result = (features_[i].X - kRandomizingCenter) * scaling; result += kRandomizingCenter; sample->features_[i].X = ClipToRange<int>(result + 0.5, 0, UINT8_MAX); result = (features_[i].Y - kRandomizingCenter) * scaling; result += kRandomizingCenter + yshift; sample->features_[i].Y = ClipToRange<int>(result + 0.5, 0, UINT8_MAX); } } return sample; } // Constructs and returns an exact copy. TrainingSample *TrainingSample::Copy() const { auto *sample = new TrainingSample; sample->class_id_ = class_id_; sample->font_id_ = font_id_; sample->weight_ = weight_; sample->sample_index_ = sample_index_; sample->num_features_ = num_features_; if (num_features_ > 0) { sample->features_ = new INT_FEATURE_STRUCT[num_features_]; memcpy(sample->features_, features_, num_features_ * sizeof(features_[0])); } sample->num_micro_features_ = num_micro_features_; if (num_micro_features_ > 0) { sample->micro_features_ = new MicroFeature[num_micro_features_]; memcpy(sample->micro_features_, micro_features_, num_micro_features_ * sizeof(micro_features_[0])); } memcpy(sample->cn_feature_, cn_feature_, sizeof(*cn_feature_) * kNumCNParams); memcpy(sample->geo_feature_, geo_feature_, sizeof(*geo_feature_) * GeoCount); return sample; } // Extracts the needed information from the CHAR_DESC_STRUCT. void TrainingSample::ExtractCharDesc(int int_feature_type, int micro_type, int cn_type, int geo_type, CHAR_DESC_STRUCT *char_desc) { // Extract the INT features. delete[] features_; FEATURE_SET_STRUCT *char_features = char_desc->FeatureSets[int_feature_type]; if (char_features == nullptr) { tprintf("Error: no features to train on of type %s\n", kIntFeatureType); num_features_ = 0; features_ = nullptr; } else { num_features_ = char_features->NumFeatures; features_ = new INT_FEATURE_STRUCT[num_features_]; for (uint32_t f = 0; f < num_features_; ++f) { features_[f].X = static_cast<uint8_t>(char_features->Features[f]->Params[IntX]); features_[f].Y = static_cast<uint8_t>(char_features->Features[f]->Params[IntY]); features_[f].Theta = static_cast<uint8_t>(char_features->Features[f]->Params[IntDir]); features_[f].CP_misses = 0; } } // Extract the Micro features. delete[] micro_features_; char_features = char_desc->FeatureSets[micro_type]; if (char_features == nullptr) { tprintf("Error: no features to train on of type %s\n", kMicroFeatureType); num_micro_features_ = 0; micro_features_ = nullptr; } else { num_micro_features_ = char_features->NumFeatures; micro_features_ = new MicroFeature[num_micro_features_]; for (uint32_t f = 0; f < num_micro_features_; ++f) { for (int d = 0; d < (int)MicroFeatureParameter::MFCount; ++d) { micro_features_[f][d] = char_features->Features[f]->Params[d]; } } } // Extract the CN feature. char_features = char_desc->FeatureSets[cn_type]; if (char_features == nullptr) { tprintf("Error: no CN feature to train on.\n"); } else { ASSERT_HOST(char_features->NumFeatures == 1); cn_feature_[CharNormY] = char_features->Features[0]->Params[CharNormY]; cn_feature_[CharNormLength] = char_features->Features[0]->Params[CharNormLength]; cn_feature_[CharNormRx] = char_features->Features[0]->Params[CharNormRx]; cn_feature_[CharNormRy] = char_features->Features[0]->Params[CharNormRy]; } // Extract the Geo feature. char_features = char_desc->FeatureSets[geo_type]; if (char_features == nullptr) { tprintf("Error: no Geo feature to train on.\n"); } else { ASSERT_HOST(char_features->NumFeatures == 1); geo_feature_[GeoBottom] = char_features->Features[0]->Params[GeoBottom]; geo_feature_[GeoTop] = char_features->Features[0]->Params[GeoTop]; geo_feature_[GeoWidth] = char_features->Features[0]->Params[GeoWidth]; } features_are_indexed_ = false; features_are_mapped_ = false; } // Sets the mapped_features_ from the features_ using the provided // feature_space to the indexed versions of the features. void TrainingSample::IndexFeatures(const IntFeatureSpace &feature_space) { std::vector<int> indexed_features; feature_space.IndexAndSortFeatures(features_, num_features_, &mapped_features_); features_are_indexed_ = true; features_are_mapped_ = false; } // Returns a pix representing the sample. (Int features only.) Image TrainingSample::RenderToPix(const UNICHARSET *unicharset) const { Image pix = pixCreate(kIntFeatureExtent, kIntFeatureExtent, 1); for (uint32_t f = 0; f < num_features_; ++f) { int start_x = features_[f].X; int start_y = kIntFeatureExtent - features_[f].Y; double dx = cos((features_[f].Theta / 256.0) * 2.0 * M_PI - M_PI); double dy = -sin((features_[f].Theta / 256.0) * 2.0 * M_PI - M_PI); for (int i = 0; i <= 5; ++i) { int x = static_cast<int>(start_x + dx * i); int y = static_cast<int>(start_y + dy * i); if (x >= 0 && x < 256 && y >= 0 && y < 256) { pixSetPixel(pix, x, y, 1); } } } if (unicharset != nullptr) { pixSetText(pix, unicharset->id_to_unichar(class_id_)); } return pix; } #ifndef GRAPHICS_DISABLED // Displays the features in the given window with the given color. void TrainingSample::DisplayFeatures(ScrollView::Color color, ScrollView *window) const { for (uint32_t f = 0; f < num_features_; ++f) { RenderIntFeature(window, &features_[f], color); } } #endif // !GRAPHICS_DISABLED // Returns a pix of the original sample image. The pix is padded all round // by padding wherever possible. // The returned Pix must be pixDestroyed after use. // If the input page_pix is nullptr, nullptr is returned. Image TrainingSample::GetSamplePix(int padding, Image page_pix) const { if (page_pix == nullptr) { return nullptr; } int page_width = pixGetWidth(page_pix); int page_height = pixGetHeight(page_pix); TBOX padded_box = bounding_box(); padded_box.pad(padding, padding); // Clip the padded_box to the limits of the page TBOX page_box(0, 0, page_width, page_height); padded_box &= page_box; Box *box = boxCreate(page_box.left(), page_height - page_box.top(), page_box.width(), page_box.height()); Image sample_pix = pixClipRectangle(page_pix, box, nullptr); boxDestroy(&box); return sample_pix; } } // namespace tesseract
