Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/tesseract/src/ccstruct/linlsq.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line source
/********************************************************************** * File: linlsq.cpp (Formerly llsq.c) * Description: Linear Least squares fitting code. * Author: Ray Smith * * (C) Copyright 1991, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ #include "linlsq.h" #include <cmath> // for std::sqrt #include <cstdio> #include "errcode.h" namespace tesseract { constexpr ERRCODE EMPTY_LLSQ("Can't delete from an empty LLSQ"); /********************************************************************** * LLSQ::clear * * Function to initialize a LLSQ. **********************************************************************/ void LLSQ::clear() { // initialize total_weight = 0.0; // no elements sigx = 0.0; // update accumulators sigy = 0.0; sigxx = 0.0; sigxy = 0.0; sigyy = 0.0; } /********************************************************************** * LLSQ::add * * Add an element to the accumulator. **********************************************************************/ void LLSQ::add(double x, double y) { // add an element total_weight++; // count elements sigx += x; // update accumulators sigy += y; sigxx += x * x; sigxy += x * y; sigyy += y * y; } // Adds an element with a specified weight. void LLSQ::add(double x, double y, double weight) { total_weight += weight; sigx += x * weight; // update accumulators sigy += y * weight; sigxx += x * x * weight; sigxy += x * y * weight; sigyy += y * y * weight; } // Adds a whole LLSQ. void LLSQ::add(const LLSQ &other) { total_weight += other.total_weight; sigx += other.sigx; // update accumulators sigy += other.sigy; sigxx += other.sigxx; sigxy += other.sigxy; sigyy += other.sigyy; } /********************************************************************** * LLSQ::remove * * Delete an element from the acculuator. **********************************************************************/ void LLSQ::remove(double x, double y) { // delete an element if (total_weight <= 0.0) { // illegal EMPTY_LLSQ.error("LLSQ::remove", ABORT); } total_weight--; // count elements sigx -= x; // update accumulators sigy -= y; sigxx -= x * x; sigxy -= x * y; sigyy -= y * y; } /********************************************************************** * LLSQ::m * * Return the gradient of the line fit. **********************************************************************/ double LLSQ::m() const { // get gradient double covar = covariance(); double x_var = x_variance(); if (x_var != 0.0) { return covar / x_var; } else { return 0.0; // too little } } /********************************************************************** * LLSQ::c * * Return the constant of the line fit. **********************************************************************/ double LLSQ::c(double m) const { // get constant if (total_weight > 0.0) { return (sigy - m * sigx) / total_weight; } else { return 0; // too little } } /********************************************************************** * LLSQ::rms * * Return the rms error of the fit. **********************************************************************/ double LLSQ::rms(double m, double c) const { // get error double error; // total error if (total_weight > 0) { error = sigyy + m * (m * sigxx + 2 * (c * sigx - sigxy)) + c * (total_weight * c - 2 * sigy); if (error >= 0) { error = std::sqrt(error / total_weight); // sqrt of mean } else { error = 0; } } else { error = 0; // too little } return error; } /********************************************************************** * LLSQ::pearson * * Return the pearson product moment correlation coefficient. **********************************************************************/ double LLSQ::pearson() const { // get correlation double r = 0.0; // Correlation is 0 if insufficient data. double covar = covariance(); if (covar != 0.0) { double var_product = x_variance() * y_variance(); if (var_product > 0.0) { r = covar / std::sqrt(var_product); } } return r; } // Returns the x,y means as an FCOORD. FCOORD LLSQ::mean_point() const { if (total_weight > 0.0) { return FCOORD(sigx / total_weight, sigy / total_weight); } else { return FCOORD(0.0f, 0.0f); } } // Returns the sqrt of the mean squared error measured perpendicular from the // line through mean_point() in the direction dir. // // Derivation: // Lemma: Let v and x_i (i=1..N) be a k-dimensional vectors (1xk matrices). // Let % be dot product and ' be transpose. Note that: // Sum[i=1..N] (v % x_i)^2 // = v * [x_1' x_2' ... x_N'] * [x_1' x_2' .. x_N']' * v' // If x_i have average 0 we have: // = v * (N * COVARIANCE_MATRIX(X)) * v' // Expanded for the case that k = 2, where we treat the dimensions // as x_i and y_i, this is: // = v * (N * [VAR(X), COV(X,Y); COV(X,Y) VAR(Y)]) * v' // Now, we are trying to calculate the mean squared error, where v is // perpendicular to our line of interest: // Mean squared error // = E [ (v % (x_i - x_avg))) ^2 ] // = Sum (v % (x_i - x_avg))^2 / N // = v * N * [VAR(X) COV(X,Y); COV(X,Y) VAR(Y)] / N * v' // = v * [VAR(X) COV(X,Y); COV(X,Y) VAR(Y)] * v' // = code below double LLSQ::rms_orth(const FCOORD &dir) const { FCOORD v = !dir; v.normalise(); return std::sqrt(x_variance() * v.x() * v.x() + 2 * covariance() * v.x() * v.y() + y_variance() * v.y() * v.y()); } // Returns the direction of the fitted line as a unit vector, using the // least mean squared perpendicular distance. The line runs through the // mean_point, i.e. a point p on the line is given by: // p = mean_point() + lambda * vector_fit() for some real number lambda. // Note that the result (0<=x<=1, -1<=y<=-1) is directionally ambiguous // and may be negated without changing its meaning. // Fitting a line m + ๐v to a set of N points Pi = (xi, yi), where // m is the mean point (๐, ๐) and // v is the direction vector (cos๐, sin๐) // The perpendicular distance of each Pi from the line is: // (Pi - m) x v, where x is the scalar cross product. // Total squared error is thus: // E = โ((xi - ๐)sin๐ - (yi - ๐)cos๐)ยฒ // = โ(xi - ๐)ยฒsinยฒ๐ - 2โ(xi - ๐)(yi - ๐)sin๐ cos๐ + โ(yi - ๐)ยฒcosยฒ๐ // = NVar(xi)sinยฒ๐ - 2NCovar(xi, yi)sin๐ cos๐ + NVar(yi)cosยฒ๐ (Eq 1) // where Var(xi) is the variance of xi, // and Covar(xi, yi) is the covariance of xi, yi. // Taking the derivative wrt ๐ and setting to 0 to obtain the min/max: // 0 = 2NVar(xi)sin๐ cos๐ -2NCovar(xi, yi)(cosยฒ๐ - sinยฒ๐) -2NVar(yi)sin๐ cos๐ // => Covar(xi, yi)(cosยฒ๐ - sinยฒ๐) = (Var(xi) - Var(yi))sin๐ cos๐ // Using double angles: // 2Covar(xi, yi)cos2๐ = (Var(xi) - Var(yi))sin2๐ (Eq 2) // So ๐ = 0.5 atan2(2Covar(xi, yi), Var(xi) - Var(yi)) (Eq 3) // Because it involves 2๐ , Eq 2 has 2 solutions 90 degrees apart, but which // is the min and which is the max? From Eq1: // E/N = Var(xi)sinยฒ๐ - 2Covar(xi, yi)sin๐ cos๐ + Var(yi)cosยฒ๐ // and 90 degrees away, using sin/cos equivalences: // E'/N = Var(xi)cosยฒ๐ + 2Covar(xi, yi)sin๐ cos๐ + Var(yi)sinยฒ๐ // The second error is smaller (making it the minimum) iff // E'/N < E/N ie: // (Var(xi) - Var(yi))(cosยฒ๐ - sinยฒ๐) < -4Covar(xi, yi)sin๐ cos๐ // Using double angles: // (Var(xi) - Var(yi))cos2๐ < -2Covar(xi, yi)sin2๐ (InEq 1) // But atan2(2Covar(xi, yi), Var(xi) - Var(yi)) picks 2๐ such that: // sgn(cos2๐) = sgn(Var(xi) - Var(yi)) and sgn(sin2๐) = sgn(Covar(xi, yi)) // so InEq1 can *never* be true, making the atan2 result *always* the min! // In the degenerate case, where Covar(xi, yi) = 0 AND Var(xi) = Var(yi), // the 2 solutions have equal error and the inequality is still false. // Therefore the solution really is as trivial as Eq 3. // This is equivalent to returning the Principal Component in PCA, or the // eigenvector corresponding to the largest eigenvalue in the covariance // matrix. However, atan2 is much simpler! The one reference I found that // uses this formula is http://web.mit.edu/18.06/www/Essays/tlsfit.pdf but // that is still a much more complex derivation. It seems Pearson had already // found this simple solution in 1901. // http://books.google.com/books?id=WXwvAQAAIAAJ&pg=PA559 FCOORD LLSQ::vector_fit() const { double x_var = x_variance(); double y_var = y_variance(); double covar = covariance(); double theta = 0.5 * atan2(2.0 * covar, x_var - y_var); FCOORD result(cos(theta), sin(theta)); return result; } } // namespace tesseract
