Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/zxing-cpp/core/src/HybridBinarizer.cpp @ 21:2f43e400f144
Provide an "all" target to build both the sdist and the wheel
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Fri, 19 Sep 2025 10:28:53 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/* * Copyright 2016 Nu-book Inc. * Copyright 2016 ZXing authors */ // SPDX-License-Identifier: Apache-2.0 #include "HybridBinarizer.h" #include "BitMatrix.h" #include "Matrix.h" #include <algorithm> #include <cstdint> #include <fstream> #include <memory> #define USE_NEW_ALGORITHM namespace ZXing { // This class uses 5x5 blocks to compute local luminance, where each block is 8x8 pixels. // So this is the smallest dimension in each axis we can accept. static constexpr int BLOCK_SIZE = 8; static constexpr int WINDOW_SIZE = BLOCK_SIZE * (1 + 2 * 2); static constexpr int MIN_DYNAMIC_RANGE = 24; HybridBinarizer::HybridBinarizer(const ImageView& iv) : GlobalHistogramBinarizer(iv) {} HybridBinarizer::~HybridBinarizer() = default; bool HybridBinarizer::getPatternRow(int row, int rotation, PatternRow& res) const { #if 1 // This is the original "hybrid" behavior: use GlobalHistogram for the 1D case return GlobalHistogramBinarizer::getPatternRow(row, rotation, res); #else // This is an alternative that can be faster in general and perform better in unevenly lit sitations like // https://github.com/zxing-cpp/zxing-cpp/blob/master/test/samples/ean13-2/21.png. That said, it fairs // worse in borderline low resolution situations. With the current black box sample set we'd loose 94 // test cases while gaining 53 others. auto bits = getBitMatrix(); if (bits) GetPatternRow(*bits, row, res, rotation % 180 != 0); return bits != nullptr; #endif } using T_t = uint8_t; /** * Applies a single threshold to a block of pixels. */ static void ThresholdBlock(const uint8_t* __restrict luminances, int xoffset, int yoffset, T_t threshold, int rowStride, BitMatrix& matrix) { for (int y = yoffset; y < yoffset + BLOCK_SIZE; ++y) { auto* src = luminances + y * rowStride + xoffset; auto* const dstBegin = matrix.row(y).begin() + xoffset; // TODO: fix pixelStride > 1 case for (auto* dst = dstBegin; dst < dstBegin + BLOCK_SIZE; ++dst, ++src) *dst = (*src <= threshold) * BitMatrix::SET_V; } } #ifndef USE_NEW_ALGORITHM /** * Calculates a single black point for each block of pixels and saves it away. * See the following thread for a discussion of this algorithm: * http://groups.google.com/group/zxing/browse_thread/thread/d06efa2c35a7ddc0 */ static Matrix<T_t> CalculateBlackPoints(const uint8_t* __restrict luminances, int subWidth, int subHeight, int width, int height, int rowStride) { Matrix<T_t> blackPoints(subWidth, subHeight); for (int y = 0; y < subHeight; y++) { int yoffset = std::min(y * BLOCK_SIZE, height - BLOCK_SIZE); for (int x = 0; x < subWidth; x++) { int xoffset = std::min(x * BLOCK_SIZE, width - BLOCK_SIZE); int sum = 0; uint8_t min = luminances[yoffset * rowStride + xoffset]; uint8_t max = min; for (int yy = 0, offset = yoffset * rowStride + xoffset; yy < BLOCK_SIZE; yy++, offset += rowStride) { for (int xx = 0; xx < BLOCK_SIZE; xx++) { auto pixel = luminances[offset + xx]; sum += pixel; if (pixel < min) min = pixel; if (pixel > max) max = pixel; } // short-circuit min/max tests once dynamic range is met if (max - min > MIN_DYNAMIC_RANGE) { // finish the rest of the rows quickly for (yy++, offset += rowStride; yy < BLOCK_SIZE; yy++, offset += rowStride) { for (int xx = 0; xx < BLOCK_SIZE; xx++) { sum += luminances[offset + xx]; } } } } // The default estimate is the average of the values in the block. int average = sum / (BLOCK_SIZE * BLOCK_SIZE); if (max - min <= MIN_DYNAMIC_RANGE) { // If variation within the block is low, assume this is a block with only light or only // dark pixels. In that case we do not want to use the average, as it would divide this // low contrast area into black and white pixels, essentially creating data out of noise. // // The default assumption is that the block is light/background. Since no estimate for // the level of dark pixels exists locally, use half the min for the block. average = min / 2; if (y > 0 && x > 0) { // Correct the "white background" assumption for blocks that have neighbors by comparing // the pixels in this block to the previously calculated black points. This is based on // the fact that dark barcode symbology is always surrounded by some amount of light // background for which reasonable black point estimates were made. The bp estimated at // the boundaries is used for the interior. // The (min < bp) is arbitrary but works better than other heuristics that were tried. int averageNeighborBlackPoint = (blackPoints(x, y - 1) + (2 * blackPoints(x - 1, y)) + blackPoints(x - 1, y - 1)) / 4; if (min < averageNeighborBlackPoint) { average = averageNeighborBlackPoint; } } } blackPoints(x, y) = average; } } return blackPoints; } /** * For each block in the image, calculate the average black point using a 5x5 grid * of the blocks around it. Also handles the corner cases (fractional blocks are computed based * on the last pixels in the row/column which are also used in the previous block). */ static std::shared_ptr<BitMatrix> CalculateMatrix(const uint8_t* __restrict luminances, int subWidth, int subHeight, int width, int height, int rowStride, const Matrix<T_t>& blackPoints) { auto matrix = std::make_shared<BitMatrix>(width, height); #ifdef PRINT_DEBUG Matrix<uint8_t> out(width, height); Matrix<uint8_t> out2(width, height); #endif for (int y = 0; y < subHeight; y++) { int yoffset = std::min(y * BLOCK_SIZE, height - BLOCK_SIZE); for (int x = 0; x < subWidth; x++) { int xoffset = std::min(x * BLOCK_SIZE, width - BLOCK_SIZE); int left = std::clamp(x, 2, subWidth - 3); int top = std::clamp(y, 2, subHeight - 3); int sum = 0; for (int dy = -2; dy <= 2; ++dy) { for (int dx = -2; dx <= 2; ++dx) { sum += blackPoints(left + dx, top + dy); } } int average = sum / 25; ThresholdBlock(luminances, xoffset, yoffset, average, rowStride, *matrix); #ifdef PRINT_DEBUG for (int yy = 0; yy < 8; ++yy) for (int xx = 0; xx < 8; ++xx) { out.set(xoffset + xx, yoffset + yy, blackPoints(x, y)); out2.set(xoffset + xx, yoffset + yy, average); } #endif } } #ifdef PRINT_DEBUG std::ofstream file("thresholds.pnm"); file << "P5\n" << out.width() << ' ' << out.height() << "\n255\n"; file.write(reinterpret_cast<const char*>(out.data()), out.size()); std::ofstream file2("thresholds_avg.pnm"); file2 << "P5\n" << out.width() << ' ' << out.height() << "\n255\n"; file2.write(reinterpret_cast<const char*>(out2.data()), out2.size()); #endif return matrix; } #else // Subdivide the image in blocks of BLOCK_SIZE and calculate one treshold value per block as // (max - min > MIN_DYNAMIC_RANGE) ? (max + min) / 2 : 0 static Matrix<T_t> BlockThresholds(const ImageView iv) { int subWidth = (iv.width() + BLOCK_SIZE - 1) / BLOCK_SIZE; // ceil(width/BS) int subHeight = (iv.height() + BLOCK_SIZE - 1) / BLOCK_SIZE; // ceil(height/BS) Matrix<T_t> thresholds(subWidth, subHeight); for (int y = 0; y < subHeight; y++) { int y0 = std::min(y * BLOCK_SIZE, iv.height() - BLOCK_SIZE); for (int x = 0; x < subWidth; x++) { int x0 = std::min(x * BLOCK_SIZE, iv.width() - BLOCK_SIZE); uint8_t min = 255; uint8_t max = 0; for (int yy = 0; yy < BLOCK_SIZE; yy++) { auto line = iv.data(x0, y0 + yy); for (int xx = 0; xx < BLOCK_SIZE; xx++) UpdateMinMax(min, max, line[xx]); } thresholds(x, y) = (max - min > MIN_DYNAMIC_RANGE) ? (int(max) + min) / 2 : 0; } } return thresholds; } // Apply gaussian-like smoothing filter over all non-zero thresholds and fill any remainig gaps with nearest neighbor static Matrix<T_t> SmoothThresholds(Matrix<T_t>&& in) { Matrix<T_t> out(in.width(), in.height()); constexpr int R = WINDOW_SIZE / BLOCK_SIZE / 2; for (int y = 0; y < in.height(); y++) { for (int x = 0; x < in.width(); x++) { int left = std::clamp(x, R, in.width() - R - 1); int top = std::clamp(y, R, in.height() - R - 1); int sum = in(x, y) * 2; int n = (sum > 0) * 2; auto add = [&](int x, int y) { int t = in(x, y); sum += t; n += t > 0; }; for (int dy = -R; dy <= R; ++dy) for (int dx = -R; dx <= R; ++dx) add(left + dx, top + dy); out(x, y) = n > 0 ? sum / n : 0; } } // flood fill any remaing gaps of (very large) no-contrast regions auto last = out.begin() - 1; for (auto* i = out.begin(); i != out.end(); ++i) { if (*i) { if (last != i - 1) std::fill(last + 1, i, *i); last = i; } } std::fill(last + 1, out.end(), *(std::max(last, out.begin()))); return out; } static std::shared_ptr<BitMatrix> ThresholdImage(const ImageView iv, const Matrix<T_t>& thresholds) { auto matrix = std::make_shared<BitMatrix>(iv.width(), iv.height()); #ifdef PRINT_DEBUG Matrix<uint8_t> out(iv.width(), iv.height()); #endif for (int y = 0; y < thresholds.height(); y++) { int yoffset = std::min(y * BLOCK_SIZE, iv.height() - BLOCK_SIZE); for (int x = 0; x < thresholds.width(); x++) { int xoffset = std::min(x * BLOCK_SIZE, iv.width() - BLOCK_SIZE); ThresholdBlock(iv.data(), xoffset, yoffset, thresholds(x, y), iv.rowStride(), *matrix); #ifdef PRINT_DEBUG for (int yy = 0; yy < 8; ++yy) for (int xx = 0; xx < 8; ++xx) out.set(xoffset + xx, yoffset + yy, thresholds(x, y)); #endif } } #ifdef PRINT_DEBUG std::ofstream file("thresholds_new.pnm"); file << "P5\n" << out.width() << ' ' << out.height() << "\n255\n"; file.write(reinterpret_cast<const char*>(out.data()), out.size()); #endif return matrix; } #endif std::shared_ptr<const BitMatrix> HybridBinarizer::getBlackMatrix() const { if (width() >= WINDOW_SIZE && height() >= WINDOW_SIZE) { #ifdef USE_NEW_ALGORITHM auto thrs = SmoothThresholds(BlockThresholds(_buffer)); return ThresholdImage(_buffer, thrs); #else const uint8_t* luminances = _buffer.data(); int subWidth = (width() + BLOCK_SIZE - 1) / BLOCK_SIZE; // ceil(width/BS) int subHeight = (height() + BLOCK_SIZE - 1) / BLOCK_SIZE; // ceil(height/BS) auto blackPoints = CalculateBlackPoints(luminances, subWidth, subHeight, width(), height(), _buffer.rowStride()); return CalculateMatrix(luminances, subWidth, subHeight, width(), height(), _buffer.rowStride(), blackPoints); #endif } else { // If the image is too small, fall back to the global histogram approach. return GlobalHistogramBinarizer::getBlackMatrix(); } } } // ZXing
