Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/zxing-cpp/core/src/ConcentricFinder.h @ 21:2f43e400f144
Provide an "all" target to build both the sdist and the wheel
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Fri, 19 Sep 2025 10:28:53 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/* * Copyright 2020 Axel Waggershauser */ // SPDX-License-Identifier: Apache-2.0 #pragma once #include "BitMatrixCursor.h" #include "Pattern.h" #include "Quadrilateral.h" #include "ZXAlgorithms.h" #include <optional> namespace ZXing { template <typename T, size_t N> static float CenterFromEnd(const std::array<T, N>& pattern, float end) { if (N == 5) { float a = pattern[4] + pattern[3] + pattern[2] / 2.f; float b = pattern[4] + (pattern[3] + pattern[2] + pattern[1]) / 2.f; float c = (pattern[4] + pattern[3] + pattern[2] + pattern[1] + pattern[0]) / 2.f; return end - (2 * a + b + c) / 4; } else if (N == 3) { float a = pattern[2] + pattern[1] / 2.f; float b = (pattern[2] + pattern[1] + pattern[0]) / 2.f; return end - (2 * a + b) / 3; } else { // aztec auto a = Reduce(pattern.begin() + (N/2 + 1), pattern.end(), pattern[N/2] / 2.f); return end - a; } } template<int N, typename Cursor> std::optional<Pattern<N>> ReadSymmetricPattern(Cursor& cur, int range) { static_assert(N % 2 == 1); assert(range > 0); Pattern<N> res = {}; auto constexpr s_2 = Size(res)/2; auto cuo = cur.turnedBack(); auto next = [&](auto& cur, int i) { auto v = cur.stepToEdge(1, range); res[s_2 + i] += v; if (range) range -= v; return v; }; for (int i = 0; i <= s_2; ++i) { if (!next(cur, i) || !next(cuo, -i)) return {}; } res[s_2]--; // the starting pixel has been counted twice, fix this return res; } template<bool RELAXED_THRESHOLD = false, typename PATTERN> int CheckSymmetricPattern(BitMatrixCursorI& cur, PATTERN pattern, int range, bool updatePosition) { FastEdgeToEdgeCounter curFwd(cur), curBwd(cur.turnedBack()); int centerFwd = curFwd.stepToNextEdge(range); if (!centerFwd) return 0; int centerBwd = curBwd.stepToNextEdge(range); if (!centerBwd) return 0; assert(range > 0); Pattern<pattern.size()> res = {}; auto constexpr s_2 = Size(res)/2; res[s_2] = centerFwd + centerBwd - 1; // -1 because the starting pixel is counted twice range -= res[s_2]; auto next = [&](auto& cur, int i) { auto v = cur.stepToNextEdge(range); res[s_2 + i] = v; range -= v; return v; }; for (int i = 1; i <= s_2; ++i) { if (!next(curFwd, i) || !next(curBwd, -i)) return 0; } if (!IsPattern<RELAXED_THRESHOLD>(res, pattern)) return 0; if (updatePosition) cur.step(res[s_2] / 2 - (centerBwd - 1)); return Reduce(res); } std::optional<PointF> CenterOfRing(const BitMatrix& image, PointI center, int range, int nth, bool requireCircle = true); std::optional<PointF> FinetuneConcentricPatternCenter(const BitMatrix& image, PointF center, int range, int finderPatternSize); std::optional<QuadrilateralF> FindConcentricPatternCorners(const BitMatrix& image, PointF center, int range, int ringIndex); struct ConcentricPattern : public PointF { int size = 0; }; template <bool E2E = false, typename PATTERN> std::optional<ConcentricPattern> LocateConcentricPattern(const BitMatrix& image, PATTERN pattern, PointF center, int range) { auto cur = BitMatrixCursor(image, PointI(center), {}); int minSpread = image.width(), maxSpread = 0; // TODO: setting maxError to 1 can subtantially help with detecting symbols with low print quality resulting in damaged // finder patterns, but it sutantially increases the runtime (approx. 20% slower for the falsepositive images). int maxError = 0; for (auto d : {PointI{0, 1}, {1, 0}}) { int spread = CheckSymmetricPattern<E2E>(cur.setDirection(d), pattern, range, true); if (spread) UpdateMinMax(minSpread, maxSpread, spread); else if (--maxError < 0) return {}; } #if 1 for (auto d : {PointI{1, 1}, {1, -1}}) { int spread = CheckSymmetricPattern<true>(cur.setDirection(d), pattern, range * 2, false); if (spread) UpdateMinMax(minSpread, maxSpread, spread); else if (--maxError < 0) return {}; } #endif if (maxSpread > 5 * minSpread) return {}; auto newCenter = FinetuneConcentricPatternCenter(image, PointF(cur.p), range, pattern.size()); if (!newCenter) return {}; return ConcentricPattern{*newCenter, (maxSpread + minSpread) / 2}; } } // ZXing
