Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/tesseract/src/lstm/fullyconnected.h @ 21:2f43e400f144
Provide an "all" target to build both the sdist and the wheel
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Fri, 19 Sep 2025 10:28:53 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/////////////////////////////////////////////////////////////////////// // File: fullyconnected.h // Description: Simple feed-forward layer with various non-linearities. // Author: Ray Smith // // (C) Copyright 2014, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #ifndef TESSERACT_LSTM_FULLYCONNECTED_H_ #define TESSERACT_LSTM_FULLYCONNECTED_H_ #include "network.h" #include "networkscratch.h" #include "tesstypes.h" namespace tesseract { // C++ Implementation of the Softmax (output) class from lstm.py. class FullyConnected : public Network { public: TESS_API FullyConnected(const std::string &name, int ni, int no, NetworkType type); ~FullyConnected() override = default; // Returns the shape output from the network given an input shape (which may // be partially unknown ie zero). StaticShape OutputShape(const StaticShape &input_shape) const override; std::string spec() const override { std::string spec; if (type_ == NT_TANH) { spec += "Ft" + std::to_string(no_); } else if (type_ == NT_LOGISTIC) { spec += "Fs" + std::to_string(no_); } else if (type_ == NT_RELU) { spec += "Fr" + std::to_string(no_); } else if (type_ == NT_LINEAR) { spec += "Fl" + std::to_string(no_); } else if (type_ == NT_POSCLIP) { spec += "Fp" + std::to_string(no_); } else if (type_ == NT_SYMCLIP) { spec += "Fn" + std::to_string(no_); } else if (type_ == NT_SOFTMAX) { spec += "Fc" + std::to_string(no_); } else { spec += "Fm" + std::to_string(no_); } return spec; } // Changes the type to the given type. Used to commute a softmax to a // non-output type for adding on other networks. void ChangeType(NetworkType type) { type_ = type; } // Suspends/Enables training by setting the training_ flag. Serialize and // DeSerialize only operate on the run-time data if state is false. void SetEnableTraining(TrainingState state) override; // Sets up the network for training. Initializes weights using weights of // scale `range` picked according to the random number generator `randomizer`. int InitWeights(float range, TRand *randomizer) override; // Recursively searches the network for softmaxes with old_no outputs, // and remaps their outputs according to code_map. See network.h for details. int RemapOutputs(int old_no, const std::vector<int> &code_map) override; // Converts a float network to an int network. void ConvertToInt() override; // Provides debug output on the weights. void DebugWeights() override; // Writes to the given file. Returns false in case of error. bool Serialize(TFile *fp) const override; // Reads from the given file. Returns false in case of error. bool DeSerialize(TFile *fp) override; // Runs forward propagation of activations on the input line. // See Network for a detailed discussion of the arguments. void Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose, NetworkScratch *scratch, NetworkIO *output) override; // Components of Forward so FullyConnected can be reused inside LSTM. void SetupForward(const NetworkIO &input, const TransposedArray *input_transpose); void ForwardTimeStep(int t, TFloat *output_line); void ForwardTimeStep(const TFloat *d_input, int t, TFloat *output_line); void ForwardTimeStep(const int8_t *i_input, int t, TFloat *output_line); // Runs backward propagation of errors on the deltas line. // See Network for a detailed discussion of the arguments. bool Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch, NetworkIO *back_deltas) override; // Components of Backward so FullyConnected can be reused inside LSTM. void BackwardTimeStep(const NetworkIO &fwd_deltas, int t, TFloat *curr_errors, TransposedArray *errors_t, TFloat *backprop); void FinishBackward(const TransposedArray &errors_t); // Updates the weights using the given learning rate, momentum and adam_beta. // num_samples is used in the adam computation iff use_adam_ is true. void Update(float learning_rate, float momentum, float adam_beta, int num_samples) override; // Sums the products of weight updates in *this and other, splitting into // positive (same direction) in *same and negative (different direction) in // *changed. void CountAlternators(const Network &other, TFloat *same, TFloat *changed) const override; protected: // Weight arrays of size [no, ni + 1]. WeightMatrix weights_; // Transposed copy of input used during training of size [ni, width]. TransposedArray source_t_; // Pointer to transposed input stored elsewhere. If not null, this is used // in preference to calculating the transpose and storing it in source_t_. const TransposedArray *external_source_; // Activations from forward pass of size [width, no]. NetworkIO acts_; // Memory of the integer mode input to forward as softmax always outputs // float, so the information is otherwise lost. bool int_mode_; }; } // namespace tesseract. #endif // TESSERACT_LSTM_FULLYCONNECTED_H_
