Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/tesseract/src/ccstruct/coutln.cpp @ 21:2f43e400f144
Provide an "all" target to build both the sdist and the wheel
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Fri, 19 Sep 2025 10:28:53 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/********************************************************************** * File: coutln.cpp (Formerly coutline.c) * Description: Code for the C_OUTLINE class. * Author: Ray Smith * * (C) Copyright 1991, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ // Include automatically generated configuration file if running autoconf. #ifdef HAVE_CONFIG_H # include "config_auto.h" #endif #include "coutln.h" #include "arrayaccess.h" // for GET_DATA_BYTE #include "blobs.h" // for TPOINT #include "crakedge.h" // for CRACKEDGE #include "environ.h" // for l_uint32 #include "errcode.h" // for ASSERT_HOST #include "normalis.h" // for DENORM #include "helpers.h" // for ClipToRange, IntCastRounded, Modulo #include <allheaders.h> // for pixSetPixel, pixGetData, pixRasterop, pixGe... #include "pix.h" // for Pix (ptr only), PIX_DST, PIX_NOT #include <algorithm> // for max, min #include <cmath> // for abs #include <cstdlib> // for abs #include <cstring> // for memset, memcpy, memmove namespace tesseract { ICOORD C_OUTLINE::step_coords[4] = {ICOORD(-1, 0), ICOORD(0, -1), ICOORD(1, 0), ICOORD(0, 1)}; /** * @name C_OUTLINE::C_OUTLINE * * Constructor to build a C_OUTLINE from a CRACKEDGE LOOP. * @param startpt outline to convert * @param bot_left bounding box * @param top_right bounding box * @param length length of loop */ C_OUTLINE::C_OUTLINE(CRACKEDGE *startpt, ICOORD bot_left, ICOORD top_right, int16_t length) : box(bot_left, top_right), start(startpt->pos), offsets(nullptr) { int16_t stepindex; // index to step CRACKEDGE *edgept; // current point stepcount = length; // no of steps if (length == 0) { return; } // get memory steps.resize(step_mem()); edgept = startpt; for (stepindex = 0; stepindex < length; stepindex++) { // set compact step set_step(stepindex, edgept->stepdir); edgept = edgept->next; } } /** * @name C_OUTLINE::C_OUTLINE * * Constructor to build a C_OUTLINE from a C_OUTLINE_FRAG. */ C_OUTLINE::C_OUTLINE( // constructor // steps to copy ICOORD startpt, DIR128 *new_steps, int16_t length // length of loop ) : start(startpt), offsets(nullptr) { int8_t dirdiff; // direction difference DIR128 prevdir; // previous direction DIR128 dir; // current direction DIR128 lastdir; // dir of last step TBOX new_box; // easy bounding int16_t stepindex; // index to step int16_t srcindex; // source steps ICOORD pos; // current position pos = startpt; stepcount = length; // No. of steps. ASSERT_HOST(length >= 0); steps.resize(step_mem()); // Get memory. lastdir = new_steps[length - 1]; prevdir = lastdir; for (stepindex = 0, srcindex = 0; srcindex < length; stepindex++, srcindex++) { new_box = TBOX(pos, pos); box += new_box; // copy steps dir = new_steps[srcindex]; set_step(stepindex, dir); dirdiff = dir - prevdir; pos += step(stepindex); if ((dirdiff == 64 || dirdiff == -64) && stepindex > 0) { stepindex -= 2; // cancel there-and-back prevdir = stepindex >= 0 ? step_dir(stepindex) : lastdir; } else { prevdir = dir; } } ASSERT_HOST(pos.x() == startpt.x() && pos.y() == startpt.y()); do { dirdiff = step_dir(stepindex - 1) - step_dir(0); if (dirdiff == 64 || dirdiff == -64) { start += step(0); stepindex -= 2; // cancel there-and-back for (int i = 0; i < stepindex; ++i) { set_step(i, step_dir(i + 1)); } } } while (stepindex > 1 && (dirdiff == 64 || dirdiff == -64)); stepcount = stepindex; ASSERT_HOST(stepcount >= 4); } /** * @name C_OUTLINE::C_OUTLINE * * Constructor to build a C_OUTLINE from a rotation of a C_OUTLINE. * @param srcline outline to rotate * @param rotation rotate to coord */ C_OUTLINE::C_OUTLINE(C_OUTLINE *srcline, FCOORD rotation) : offsets(nullptr) { TBOX new_box; // easy bounding int16_t stepindex; // index to step int16_t dirdiff; // direction change ICOORD pos; // current position ICOORD prevpos; // previous dest point ICOORD destpos; // destination point int16_t destindex = INT16_MAX; // index to step DIR128 dir; // coded direction uint8_t new_step; stepcount = srcline->stepcount * 2; if (stepcount == 0) { box = srcline->box; box.rotate(rotation); return; } // get memory steps.resize(step_mem()); for (int iteration = 0; iteration < 2; ++iteration) { DIR128 round1 = iteration == 0 ? 32 : 0; DIR128 round2 = iteration != 0 ? 32 : 0; pos = srcline->start; prevpos = pos; prevpos.rotate(rotation); start = prevpos; box = TBOX(start, start); destindex = 0; for (stepindex = 0; stepindex < srcline->stepcount; stepindex++) { pos += srcline->step(stepindex); destpos = pos; destpos.rotate(rotation); // tprintf("%i %i %i %i ", destpos.x(), destpos.y(), pos.x(), pos.y()); while (destpos.x() != prevpos.x() || destpos.y() != prevpos.y()) { dir = DIR128(FCOORD(destpos - prevpos)); dir += 64; // turn to step style new_step = dir.get_dir(); // tprintf(" %i\n", new_step); if (new_step & 31) { set_step(destindex++, dir + round1); prevpos += step(destindex - 1); if (destindex < 2 || ((dirdiff = step_dir(destindex - 1) - step_dir(destindex - 2)) != -64 && dirdiff != 64)) { set_step(destindex++, dir + round2); prevpos += step(destindex - 1); } else { prevpos -= step(destindex - 1); destindex--; prevpos -= step(destindex - 1); set_step(destindex - 1, dir + round2); prevpos += step(destindex - 1); } } else { set_step(destindex++, dir); prevpos += step(destindex - 1); } while (destindex >= 2 && ((dirdiff = step_dir(destindex - 1) - step_dir(destindex - 2)) == -64 || dirdiff == 64)) { prevpos -= step(destindex - 1); prevpos -= step(destindex - 2); destindex -= 2; // Forget u turn } // ASSERT_HOST(prevpos.x() == destpos.x() && prevpos.y() == // destpos.y()); new_box = TBOX(destpos, destpos); box += new_box; } } ASSERT_HOST(destpos.x() == start.x() && destpos.y() == start.y()); while (destindex > 1) { dirdiff = step_dir(destindex - 1) - step_dir(0); if (dirdiff != 64 && dirdiff != -64) { break; } start += step(0); destindex -= 2; for (int i = 0; i < destindex; ++i) { set_step(i, step_dir(i + 1)); } } if (destindex >= 4) { break; } } ASSERT_HOST(destindex <= stepcount); stepcount = destindex; destpos = start; for (stepindex = 0; stepindex < stepcount; stepindex++) { destpos += step(stepindex); } ASSERT_HOST(destpos.x() == start.x() && destpos.y() == start.y()); } // Build a fake outline, given just a bounding box and append to the list. void C_OUTLINE::FakeOutline(const TBOX &box, C_OUTLINE_LIST *outlines) { C_OUTLINE_IT ol_it(outlines); // Make a C_OUTLINE from the bounds. This is a bit of a hack, // as there is no outline, just a bounding box, but it works nicely. CRACKEDGE start; start.pos = box.topleft(); auto *outline = new C_OUTLINE(&start, box.topleft(), box.botright(), 0); ol_it.add_to_end(outline); } /** * @name C_OUTLINE::area * * Compute the area of the outline. */ int32_t C_OUTLINE::area() const { int stepindex; // current step int32_t total_steps; // steps to do int32_t total; // total area ICOORD pos; // position of point ICOORD next_step; // step to next pix // We aren't going to modify the list, or its contents, but there is // no const iterator. C_OUTLINE_IT it(const_cast<C_OUTLINE_LIST *>(&children)); pos = start_pos(); total_steps = pathlength(); total = 0; for (stepindex = 0; stepindex < total_steps; stepindex++) { // all intersected next_step = step(stepindex); if (next_step.x() < 0) { total += pos.y(); } else if (next_step.x() > 0) { total -= pos.y(); } pos += next_step; } for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) { total += it.data()->area(); // add areas of children } return total; } /** * @name C_OUTLINE::perimeter * * Compute the perimeter of the outline and its first level children. */ int32_t C_OUTLINE::perimeter() const { int32_t total_steps; // Return value. // We aren't going to modify the list, or its contents, but there is // no const iterator. C_OUTLINE_IT it(const_cast<C_OUTLINE_LIST *>(&children)); total_steps = pathlength(); for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) { total_steps += it.data()->pathlength(); // Add perimeters of children. } return total_steps; } /** * @name C_OUTLINE::outer_area * * Compute the area of the outline. */ int32_t C_OUTLINE::outer_area() const { int stepindex; // current step int32_t total_steps; // steps to do int32_t total; // total area ICOORD pos; // position of point ICOORD next_step; // step to next pix pos = start_pos(); total_steps = pathlength(); if (total_steps == 0) { return box.area(); } total = 0; for (stepindex = 0; stepindex < total_steps; stepindex++) { // all intersected next_step = step(stepindex); if (next_step.x() < 0) { total += pos.y(); } else if (next_step.x() > 0) { total -= pos.y(); } pos += next_step; } return total; } /** * @name C_OUTLINE::count_transitions * * Compute the number of x and y maxes and mins in the outline. * @param threshold winding number on size */ int32_t C_OUTLINE::count_transitions(int32_t threshold) { bool first_was_max_x; // what was first bool first_was_max_y; bool looking_for_max_x; // what is next bool looking_for_min_x; bool looking_for_max_y; // what is next bool looking_for_min_y; int stepindex; // current step int32_t total_steps; // steps to do // current limits int32_t max_x, min_x, max_y, min_y; int32_t initial_x, initial_y; // initial limits int32_t total; // total changes ICOORD pos; // position of point ICOORD next_step; // step to next pix pos = start_pos(); total_steps = pathlength(); total = 0; max_x = min_x = pos.x(); max_y = min_y = pos.y(); looking_for_max_x = true; looking_for_min_x = true; looking_for_max_y = true; looking_for_min_y = true; first_was_max_x = false; first_was_max_y = false; initial_x = pos.x(); initial_y = pos.y(); // stop uninit warning for (stepindex = 0; stepindex < total_steps; stepindex++) { // all intersected next_step = step(stepindex); pos += next_step; if (next_step.x() < 0) { if (looking_for_max_x && pos.x() < min_x) { min_x = pos.x(); } if (looking_for_min_x && max_x - pos.x() > threshold) { if (looking_for_max_x) { initial_x = max_x; first_was_max_x = false; } total++; looking_for_max_x = true; looking_for_min_x = false; min_x = pos.x(); // reset min } } else if (next_step.x() > 0) { if (looking_for_min_x && pos.x() > max_x) { max_x = pos.x(); } if (looking_for_max_x && pos.x() - min_x > threshold) { if (looking_for_min_x) { initial_x = min_x; // remember first min first_was_max_x = true; } total++; looking_for_max_x = false; looking_for_min_x = true; max_x = pos.x(); } } else if (next_step.y() < 0) { if (looking_for_max_y && pos.y() < min_y) { min_y = pos.y(); } if (looking_for_min_y && max_y - pos.y() > threshold) { if (looking_for_max_y) { initial_y = max_y; // remember first max first_was_max_y = false; } total++; looking_for_max_y = true; looking_for_min_y = false; min_y = pos.y(); // reset min } } else { if (looking_for_min_y && pos.y() > max_y) { max_y = pos.y(); } if (looking_for_max_y && pos.y() - min_y > threshold) { if (looking_for_min_y) { initial_y = min_y; // remember first min first_was_max_y = true; } total++; looking_for_max_y = false; looking_for_min_y = true; max_y = pos.y(); } } } if (first_was_max_x && looking_for_min_x) { if (max_x - initial_x > threshold) { total++; } else { total--; } } else if (!first_was_max_x && looking_for_max_x) { if (initial_x - min_x > threshold) { total++; } else { total--; } } if (first_was_max_y && looking_for_min_y) { if (max_y - initial_y > threshold) { total++; } else { total--; } } else if (!first_was_max_y && looking_for_max_y) { if (initial_y - min_y > threshold) { total++; } else { total--; } } return total; } /** * @name C_OUTLINE::operator< * * @return true if the left operand is inside the right one. * @param other other outline */ bool C_OUTLINE::operator<(const C_OUTLINE &other) const { int16_t count = 0; // winding count ICOORD pos; // position of point int32_t stepindex; // index to cstep if (!box.overlap(other.box)) { return false; // can't be contained } if (stepcount == 0) { return other.box.contains(this->box); } pos = start; for (stepindex = 0; stepindex < stepcount && (count = other.winding_number(pos)) == INTERSECTING; stepindex++) { pos += step(stepindex); // try all points } if (count == INTERSECTING) { // all intersected pos = other.start; for (stepindex = 0; stepindex < other.stepcount && (count = winding_number(pos)) == INTERSECTING; stepindex++) { // try other way round pos += other.step(stepindex); } return count == INTERSECTING || count == 0; } return count != 0; } /** * @name C_OUTLINE::winding_number * * @return the winding number of the outline around the given point. * @param point point to wind around */ int16_t C_OUTLINE::winding_number(ICOORD point) const { int16_t stepindex; // index to cstep int16_t count; // winding count ICOORD vec; // to current point ICOORD stepvec; // step vector int32_t cross; // cross product vec = start - point; // vector to it count = 0; for (stepindex = 0; stepindex < stepcount; stepindex++) { stepvec = step(stepindex); // get the step // crossing the line if (vec.y() <= 0 && vec.y() + stepvec.y() > 0) { cross = vec * stepvec; // cross product if (cross > 0) { count++; // crossing right half } else if (cross == 0) { return INTERSECTING; // going through point } } else if (vec.y() > 0 && vec.y() + stepvec.y() <= 0) { cross = vec * stepvec; if (cross < 0) { count--; // crossing back } else if (cross == 0) { return INTERSECTING; // illegal } } vec += stepvec; // sum vectors } return count; // winding number } /** * C_OUTLINE::turn_direction * * @return the sum direction delta of the outline. */ int16_t C_OUTLINE::turn_direction() const { // winding number DIR128 prevdir; // previous direction DIR128 dir; // current direction int16_t stepindex; // index to cstep int8_t dirdiff; // direction difference int16_t count; // winding count if (stepcount == 0) { return 128; } count = 0; prevdir = step_dir(stepcount - 1); for (stepindex = 0; stepindex < stepcount; stepindex++) { dir = step_dir(stepindex); dirdiff = dir - prevdir; ASSERT_HOST(dirdiff == 0 || dirdiff == 32 || dirdiff == -32); count += dirdiff; prevdir = dir; } ASSERT_HOST(count == 128 || count == -128); return count; // winding number } /** * @name C_OUTLINE::reverse * * Reverse the direction of an outline. */ void C_OUTLINE::reverse() { // reverse drection DIR128 halfturn = MODULUS / 2; // amount to shift DIR128 stepdir; // direction of step int16_t stepindex; // index to cstep int16_t farindex; // index to other side int16_t halfsteps; // half of stepcount halfsteps = (stepcount + 1) / 2; for (stepindex = 0; stepindex < halfsteps; stepindex++) { farindex = stepcount - stepindex - 1; stepdir = step_dir(stepindex); set_step(stepindex, step_dir(farindex) + halfturn); set_step(farindex, stepdir + halfturn); } } /** * @name C_OUTLINE::move * * Move C_OUTLINE by vector * @param vec vector to reposition OUTLINE by */ void C_OUTLINE::move(const ICOORD vec) { C_OUTLINE_IT it(&children); // iterator box.move(vec); start += vec; for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) { it.data()->move(vec); // move child outlines } } /** * Returns true if *this and its children are legally nested. * The outer area of a child should have the opposite sign to the * parent. If not, it means we have discarded an outline in between * (probably due to excessive length). */ bool C_OUTLINE::IsLegallyNested() const { if (stepcount == 0) { return true; } int64_t parent_area = outer_area(); // We aren't going to modify the list, or its contents, but there is // no const iterator. C_OUTLINE_IT child_it(const_cast<C_OUTLINE_LIST *>(&children)); for (child_it.mark_cycle_pt(); !child_it.cycled_list(); child_it.forward()) { const C_OUTLINE *child = child_it.data(); if (child->outer_area() * parent_area > 0 || !child->IsLegallyNested()) { return false; } } return true; } /** * If this outline is smaller than the given min_size, delete this and * remove from its list, via *it, after checking that *it points to this. * Otherwise, if any children of this are too small, delete them. * On entry, *it must be an iterator pointing to this. If this gets deleted * then this is extracted from *it, so an iteration can continue. * @param min_size minimum size for outline * @param it outline iterator */ void C_OUTLINE::RemoveSmallRecursive(int min_size, C_OUTLINE_IT *it) { if (box.width() < min_size || box.height() < min_size) { ASSERT_HOST(this == it->data()); delete it->extract(); // Too small so get rid of it and any children. } else if (!children.empty()) { // Search the children of this, deleting any that are too small. C_OUTLINE_IT child_it(&children); for (child_it.mark_cycle_pt(); !child_it.cycled_list(); child_it.forward()) { C_OUTLINE *child = child_it.data(); child->RemoveSmallRecursive(min_size, &child_it); } } } // Factored out helpers below are used only by ComputeEdgeOffsets to operate // on data from an 8-bit Pix, and assume that any input x and/or y are already // constrained to be legal Pix coordinates. /** * Helper computes the local 2-D gradient (dx, dy) from the 2x2 cell centered * on the given (x,y). If the cell would go outside the image, it is padded * with white. */ static void ComputeGradient(const l_uint32 *data, int wpl, int x, int y, int width, int height, ICOORD *gradient) { const l_uint32 *line = data + y * wpl; int pix_x_y = x < width && y < height ? GET_DATA_BYTE(line, x) : 255; int pix_x_prevy = x < width && y > 0 ? GET_DATA_BYTE(line - wpl, x) : 255; int pix_prevx_prevy = x > 0 && y > 0 ? GET_DATA_BYTE(line - wpl, x - 1) : 255; int pix_prevx_y = x > 0 && y < height ? GET_DATA_BYTE(line, x - 1) : 255; gradient->set_x(pix_x_y + pix_x_prevy - (pix_prevx_y + pix_prevx_prevy)); gradient->set_y(pix_x_prevy + pix_prevx_prevy - (pix_x_y + pix_prevx_y)); } /** * Helper evaluates a vertical difference, (x,y) - (x,y-1), returning true if * the difference, matches diff_sign and updating the best_diff, best_sum, * best_y if a new max. */ static bool EvaluateVerticalDiff(const l_uint32 *data, int wpl, int diff_sign, int x, int y, int height, int *best_diff, int *best_sum, int *best_y) { if (y <= 0 || y >= height) { return false; } const l_uint32 *line = data + y * wpl; int pixel1 = GET_DATA_BYTE(line - wpl, x); int pixel2 = GET_DATA_BYTE(line, x); int diff = (pixel2 - pixel1) * diff_sign; if (diff > *best_diff) { *best_diff = diff; *best_sum = pixel1 + pixel2; *best_y = y; } return diff > 0; } /** * Helper evaluates a horizontal difference, (x,y) - (x-1,y), where y is implied * by the input image line, returning true if the difference matches diff_sign * and updating the best_diff, best_sum, best_x if a new max. */ static bool EvaluateHorizontalDiff(const l_uint32 *line, int diff_sign, int x, int width, int *best_diff, int *best_sum, int *best_x) { if (x <= 0 || x >= width) { return false; } int pixel1 = GET_DATA_BYTE(line, x - 1); int pixel2 = GET_DATA_BYTE(line, x); int diff = (pixel2 - pixel1) * diff_sign; if (diff > *best_diff) { *best_diff = diff; *best_sum = pixel1 + pixel2; *best_x = x; } return diff > 0; } /** * Adds sub-pixel resolution EdgeOffsets for the outline if the supplied * pix is 8-bit. Does nothing otherwise. * Operation: Consider the following near-horizontal line: * @verbatim * _________ * |________ * |________ * @endverbatim * At *every* position along this line, the gradient direction will be close * to vertical. Extrapoaltion/interpolation of the position of the threshold * that was used to binarize the image gives a more precise vertical position * for each horizontal step, and the conflict in step direction and gradient * direction can be used to ignore the vertical steps. */ void C_OUTLINE::ComputeEdgeOffsets(int threshold, Image pix) { if (pixGetDepth(pix) != 8) { return; } const l_uint32 *data = pixGetData(pix); int wpl = pixGetWpl(pix); int width = pixGetWidth(pix); int height = pixGetHeight(pix); bool negative = flag(COUT_INVERSE); delete[] offsets; offsets = new EdgeOffset[stepcount]; ICOORD pos = start; ICOORD prev_gradient; ComputeGradient(data, wpl, pos.x(), height - pos.y(), width, height, &prev_gradient); for (int s = 0; s < stepcount; ++s) { ICOORD step_vec = step(s); TPOINT pt1(pos); pos += step_vec; TPOINT pt2(pos); ICOORD next_gradient; ComputeGradient(data, wpl, pos.x(), height - pos.y(), width, height, &next_gradient); // Use the sum of the prev and next as the working gradient. ICOORD gradient = prev_gradient + next_gradient; // best_diff will be manipulated to be always positive. int best_diff = 0; // offset will be the extrapolation of the location of the greyscale // threshold from the edge with the largest difference, relative to the // location of the binary edge. int offset = 0; if (pt1.y == pt2.y && abs(gradient.y()) * 2 >= abs(gradient.x())) { // Horizontal step. diff_sign == 1 indicates black above. int diff_sign = (pt1.x > pt2.x) == negative ? 1 : -1; int x = std::min(pt1.x, pt2.x); int y = height - pt1.y; int best_sum = 0; int best_y = y; EvaluateVerticalDiff(data, wpl, diff_sign, x, y, height, &best_diff, &best_sum, &best_y); // Find the strongest edge. int test_y = y; do { ++test_y; } while (EvaluateVerticalDiff(data, wpl, diff_sign, x, test_y, height, &best_diff, &best_sum, &best_y)); test_y = y; do { --test_y; } while (EvaluateVerticalDiff(data, wpl, diff_sign, x, test_y, height, &best_diff, &best_sum, &best_y)); offset = diff_sign * (best_sum / 2 - threshold) + (y - best_y) * best_diff; } else if (pt1.x == pt2.x && abs(gradient.x()) * 2 >= abs(gradient.y())) { // Vertical step. diff_sign == 1 indicates black on the left. int diff_sign = (pt1.y > pt2.y) == negative ? 1 : -1; int x = pt1.x; int y = height - std::max(pt1.y, pt2.y); const l_uint32 *line = pixGetData(pix) + y * wpl; int best_sum = 0; int best_x = x; EvaluateHorizontalDiff(line, diff_sign, x, width, &best_diff, &best_sum, &best_x); // Find the strongest edge. int test_x = x; do { ++test_x; } while ( EvaluateHorizontalDiff(line, diff_sign, test_x, width, &best_diff, &best_sum, &best_x)); test_x = x; do { --test_x; } while ( EvaluateHorizontalDiff(line, diff_sign, test_x, width, &best_diff, &best_sum, &best_x)); offset = diff_sign * (threshold - best_sum / 2) + (best_x - x) * best_diff; } offsets[s].offset_numerator = ClipToRange<int>(offset, -INT8_MAX, INT8_MAX); offsets[s].pixel_diff = ClipToRange<int>(best_diff, 0, UINT8_MAX); if (negative) { gradient = -gradient; } // Compute gradient angle quantized to 256 directions, rotated by 64 (pi/2) // to convert from gradient direction to edge direction. offsets[s].direction = Modulo(FCOORD::binary_angle_plus_pi(gradient.angle()) + 64, 256); prev_gradient = next_gradient; } } /** * Adds sub-pixel resolution EdgeOffsets for the outline using only * a binary image source. * * Runs a sliding window of 5 edge steps over the outline, maintaining a count * of the number of steps in each of the 4 directions in the window, and a * sum of the x or y position of each step (as appropriate to its direction.) * Ignores single-count steps EXCEPT the sharp U-turn and smoothes out the * perpendicular direction. Eg * @verbatim * ___ ___ Chain code from the left: * |___ ___ ___| 222122212223221232223000 * |___| |_| Corresponding counts of each direction: * 0 00000000000000000123 * 1 11121111001111100000 * 2 44434443443333343321 * 3 00000001111111112111 * Count of direction at center 41434143413313143313 * Step gets used? YNYYYNYYYNYYNYNYYYyY (y= U-turn exception) * Path redrawn showing only the used points: * ___ ___ * ___ ___ ___| * ___ _ * @endverbatim * Sub-pixel edge position cannot be shown well with ASCII-art, but each * horizontal step's y position is the mean of the y positions of the steps * in the same direction in the sliding window, which makes a much smoother * outline, without losing important detail. */ void C_OUTLINE::ComputeBinaryOffsets() { delete[] offsets; offsets = new EdgeOffset[stepcount]; // Count of the number of steps in each direction in the sliding window. int dir_counts[4]; // Sum of the positions (y for a horizontal step, x for vertical) in each // direction in the sliding window. int pos_totals[4]; memset(dir_counts, 0, sizeof(dir_counts)); memset(pos_totals, 0, sizeof(pos_totals)); ICOORD pos = start; ICOORD tail_pos = pos; // tail_pos is the trailing position, with the next point to be lost from // the window. tail_pos -= step(stepcount - 1); tail_pos -= step(stepcount - 2); // head_pos is the leading position, with the next point to be added to the // window. ICOORD head_pos = tail_pos; // Set up the initial window with 4 points in [-2, 2) for (int s = -2; s < 2; ++s) { increment_step(s, 1, &head_pos, dir_counts, pos_totals); } for (int s = 0; s < stepcount; pos += step(s++)) { // At step s, s in the middle of [s-2, s+2]. increment_step(s + 2, 1, &head_pos, dir_counts, pos_totals); int dir_index = chain_code(s); ICOORD step_vec = step(s); int best_diff = 0; int offset = 0; // Use only steps that have a count of >=2 OR the strong U-turn with a // single d and 2 at d-1 and 2 at d+1 (mod 4). if (dir_counts[dir_index] >= 2 || (dir_counts[dir_index] == 1 && dir_counts[Modulo(dir_index - 1, 4)] == 2 && dir_counts[Modulo(dir_index + 1, 4)] == 2)) { // Valid step direction. best_diff = dir_counts[dir_index]; int edge_pos = step_vec.x() == 0 ? pos.x() : pos.y(); // The offset proposes that the actual step should be positioned at // the mean position of the steps in the window of the same direction. // See ASCII art above. offset = pos_totals[dir_index] - best_diff * edge_pos; } offsets[s].offset_numerator = ClipToRange<int>(offset, -INT8_MAX, INT8_MAX); offsets[s].pixel_diff = ClipToRange<int>(best_diff, 0, UINT8_MAX); // The direction is just the vector from start to end of the window. FCOORD direction(head_pos.x() - tail_pos.x(), head_pos.y() - tail_pos.y()); offsets[s].direction = direction.to_direction(); increment_step(s - 2, -1, &tail_pos, dir_counts, pos_totals); } } /** * Renders the outline to the given pix, with left and top being * the coords of the upper-left corner of the pix. */ void C_OUTLINE::render(int left, int top, Image pix) const { ICOORD pos = start; for (int stepindex = 0; stepindex < stepcount; ++stepindex) { ICOORD next_step = step(stepindex); if (next_step.y() < 0) { pixRasterop(pix, 0, top - pos.y(), pos.x() - left, 1, PIX_NOT(PIX_DST), nullptr, 0, 0); } else if (next_step.y() > 0) { pixRasterop(pix, 0, top - pos.y() - 1, pos.x() - left, 1, PIX_NOT(PIX_DST), nullptr, 0, 0); } pos += next_step; } } /** * Renders just the outline to the given pix (no fill), with left and top * being the coords of the upper-left corner of the pix. * @param left coord * @param top coord * @param pix the pix to outline */ void C_OUTLINE::render_outline(int left, int top, Image pix) const { ICOORD pos = start; for (int stepindex = 0; stepindex < stepcount; ++stepindex) { ICOORD next_step = step(stepindex); if (next_step.y() < 0) { pixSetPixel(pix, pos.x() - left, top - pos.y(), 1); } else if (next_step.y() > 0) { pixSetPixel(pix, pos.x() - left - 1, top - pos.y() - 1, 1); } else if (next_step.x() < 0) { pixSetPixel(pix, pos.x() - left - 1, top - pos.y(), 1); } else if (next_step.x() > 0) { pixSetPixel(pix, pos.x() - left, top - pos.y() - 1, 1); } pos += next_step; } } /** * @name C_OUTLINE::plot * * Draw the outline in the given colour. * @param window window to draw in * @param colour colour to draw in */ #ifndef GRAPHICS_DISABLED void C_OUTLINE::plot(ScrollView *window, ScrollView::Color colour) const { int16_t stepindex; // index to cstep ICOORD pos; // current position DIR128 stepdir; // direction of step pos = start; // current position window->Pen(colour); if (stepcount == 0) { window->Rectangle(box.left(), box.top(), box.right(), box.bottom()); return; } window->SetCursor(pos.x(), pos.y()); stepindex = 0; while (stepindex < stepcount) { pos += step(stepindex); // step to next stepdir = step_dir(stepindex); stepindex++; // count steps // merge straight lines while (stepindex < stepcount && stepdir.get_dir() == step_dir(stepindex).get_dir()) { pos += step(stepindex); stepindex++; } window->DrawTo(pos.x(), pos.y()); } } /** * Draws the outline in the given colour, normalized using the given denorm, * making use of sub-pixel accurate information if available. */ void C_OUTLINE::plot_normed(const DENORM &denorm, ScrollView::Color colour, ScrollView *window) const { window->Pen(colour); if (stepcount == 0) { window->Rectangle(box.left(), box.top(), box.right(), box.bottom()); return; } const DENORM *root_denorm = denorm.RootDenorm(); ICOORD pos = start; // current position FCOORD f_pos = sub_pixel_pos_at_index(pos, 0); FCOORD pos_normed; denorm.NormTransform(root_denorm, f_pos, &pos_normed); window->SetCursor(IntCastRounded(pos_normed.x()), IntCastRounded(pos_normed.y())); for (int s = 0; s < stepcount; pos += step(s++)) { int edge_weight = edge_strength_at_index(s); if (edge_weight == 0) { // This point has conflicting gradient and step direction, so ignore it. continue; } FCOORD f_pos = sub_pixel_pos_at_index(pos, s); FCOORD pos_normed; denorm.NormTransform(root_denorm, f_pos, &pos_normed); window->DrawTo(IntCastRounded(pos_normed.x()), IntCastRounded(pos_normed.y())); } } #endif /** * @name C_OUTLINE::operator= * * Assignment - deep copy data * @param source assign from this */ C_OUTLINE &C_OUTLINE::operator=(const C_OUTLINE &source) { box = source.box; start = source.start; if (!children.empty()) { children.clear(); } children.deep_copy(&source.children, &deep_copy); delete[] offsets; offsets = nullptr; stepcount = source.stepcount; if (stepcount > 0) { steps.resize(step_mem()); memmove(&steps[0], &source.steps[0], step_mem()); if (source.offsets != nullptr) { offsets = new EdgeOffset[stepcount]; memcpy(offsets, source.offsets, stepcount * sizeof(*offsets)); } } return *this; } /** * Helper for ComputeBinaryOffsets. Increments pos, dir_counts, pos_totals * by the step, increment, and vertical step ? x : y position * increment * at step s Mod stepcount respectively. Used to add or subtract the * direction and position to/from accumulators of a small neighbourhood. */ void C_OUTLINE::increment_step(int s, int increment, ICOORD *pos, int *dir_counts, int *pos_totals) const { int step_index = Modulo(s, stepcount); int dir_index = chain_code(step_index); dir_counts[dir_index] += increment; ICOORD step_vec = step(step_index); if (step_vec.x() == 0) { pos_totals[dir_index] += pos->x() * increment; } else { pos_totals[dir_index] += pos->y() * increment; } *pos += step_vec; } ICOORD C_OUTLINE::chain_step(int chaindir) { return step_coords[chaindir % 4]; } } // namespace tesseract
