Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/zxing-cpp/core/src/Quadrilateral.h @ 21:2f43e400f144
Provide an "all" target to build both the sdist and the wheel
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Fri, 19 Sep 2025 10:28:53 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/* * Copyright 2020 Axel Waggershauser */ // SPDX-License-Identifier: Apache-2.0 #pragma once #include "Point.h" #include "ZXAlgorithms.h" #include <array> #include <cmath> #include <string> namespace ZXing { template <typename T> class Quadrilateral : public std::array<T, 4> { using Base = std::array<T, 4>; using Base::at; public: using Point = T; Quadrilateral() = default; Quadrilateral(T tl, T tr, T br, T bl) : Base{tl, tr, br, bl} {} template <typename U> Quadrilateral(PointT<U> tl, PointT<U> tr, PointT<U> br, PointT<U> bl) : Quadrilateral(Point(tl), Point(tr), Point(br), Point(bl)) {} constexpr Point topLeft() const noexcept { return at(0); } constexpr Point topRight() const noexcept { return at(1); } constexpr Point bottomRight() const noexcept { return at(2); } constexpr Point bottomLeft() const noexcept { return at(3); } double orientation() const { auto centerLine = (topRight() + bottomRight()) - (topLeft() + bottomLeft()); if (centerLine == Point{}) return 0.; auto centerLineF = normalized(centerLine); return std::atan2(centerLineF.y, centerLineF.x); } }; using QuadrilateralF = Quadrilateral<PointF>; using QuadrilateralI = Quadrilateral<PointI>; template <typename PointT = PointF> Quadrilateral<PointT> Rectangle(int width, int height, typename PointT::value_t margin = 0) { return { PointT{margin, margin}, {width - margin, margin}, {width - margin, height - margin}, {margin, height - margin}}; } template <typename PointT = PointF> Quadrilateral<PointT> CenteredSquare(int size) { return Scale(Quadrilateral(PointT{-1, -1}, {1, -1}, {1, 1}, {-1, 1}), size / 2); } template <typename PointT = PointI> Quadrilateral<PointT> Line(int y, int xStart, int xStop) { return {PointT{xStart, y}, {xStop, y}, {xStop, y}, {xStart, y}}; } template <typename PointT> bool IsConvex(const Quadrilateral<PointT>& poly) { const int N = Size(poly); bool sign = false; typename PointT::value_t m = INFINITY, M = 0; for(int i = 0; i < N; i++) { auto d1 = poly[(i + 2) % N] - poly[(i + 1) % N]; auto d2 = poly[i] - poly[(i + 1) % N]; auto cp = cross(d1, d2); // TODO: see if the isInside check for all boundary points in GridSampler is still required after fixing the wrong fabs() // application in the following line UpdateMinMax(m, M, std::fabs(cp)); if (i == 0) sign = cp > 0; else if (sign != (cp > 0)) return false; } // It turns out being convex is not enough to prevent a "numerical instability" // that can cause the corners being projected inside the image boundaries but // some points near the corners being projected outside. This has been observed // where one corner is almost in line with two others. The M/m ratio is below 2 // for the complete existing sample set. For very "skewed" QRCodes a value of // around 3 is realistic. A value of 14 has been observed to trigger the // instability. return M / m < 4.0; } template <typename PointT> Quadrilateral<PointT> Scale(const Quadrilateral<PointT>& q, int factor) { return {factor * q[0], factor * q[1], factor * q[2], factor * q[3]}; } template <typename PointT> PointT Center(const Quadrilateral<PointT>& q) { return Reduce(q) / Size(q); } template <typename PointT> Quadrilateral<PointT> RotatedCorners(const Quadrilateral<PointT>& q, int n = 1, bool mirror = false) { Quadrilateral<PointT> res; std::rotate_copy(q.begin(), q.begin() + ((n + 4) % 4), q.end(), res.begin()); if (mirror) std::swap(res[1], res[3]); return res; } template <typename PointT> bool IsInside(const PointT& p, const Quadrilateral<PointT>& q) { // Test if p is on the same side (right or left) of all polygon segments int pos = 0, neg = 0; for (int i = 0; i < Size(q); ++i) (cross(p - q[i], q[(i + 1) % Size(q)] - q[i]) < 0 ? neg : pos)++; return pos == 0 || neg == 0; } template <typename PointT> Quadrilateral<PointT> BoundingBox(const Quadrilateral<PointT>& q) { auto [minX, maxX] = std::minmax({q[0].x, q[1].x, q[2].x, q[3].x}); auto [minY, maxY] = std::minmax({q[0].y, q[1].y, q[2].y, q[3].y}); return {PointT{minX, minY}, {maxX, minY}, {maxX, maxY}, {minX, maxY}}; } template <typename PointT> bool HaveIntersectingBoundingBoxes(const Quadrilateral<PointT>& a, const Quadrilateral<PointT>& b) { auto bba = BoundingBox(a), bbb = BoundingBox(b); bool x = bbb.topRight().x < bba.topLeft().x || bbb.topLeft().x > bba.topRight().x; bool y = bbb.bottomLeft().y < bba.topLeft().y || bbb.topLeft().y > bba.bottomLeft().y; return !(x || y); } template <typename PointT> Quadrilateral<PointT> Blend(const Quadrilateral<PointT>& a, const Quadrilateral<PointT>& b) { auto dist2First = [r = a[0]](auto s, auto t) { return distance(s, r) < distance(t, r); }; // rotate points such that the the two topLeft points are closest to each other auto offset = std::min_element(b.begin(), b.end(), dist2First) - b.begin(); Quadrilateral<PointT> res; for (int i = 0; i < 4; ++i) res[i] = (a[i] + b[(i + offset) % 4]) / 2; return res; } template <typename T> std::string ToString(const Quadrilateral<PointT<T>>& points) { std::string res; for (const auto& p : points) res += std::to_string(p.x) + "x" + std::to_string(p.y) + (&p == &points.back() ? "" : " "); return res; } } // ZXing
