Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/tesseract/src/classify/fpoint.cpp @ 21:2f43e400f144
Provide an "all" target to build both the sdist and the wheel
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Fri, 19 Sep 2025 10:28:53 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/****************************************************************************** ** Filename: fpoint.cpp ** Purpose: Abstract data type for a 2D point (floating point coords) ** Author: Dan Johnson ** ** (c) Copyright Hewlett-Packard Company, 1988. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. ******************************************************************************/ /*---------------------------------------------------------------------------- Include Files and Type Defines ----------------------------------------------------------------------------*/ #define _USE_MATH_DEFINES // for M_PI #include "fpoint.h" #include <cmath> // for M_PI #include <cstdio> /*---------------------------------------------------------------------------- Public Code ----------------------------------------------------------------------------*/ float DistanceBetween(FPOINT A, FPOINT B) { const double xd = XDelta(A, B); const double yd = YDelta(A, B); return sqrt(static_cast<double>(xd * xd + yd * yd)); } /** * Return the angle from Point1 to Point2 normalized to * lie in the range 0 to FullScale (where FullScale corresponds * to 2*pi or 360 degrees). * @param Point1 points to compute angle between * @param Point2 points to compute angle between * @param FullScale value to associate with 2*pi * @return angle */ float NormalizedAngleFrom(FPOINT *Point1, FPOINT *Point2, float FullScale) { float NumRadsInCircle = 2.0 * M_PI; float Angle = AngleFrom(*Point1, *Point2); if (Angle < 0.0) { Angle += NumRadsInCircle; } Angle *= FullScale / NumRadsInCircle; if (Angle < 0.0 || Angle >= FullScale) { Angle = 0.0; } return (Angle); }
