Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/tesseract/src/ccstruct/ratngs.cpp @ 21:2f43e400f144
Provide an "all" target to build both the sdist and the wheel
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Fri, 19 Sep 2025 10:28:53 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/********************************************************************** * File: ratngs.cpp (Formerly ratings.c) * Description: Code to manipulate the BLOB_CHOICE and WERD_CHOICE classes. * Author: Ray Smith * * (C) Copyright 1992, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ #ifdef HAVE_CONFIG_H # include "config_auto.h" #endif #include "ratngs.h" #include "blobs.h" #include "matrix.h" #include "normalis.h" // kBlnBaselineOffset. #include "unicharset.h" #include <algorithm> #include <cmath> #include <string> #include <vector> namespace tesseract { const float WERD_CHOICE::kBadRating = 100000.0; // Min offset in baseline-normalized coords to make a character a subscript. const int kMinSubscriptOffset = 20; // Min offset in baseline-normalized coords to make a character a superscript. const int kMinSuperscriptOffset = 20; // Max y of bottom of a drop-cap blob. const int kMaxDropCapBottom = -128; // Max fraction of x-height to use as denominator in measuring x-height overlap. const double kMaxOverlapDenominator = 0.125; // Min fraction of x-height range that should be in agreement for matching // x-heights. const double kMinXHeightMatch = 0.5; // Max tolerance on baseline position as a fraction of x-height for matching // baselines. const double kMaxBaselineDrift = 0.0625; static const char kPermuterTypeNoPerm[] = "None"; static const char kPermuterTypePuncPerm[] = "Punctuation"; static const char kPermuterTypeTopPerm[] = "Top Choice"; static const char kPermuterTypeLowerPerm[] = "Top Lower Case"; static const char kPermuterTypeUpperPerm[] = "Top Upper Case"; static const char kPermuterTypeNgramPerm[] = "Ngram"; static const char kPermuterTypeNumberPerm[] = "Number"; static const char kPermuterTypeUserPatPerm[] = "User Pattern"; static const char kPermuterTypeSysDawgPerm[] = "System Dictionary"; static const char kPermuterTypeDocDawgPerm[] = "Document Dictionary"; static const char kPermuterTypeUserDawgPerm[] = "User Dictionary"; static const char kPermuterTypeFreqDawgPerm[] = "Frequent Words Dictionary"; static const char kPermuterTypeCompoundPerm[] = "Compound"; static const char *const kPermuterTypeNames[] = { kPermuterTypeNoPerm, // 0 kPermuterTypePuncPerm, // 1 kPermuterTypeTopPerm, // 2 kPermuterTypeLowerPerm, // 3 kPermuterTypeUpperPerm, // 4 kPermuterTypeNgramPerm, // 5 kPermuterTypeNumberPerm, // 6 kPermuterTypeUserPatPerm, // 7 kPermuterTypeSysDawgPerm, // 8 kPermuterTypeDocDawgPerm, // 9 kPermuterTypeUserDawgPerm, // 10 kPermuterTypeFreqDawgPerm, // 11 kPermuterTypeCompoundPerm // 12 }; /** * BLOB_CHOICE::BLOB_CHOICE * * Constructor to build a BLOB_CHOICE from a char, rating and certainty. */ BLOB_CHOICE::BLOB_CHOICE(UNICHAR_ID src_unichar_id, // character id float src_rating, // rating float src_cert, // certainty int src_script_id, // script float min_xheight, // min xheight allowed float max_xheight, // max xheight by this char float yshift, // yshift out of position BlobChoiceClassifier c) { // adapted match or other unichar_id_ = src_unichar_id; rating_ = src_rating; certainty_ = src_cert; fontinfo_id_ = -1; fontinfo_id2_ = -1; script_id_ = src_script_id; min_xheight_ = min_xheight; max_xheight_ = max_xheight; yshift_ = yshift; classifier_ = c; } /** * BLOB_CHOICE::BLOB_CHOICE * * Constructor to build a BLOB_CHOICE from another BLOB_CHOICE. */ BLOB_CHOICE::BLOB_CHOICE(const BLOB_CHOICE &other) : ELIST_LINK(other) { unichar_id_ = other.unichar_id(); rating_ = other.rating(); certainty_ = other.certainty(); fontinfo_id_ = other.fontinfo_id(); fontinfo_id2_ = other.fontinfo_id2(); script_id_ = other.script_id(); matrix_cell_ = other.matrix_cell_; min_xheight_ = other.min_xheight_; max_xheight_ = other.max_xheight_; yshift_ = other.yshift(); classifier_ = other.classifier_; #ifndef DISABLED_LEGACY_ENGINE fonts_ = other.fonts_; #endif // ndef DISABLED_LEGACY_ENGINE } // Copy assignment operator. BLOB_CHOICE &BLOB_CHOICE::operator=(const BLOB_CHOICE &other) { ELIST_LINK::operator=(other); unichar_id_ = other.unichar_id(); rating_ = other.rating(); certainty_ = other.certainty(); fontinfo_id_ = other.fontinfo_id(); fontinfo_id2_ = other.fontinfo_id2(); script_id_ = other.script_id(); matrix_cell_ = other.matrix_cell_; min_xheight_ = other.min_xheight_; max_xheight_ = other.max_xheight_; yshift_ = other.yshift(); classifier_ = other.classifier_; #ifndef DISABLED_LEGACY_ENGINE fonts_ = other.fonts_; #endif // ndef DISABLED_LEGACY_ENGINE return *this; } // Returns true if *this and other agree on the baseline and x-height // to within some tolerance based on a given estimate of the x-height. bool BLOB_CHOICE::PosAndSizeAgree(const BLOB_CHOICE &other, float x_height, bool debug) const { double baseline_diff = std::fabs(yshift() - other.yshift()); if (baseline_diff > kMaxBaselineDrift * x_height) { if (debug) { tprintf("Baseline diff %g for %d v %d\n", baseline_diff, unichar_id_, other.unichar_id_); } return false; } double this_range = max_xheight() - min_xheight(); double other_range = other.max_xheight() - other.min_xheight(); double denominator = ClipToRange(std::min(this_range, other_range), 1.0, kMaxOverlapDenominator * x_height); double overlap = std::min(max_xheight(), other.max_xheight()) - std::max(min_xheight(), other.min_xheight()); overlap /= denominator; if (debug) { tprintf("PosAndSize for %d v %d: bl diff = %g, ranges %g, %g / %g ->%g\n", unichar_id_, other.unichar_id_, baseline_diff, this_range, other_range, denominator, overlap); } return overlap >= kMinXHeightMatch; } // Helper to find the BLOB_CHOICE in the bc_list that matches the given // unichar_id, or nullptr if there is no match. BLOB_CHOICE *FindMatchingChoice(UNICHAR_ID char_id, BLOB_CHOICE_LIST *bc_list) { // Find the corresponding best BLOB_CHOICE. BLOB_CHOICE_IT choice_it(bc_list); for (choice_it.mark_cycle_pt(); !choice_it.cycled_list(); choice_it.forward()) { BLOB_CHOICE *choice = choice_it.data(); if (choice->unichar_id() == char_id) { return choice; } } return nullptr; } const char *WERD_CHOICE::permuter_name(uint8_t permuter) { return kPermuterTypeNames[permuter]; } const char *ScriptPosToString(enum ScriptPos script_pos) { switch (script_pos) { case SP_NORMAL: return "NORM"; case SP_SUBSCRIPT: return "SUB"; case SP_SUPERSCRIPT: return "SUPER"; case SP_DROPCAP: return "DROPC"; } return "SP_UNKNOWN"; } /** * WERD_CHOICE::WERD_CHOICE * * Constructor to build a WERD_CHOICE from the given string. * The function assumes that src_string is not nullptr. */ WERD_CHOICE::WERD_CHOICE(const char *src_string, const UNICHARSET &unicharset) : unicharset_(&unicharset) { std::vector<UNICHAR_ID> encoding; std::vector<char> lengths; std::string cleaned = unicharset.CleanupString(src_string); if (unicharset.encode_string(cleaned.c_str(), true, &encoding, &lengths, nullptr)) { lengths.push_back('\0'); std::string src_lengths = &lengths[0]; this->init(cleaned.c_str(), src_lengths.c_str(), 0.0, 0.0, NO_PERM); } else { // There must have been an invalid unichar in the string. this->init(8); this->make_bad(); } } /** * WERD_CHOICE::init * * Helper function to build a WERD_CHOICE from the given string, * fragment lengths, rating, certainty and permuter. * * The function assumes that src_string is not nullptr. * src_lengths argument could be nullptr, in which case the unichars * in src_string are assumed to all be of length 1. */ void WERD_CHOICE::init(const char *src_string, const char *src_lengths, float src_rating, float src_certainty, uint8_t src_permuter) { int src_string_len = strlen(src_string); if (src_string_len == 0) { this->init(8); } else { this->init(src_lengths ? strlen(src_lengths) : src_string_len); length_ = reserved_; int offset = 0; for (unsigned i = 0; i < length_; ++i) { int unichar_length = src_lengths ? src_lengths[i] : 1; unichar_ids_[i] = unicharset_->unichar_to_id(src_string + offset, unichar_length); state_[i] = 1; certainties_[i] = src_certainty; offset += unichar_length; } } adjust_factor_ = 1.0f; rating_ = src_rating; certainty_ = src_certainty; permuter_ = src_permuter; dangerous_ambig_found_ = false; } /** * WERD_CHOICE::~WERD_CHOICE */ WERD_CHOICE::~WERD_CHOICE() = default; const char *WERD_CHOICE::permuter_name() const { return kPermuterTypeNames[permuter_]; } // Returns the BLOB_CHOICE_LIST corresponding to the given index in the word, // taken from the appropriate cell in the ratings MATRIX. // Borrowed pointer, so do not delete. BLOB_CHOICE_LIST *WERD_CHOICE::blob_choices(unsigned index, MATRIX *ratings) const { MATRIX_COORD coord = MatrixCoord(index); BLOB_CHOICE_LIST *result = ratings->get(coord.col, coord.row); if (result == nullptr) { result = new BLOB_CHOICE_LIST; ratings->put(coord.col, coord.row, result); } return result; } // Returns the MATRIX_COORD corresponding to the location in the ratings // MATRIX for the given index into the word. MATRIX_COORD WERD_CHOICE::MatrixCoord(unsigned index) const { int col = 0; for (unsigned i = 0; i < index; ++i) { col += state_[i]; } int row = col + state_[index] - 1; return MATRIX_COORD(col, row); } // Sets the entries for the given index from the BLOB_CHOICE, assuming // unit fragment lengths, but setting the state for this index to blob_count. void WERD_CHOICE::set_blob_choice(unsigned index, int blob_count, const BLOB_CHOICE *blob_choice) { unichar_ids_[index] = blob_choice->unichar_id(); script_pos_[index] = tesseract::SP_NORMAL; state_[index] = blob_count; certainties_[index] = blob_choice->certainty(); } /** * contains_unichar_id * * Returns true if unichar_ids_ contain the given unichar_id, false otherwise. */ bool WERD_CHOICE::contains_unichar_id(UNICHAR_ID unichar_id) const { for (unsigned i = 0; i < length_; ++i) { if (unichar_ids_[i] == unichar_id) { return true; } } return false; } /** * remove_unichar_ids * * Removes num unichar ids starting from index start from unichar_ids_ * and updates length_ and fragment_lengths_ to reflect this change. * Note: this function does not modify rating_ and certainty_. */ void WERD_CHOICE::remove_unichar_ids(unsigned start, int num) { ASSERT_HOST(start + num <= length_); // Accumulate the states to account for the merged blobs. for (int i = 0; i < num; ++i) { if (start > 0) { state_[start - 1] += state_[start + i]; } else if (start + num < length_) { state_[start + num] += state_[start + i]; } } for (unsigned i = start; i + num < length_; ++i) { unichar_ids_[i] = unichar_ids_[i + num]; script_pos_[i] = script_pos_[i + num]; state_[i] = state_[i + num]; certainties_[i] = certainties_[i + num]; } length_ -= num; } /** * reverse_and_mirror_unichar_ids * * Reverses and mirrors unichars in unichar_ids. */ void WERD_CHOICE::reverse_and_mirror_unichar_ids() { for (unsigned i = 0; i < length_ / 2; ++i) { UNICHAR_ID tmp_id = unichar_ids_[i]; unichar_ids_[i] = unicharset_->get_mirror(unichar_ids_[length_ - 1 - i]); unichar_ids_[length_ - 1 - i] = unicharset_->get_mirror(tmp_id); } if (length_ % 2 != 0) { unichar_ids_[length_ / 2] = unicharset_->get_mirror(unichar_ids_[length_ / 2]); } } /** * punct_stripped * * Returns the half-open interval of unichar_id indices [start, end) which * enclose the core portion of this word -- the part after stripping * punctuation from the left and right. */ void WERD_CHOICE::punct_stripped(unsigned *start, unsigned *end) const { *start = 0; *end = length(); while (*start < length() && unicharset()->get_ispunctuation(unichar_id(*start))) { (*start)++; } while (*end > 0 && unicharset()->get_ispunctuation(unichar_id(*end - 1))) { (*end)--; } } void WERD_CHOICE::GetNonSuperscriptSpan(int *pstart, int *pend) const { int end = length(); while (end > 0 && unicharset_->get_isdigit(unichar_ids_[end - 1]) && BlobPosition(end - 1) == tesseract::SP_SUPERSCRIPT) { end--; } int start = 0; while (start < end && unicharset_->get_isdigit(unichar_ids_[start]) && BlobPosition(start) == tesseract::SP_SUPERSCRIPT) { start++; } *pstart = start; *pend = end; } WERD_CHOICE WERD_CHOICE::shallow_copy(unsigned start, unsigned end) const { ASSERT_HOST(start <= length_); ASSERT_HOST(end <= length_); if (end < start) { end = start; } WERD_CHOICE retval(unicharset_, end - start); for (auto i = start; i < end; i++) { retval.append_unichar_id_space_allocated(unichar_ids_[i], state_[i], 0.0f, certainties_[i]); } return retval; } /** * has_rtl_unichar_id * * Returns true if unichar_ids contain at least one "strongly" RTL unichar. */ bool WERD_CHOICE::has_rtl_unichar_id() const { for (unsigned i = 0; i < length_; ++i) { UNICHARSET::Direction dir = unicharset_->get_direction(unichar_ids_[i]); if (dir == UNICHARSET::U_RIGHT_TO_LEFT || dir == UNICHARSET::U_RIGHT_TO_LEFT_ARABIC) { return true; } } return false; } /** * string_and_lengths * * Populates the given word_str with unichars from unichar_ids and * and word_lengths_str with the corresponding unichar lengths. */ void WERD_CHOICE::string_and_lengths(std::string *word_str, std::string *word_lengths_str) const { *word_str = ""; if (word_lengths_str != nullptr) { *word_lengths_str = ""; } for (unsigned i = 0; i < length_; ++i) { const char *ch = unicharset_->id_to_unichar_ext(unichar_ids_[i]); *word_str += ch; if (word_lengths_str != nullptr) { *word_lengths_str += (char)strlen(ch); } } } /** * append_unichar_id * * Make sure there is enough space in the word for the new unichar id * and call append_unichar_id_space_allocated(). */ void WERD_CHOICE::append_unichar_id(UNICHAR_ID unichar_id, int blob_count, float rating, float certainty) { if (length_ == reserved_) { this->double_the_size(); } this->append_unichar_id_space_allocated(unichar_id, blob_count, rating, certainty); } /** * WERD_CHOICE::operator+= * * Cat a second word rating on the end of this current one. * The ratings are added and the confidence is the min. * If the permuters are NOT the same the permuter is set to COMPOUND_PERM */ WERD_CHOICE &WERD_CHOICE::operator+=(const WERD_CHOICE &second) { ASSERT_HOST(unicharset_ == second.unicharset_); while (reserved_ < length_ + second.length()) { this->double_the_size(); } const std::vector<UNICHAR_ID> &other_unichar_ids = second.unichar_ids(); for (unsigned i = 0; i < second.length(); ++i) { unichar_ids_[length_ + i] = other_unichar_ids[i]; state_[length_ + i] = second.state_[i]; certainties_[length_ + i] = second.certainties_[i]; script_pos_[length_ + i] = second.BlobPosition(i); } length_ += second.length(); if (second.adjust_factor_ > adjust_factor_) { adjust_factor_ = second.adjust_factor_; } rating_ += second.rating(); // add ratings if (second.certainty() < certainty_) { // take min certainty_ = second.certainty(); } if (second.dangerous_ambig_found_) { dangerous_ambig_found_ = true; } if (permuter_ == NO_PERM) { permuter_ = second.permuter(); } else if (second.permuter() != NO_PERM && second.permuter() != permuter_) { permuter_ = COMPOUND_PERM; } return *this; } /** * WERD_CHOICE::operator= * * Allocate enough memory to hold a copy of source and copy over * all the information from source to this WERD_CHOICE. */ WERD_CHOICE &WERD_CHOICE::operator=(const WERD_CHOICE &source) { while (reserved_ < source.length()) { this->double_the_size(); } unicharset_ = source.unicharset_; const std::vector<UNICHAR_ID> &other_unichar_ids = source.unichar_ids(); for (unsigned i = 0; i < source.length(); ++i) { unichar_ids_[i] = other_unichar_ids[i]; state_[i] = source.state_[i]; certainties_[i] = source.certainties_[i]; script_pos_[i] = source.BlobPosition(i); } length_ = source.length(); adjust_factor_ = source.adjust_factor_; rating_ = source.rating(); certainty_ = source.certainty(); min_x_height_ = source.min_x_height(); max_x_height_ = source.max_x_height(); permuter_ = source.permuter(); dangerous_ambig_found_ = source.dangerous_ambig_found_; return *this; } // Sets up the script_pos_ member using the blobs_list to get the bln // bounding boxes, *this to get the unichars, and this->unicharset // to get the target positions. If small_caps is true, sub/super are not // considered, but dropcaps are. // NOTE: blobs_list should be the chopped_word blobs. (Fully segmented.) void WERD_CHOICE::SetScriptPositions(bool small_caps, TWERD *word, int debug) { // Initialize to normal. for (unsigned i = 0; i < length_; ++i) { script_pos_[i] = tesseract::SP_NORMAL; } if (word->blobs.empty() || word->NumBlobs() != TotalOfStates()) { return; } unsigned position_counts[4] = {0, 0, 0, 0}; int chunk_index = 0; for (unsigned blob_index = 0; blob_index < length_; ++blob_index, ++chunk_index) { TBLOB *tblob = word->blobs[chunk_index]; int uni_id = unichar_id(blob_index); TBOX blob_box = tblob->bounding_box(); if (!state_.empty()) { for (int i = 1; i < state_[blob_index]; ++i) { ++chunk_index; tblob = word->blobs[chunk_index]; blob_box += tblob->bounding_box(); } } script_pos_[blob_index] = ScriptPositionOf(false, *unicharset_, blob_box, uni_id); if (small_caps && script_pos_[blob_index] != tesseract::SP_DROPCAP) { script_pos_[blob_index] = tesseract::SP_NORMAL; } position_counts[script_pos_[blob_index]]++; } // If almost everything looks like a superscript or subscript, // we most likely just got the baseline wrong. if (4 * position_counts[tesseract::SP_SUBSCRIPT] > 3 * length_ || 4 * position_counts[tesseract::SP_SUPERSCRIPT] > 3 * length_) { if (debug >= 2) { tprintf( "Most characters of %s are subscript or superscript.\n" "That seems wrong, so I'll assume we got the baseline wrong\n", unichar_string().c_str()); } for (unsigned i = 0; i < length_; i++) { ScriptPos sp = script_pos_[i]; if (sp == tesseract::SP_SUBSCRIPT || sp == tesseract::SP_SUPERSCRIPT) { ASSERT_HOST(position_counts[sp] > 0); position_counts[sp]--; position_counts[tesseract::SP_NORMAL]++; script_pos_[i] = tesseract::SP_NORMAL; } } } if ((debug >= 1 && position_counts[tesseract::SP_NORMAL] < length_) || debug >= 2) { tprintf("SetScriptPosition on %s\n", unichar_string().c_str()); int chunk_index = 0; for (unsigned blob_index = 0; blob_index < length_; ++blob_index) { if (debug >= 2 || script_pos_[blob_index] != tesseract::SP_NORMAL) { TBLOB *tblob = word->blobs[chunk_index]; ScriptPositionOf(true, *unicharset_, tblob->bounding_box(), unichar_id(blob_index)); } chunk_index += state_.empty() ? 1 : state_[blob_index]; } } } // Sets all the script_pos_ positions to the given position. void WERD_CHOICE::SetAllScriptPositions(tesseract::ScriptPos position) { for (unsigned i = 0; i < length_; ++i) { script_pos_[i] = position; } } /* static */ ScriptPos WERD_CHOICE::ScriptPositionOf(bool print_debug, const UNICHARSET &unicharset, const TBOX &blob_box, UNICHAR_ID unichar_id) { ScriptPos retval = tesseract::SP_NORMAL; int top = blob_box.top(); int bottom = blob_box.bottom(); int min_bottom, max_bottom, min_top, max_top; unicharset.get_top_bottom(unichar_id, &min_bottom, &max_bottom, &min_top, &max_top); int sub_thresh_top = min_top - kMinSubscriptOffset; int sub_thresh_bot = kBlnBaselineOffset - kMinSubscriptOffset; int sup_thresh_bot = max_bottom + kMinSuperscriptOffset; if (bottom <= kMaxDropCapBottom) { retval = tesseract::SP_DROPCAP; } else if (top < sub_thresh_top && bottom < sub_thresh_bot) { retval = tesseract::SP_SUBSCRIPT; } else if (bottom > sup_thresh_bot) { retval = tesseract::SP_SUPERSCRIPT; } if (print_debug) { const char *pos = ScriptPosToString(retval); tprintf( "%s Character %s[bot:%d top: %d] " "bot_range[%d,%d] top_range[%d, %d] " "sub_thresh[bot:%d top:%d] sup_thresh_bot %d\n", pos, unicharset.id_to_unichar(unichar_id), bottom, top, min_bottom, max_bottom, min_top, max_top, sub_thresh_bot, sub_thresh_top, sup_thresh_bot); } return retval; } // Returns the script-id (eg Han) of the dominant script in the word. int WERD_CHOICE::GetTopScriptID() const { unsigned max_script = unicharset_->get_script_table_size(); std::vector<unsigned> sid(max_script); for (unsigned x = 0; x < length_; ++x) { int script_id = unicharset_->get_script(unichar_id(x)); sid[script_id]++; } if (unicharset_->han_sid() != unicharset_->null_sid()) { // Add the Hiragana & Katakana counts to Han and zero them out. if (unicharset_->hiragana_sid() != unicharset_->null_sid()) { sid[unicharset_->han_sid()] += sid[unicharset_->hiragana_sid()]; sid[unicharset_->hiragana_sid()] = 0; } if (unicharset_->katakana_sid() != unicharset_->null_sid()) { sid[unicharset_->han_sid()] += sid[unicharset_->katakana_sid()]; sid[unicharset_->katakana_sid()] = 0; } } // Note that high script ID overrides lower one on a tie, thus biasing // towards non-Common script (if sorted that way in unicharset file). unsigned max_sid = 0; for (unsigned x = 1; x < max_script; x++) { if (sid[x] >= sid[max_sid]) { max_sid = x; } } if (sid[max_sid] < length_ / 2) { max_sid = unicharset_->null_sid(); } return max_sid; } // Fixes the state_ for a chop at the given blob_posiiton. void WERD_CHOICE::UpdateStateForSplit(int blob_position) { int total_chunks = 0; for (unsigned i = 0; i < length_; ++i) { total_chunks += state_[i]; if (total_chunks > blob_position) { ++state_[i]; return; } } } // Returns the sum of all the state elements, being the total number of blobs. unsigned WERD_CHOICE::TotalOfStates() const { unsigned total_chunks = 0; for (unsigned i = 0; i < length_; ++i) { total_chunks += state_[i]; } return total_chunks; } /** * WERD_CHOICE::print * * Print WERD_CHOICE to stdout. */ void WERD_CHOICE::print(const char *msg) const { tprintf("%s : ", msg); for (unsigned i = 0; i < length_; ++i) { tprintf("%s", unicharset_->id_to_unichar(unichar_ids_[i])); } tprintf(" : R=%g, C=%g, F=%g, Perm=%d, xht=[%g,%g], ambig=%d\n", rating_, certainty_, adjust_factor_, permuter_, min_x_height_, max_x_height_, dangerous_ambig_found_); tprintf("pos"); for (unsigned i = 0; i < length_; ++i) { tprintf("\t%s", ScriptPosToString(script_pos_[i])); } tprintf("\nstr"); for (unsigned i = 0; i < length_; ++i) { tprintf("\t%s", unicharset_->id_to_unichar(unichar_ids_[i])); } tprintf("\nstate:"); for (unsigned i = 0; i < length_; ++i) { tprintf("\t%d ", state_[i]); } tprintf("\nC"); for (unsigned i = 0; i < length_; ++i) { tprintf("\t%.3f", certainties_[i]); } tprintf("\n"); } // Prints the segmentation state with an introductory message. void WERD_CHOICE::print_state(const char *msg) const { tprintf("%s", msg); for (unsigned i = 0; i < length_; ++i) { tprintf(" %d", state_[i]); } tprintf("\n"); } #ifndef GRAPHICS_DISABLED // Displays the segmentation state of *this (if not the same as the last // one displayed) and waits for a click in the window. void WERD_CHOICE::DisplaySegmentation(TWERD *word) { // Number of different colors to draw with. const int kNumColors = 6; static ScrollView *segm_window = nullptr; // Check the state against the static prev_drawn_state. static std::vector<int> prev_drawn_state; bool already_done = prev_drawn_state.size() == length_; if (!already_done) { prev_drawn_state.clear(); prev_drawn_state.resize(length_); } for (unsigned i = 0; i < length_; ++i) { if (prev_drawn_state[i] != state_[i]) { already_done = false; } prev_drawn_state[i] = state_[i]; } if (already_done || word->blobs.empty()) { return; } // Create the window if needed. if (segm_window == nullptr) { segm_window = new ScrollView("Segmentation", 5, 10, 500, 256, 2000.0, 256.0, true); } else { segm_window->Clear(); } TBOX bbox; int blob_index = 0; for (unsigned c = 0; c < length_; ++c) { auto color = static_cast<ScrollView::Color>(c % kNumColors + 3); for (int i = 0; i < state_[c]; ++i, ++blob_index) { TBLOB *blob = word->blobs[blob_index]; bbox += blob->bounding_box(); blob->plot(segm_window, color, color); } } segm_window->ZoomToRectangle(bbox.left(), bbox.top(), bbox.right(), bbox.bottom()); segm_window->Update(); segm_window->Wait(); } #endif // !GRAPHICS_DISABLED bool EqualIgnoringCaseAndTerminalPunct(const WERD_CHOICE &word1, const WERD_CHOICE &word2) { const UNICHARSET *uchset = word1.unicharset(); if (word2.unicharset() != uchset) { return false; } unsigned w1start, w1end; word1.punct_stripped(&w1start, &w1end); unsigned w2start, w2end; word2.punct_stripped(&w2start, &w2end); if (w1end - w1start != w2end - w2start) { return false; } for (unsigned i = 0; i < w1end - w1start; i++) { if (uchset->to_lower(word1.unichar_id(w1start + i)) != uchset->to_lower(word2.unichar_id(w2start + i))) { return false; } } return true; } /** * print_ratings_list * * Send all the ratings out to the logfile. * * @param msg intro message * @param ratings list of ratings * @param current_unicharset unicharset that can be used * for id-to-unichar conversion */ void print_ratings_list(const char *msg, BLOB_CHOICE_LIST *ratings, const UNICHARSET ¤t_unicharset) { if (ratings->empty()) { tprintf("%s:<none>\n", msg); return; } if (*msg != '\0') { tprintf("%s\n", msg); } BLOB_CHOICE_IT c_it; c_it.set_to_list(ratings); for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) { c_it.data()->print(¤t_unicharset); if (!c_it.at_last()) { tprintf("\n"); } } tprintf("\n"); fflush(stdout); } } // namespace tesseract
