Mercurial > hgrepos > Python2 > PyMuPDF
view mupdf-source/thirdparty/tesseract/src/ccmain/linerec.cpp @ 21:2f43e400f144
Provide an "all" target to build both the sdist and the wheel
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Fri, 19 Sep 2025 10:28:53 +0200 |
| parents | b50eed0cc0ef |
| children |
line wrap: on
line source
/////////////////////////////////////////////////////////////////////// // File: linerec.cpp // Description: Top-level line-based recognition module for Tesseract. // Author: Ray Smith // // (C) Copyright 2013, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #include "tesseractclass.h" #include <allheaders.h> #include "boxread.h" #include "imagedata.h" // for ImageData #include "lstmrecognizer.h" #include "pageres.h" #include "recodebeam.h" #include "tprintf.h" #include <algorithm> namespace tesseract { // Scale factor to make certainty more comparable to Tesseract. const float kCertaintyScale = 7.0f; // Worst acceptable certainty for a dictionary word. const float kWorstDictCertainty = -25.0f; // Generates training data for training a line recognizer, eg LSTM. // Breaks the page into lines, according to the boxes, and writes them to a // serialized DocumentData based on output_basename. // Return true if successful, false if an error occurred. bool Tesseract::TrainLineRecognizer(const char *input_imagename, const std::string &output_basename, BLOCK_LIST *block_list) { std::string lstmf_name = output_basename + ".lstmf"; DocumentData images(lstmf_name); if (applybox_page > 0) { // Load existing document for the previous pages. if (!images.LoadDocument(lstmf_name.c_str(), 0, 0, nullptr)) { tprintf("Failed to read training data from %s!\n", lstmf_name.c_str()); return false; } } std::vector<TBOX> boxes; std::vector<std::string> texts; // Get the boxes for this page, if there are any. if (!ReadAllBoxes(applybox_page, false, input_imagename, &boxes, &texts, nullptr, nullptr) || boxes.empty()) { tprintf("Failed to read boxes from %s\n", input_imagename); return false; } TrainFromBoxes(boxes, texts, block_list, &images); if (images.PagesSize() == 0) { tprintf("Failed to read pages from %s\n", input_imagename); return false; } images.Shuffle(); if (!images.SaveDocument(lstmf_name.c_str(), nullptr)) { tprintf("Failed to write training data to %s!\n", lstmf_name.c_str()); return false; } return true; } // Generates training data for training a line recognizer, eg LSTM. // Breaks the boxes into lines, normalizes them, converts to ImageData and // appends them to the given training_data. void Tesseract::TrainFromBoxes(const std::vector<TBOX> &boxes, const std::vector<std::string> &texts, BLOCK_LIST *block_list, DocumentData *training_data) { auto box_count = boxes.size(); // Process all the text lines in this page, as defined by the boxes. unsigned end_box = 0; // Don't let \t, which marks newlines in the box file, get into the line // content, as that makes the line unusable in training. while (end_box < texts.size() && texts[end_box] == "\t") { ++end_box; } for (auto start_box = end_box; start_box < box_count; start_box = end_box) { // Find the textline of boxes starting at start and their bounding box. TBOX line_box = boxes[start_box]; std::string line_str = texts[start_box]; for (end_box = start_box + 1; end_box < box_count && texts[end_box] != "\t"; ++end_box) { line_box += boxes[end_box]; line_str += texts[end_box]; } // Find the most overlapping block. BLOCK *best_block = nullptr; int best_overlap = 0; BLOCK_IT b_it(block_list); for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) { BLOCK *block = b_it.data(); if (block->pdblk.poly_block() != nullptr && !block->pdblk.poly_block()->IsText()) { continue; // Not a text block. } TBOX block_box = block->pdblk.bounding_box(); block_box.rotate(block->re_rotation()); if (block_box.major_overlap(line_box)) { TBOX overlap_box = line_box.intersection(block_box); if (overlap_box.area() > best_overlap) { best_overlap = overlap_box.area(); best_block = block; } } } ImageData *imagedata = nullptr; if (best_block == nullptr) { tprintf("No block overlapping textline: %s\n", line_str.c_str()); } else { imagedata = GetLineData(line_box, boxes, texts, start_box, end_box, *best_block); } if (imagedata != nullptr) { training_data->AddPageToDocument(imagedata); } // Don't let \t, which marks newlines in the box file, get into the line // content, as that makes the line unusable in training. while (end_box < texts.size() && texts[end_box] == "\t") { ++end_box; } } } // Returns an Imagedata containing the image of the given box, // and ground truth boxes/truth text if available in the input. // The image is not normalized in any way. ImageData *Tesseract::GetLineData(const TBOX &line_box, const std::vector<TBOX> &boxes, const std::vector<std::string> &texts, int start_box, int end_box, const BLOCK &block) { TBOX revised_box; ImageData *image_data = GetRectImage(line_box, block, kImagePadding, &revised_box); if (image_data == nullptr) { return nullptr; } image_data->set_page_number(applybox_page); // Copy the boxes and shift them so they are relative to the image. FCOORD block_rotation(block.re_rotation().x(), -block.re_rotation().y()); ICOORD shift = -revised_box.botleft(); std::vector<TBOX> line_boxes; std::vector<std::string> line_texts; for (int b = start_box; b < end_box; ++b) { TBOX box = boxes[b]; box.rotate(block_rotation); box.move(shift); line_boxes.push_back(box); line_texts.push_back(texts[b]); } std::vector<int> page_numbers(line_boxes.size(), applybox_page); image_data->AddBoxes(line_boxes, line_texts, page_numbers); return image_data; } // Helper gets the image of a rectangle, using the block.re_rotation() if // needed to get to the image, and rotating the result back to horizontal // layout. (CJK characters will be on their left sides) The vertical text flag // is set in the returned ImageData if the text was originally vertical, which // can be used to invoke a different CJK recognition engine. The revised_box // is also returned to enable calculation of output bounding boxes. ImageData *Tesseract::GetRectImage(const TBOX &box, const BLOCK &block, int padding, TBOX *revised_box) const { TBOX wbox = box; wbox.pad(padding, padding); *revised_box = wbox; // Number of clockwise 90 degree rotations needed to get back to tesseract // coords from the clipped image. int num_rotations = 0; if (block.re_rotation().y() > 0.0f) { num_rotations = 1; } else if (block.re_rotation().x() < 0.0f) { num_rotations = 2; } else if (block.re_rotation().y() < 0.0f) { num_rotations = 3; } // Handle two cases automatically: 1 the box came from the block, 2 the box // came from a box file, and refers to the image, which the block may not. if (block.pdblk.bounding_box().major_overlap(*revised_box)) { revised_box->rotate(block.re_rotation()); } // Now revised_box always refers to the image. // BestPix is never colormapped, but may be of any depth. Image pix = BestPix(); int width = pixGetWidth(pix); int height = pixGetHeight(pix); TBOX image_box(0, 0, width, height); // Clip to image bounds; *revised_box &= image_box; if (revised_box->null_box()) { return nullptr; } Box *clip_box = boxCreate(revised_box->left(), height - revised_box->top(), revised_box->width(), revised_box->height()); Image box_pix = pixClipRectangle(pix, clip_box, nullptr); boxDestroy(&clip_box); if (box_pix == nullptr) { return nullptr; } if (num_rotations > 0) { Image rot_pix = pixRotateOrth(box_pix, num_rotations); box_pix.destroy(); box_pix = rot_pix; } // Convert sub-8-bit images to 8 bit. int depth = pixGetDepth(box_pix); if (depth < 8) { Image grey; grey = pixConvertTo8(box_pix, false); box_pix.destroy(); box_pix = grey; } bool vertical_text = false; if (num_rotations > 0) { // Rotated the clipped revised box back to internal coordinates. FCOORD rotation(block.re_rotation().x(), -block.re_rotation().y()); revised_box->rotate(rotation); if (num_rotations != 2) { vertical_text = true; } } return new ImageData(vertical_text, box_pix); } // Recognizes a word or group of words, converting to WERD_RES in *words. // Analogous to classify_word_pass1, but can handle a group of words as well. void Tesseract::LSTMRecognizeWord(const BLOCK &block, ROW *row, WERD_RES *word, PointerVector<WERD_RES> *words) { TBOX word_box = word->word->bounding_box(); // Get the word image - no frills. if (tessedit_pageseg_mode == PSM_SINGLE_WORD || tessedit_pageseg_mode == PSM_RAW_LINE) { // In single word mode, use the whole image without any other row/word // interpretation. word_box = TBOX(0, 0, ImageWidth(), ImageHeight()); } else { float baseline = row->base_line((word_box.left() + word_box.right()) / 2); if (baseline + row->descenders() < word_box.bottom()) { word_box.set_bottom(baseline + row->descenders()); } if (baseline + row->x_height() + row->ascenders() > word_box.top()) { word_box.set_top(baseline + row->x_height() + row->ascenders()); } } ImageData *im_data = GetRectImage(word_box, block, kImagePadding, &word_box); if (im_data == nullptr) { return; } bool do_invert = tessedit_do_invert; float threshold = do_invert ? double(invert_threshold) : 0.0f; lstm_recognizer_->RecognizeLine(*im_data, threshold, classify_debug_level > 0, kWorstDictCertainty / kCertaintyScale, word_box, words, lstm_choice_mode, lstm_choice_iterations); delete im_data; SearchWords(words); } // Apply segmentation search to the given set of words, within the constraints // of the existing ratings matrix. If there is already a best_choice on a word // leaves it untouched and just sets the done/accepted etc flags. void Tesseract::SearchWords(PointerVector<WERD_RES> *words) { // Run the segmentation search on the network outputs and make a BoxWord // for each of the output words. // If we drop a word as junk, then there is always a space in front of the // next. const Dict *stopper_dict = lstm_recognizer_->GetDict(); if (stopper_dict == nullptr) { stopper_dict = &getDict(); } for (unsigned w = 0; w < words->size(); ++w) { WERD_RES *word = (*words)[w]; if (word->best_choice == nullptr) { // It is a dud. word->SetupFake(lstm_recognizer_->GetUnicharset()); } else { // Set the best state. for (unsigned i = 0; i < word->best_choice->length(); ++i) { int length = word->best_choice->state(i); word->best_state.push_back(length); } word->reject_map.initialise(word->best_choice->length()); word->tess_failed = false; word->tess_accepted = true; word->tess_would_adapt = false; word->done = true; word->tesseract = this; float word_certainty = std::min(word->space_certainty, word->best_choice->certainty()); word_certainty *= kCertaintyScale; if (getDict().stopper_debug_level >= 1) { tprintf("Best choice certainty=%g, space=%g, scaled=%g, final=%g\n", word->best_choice->certainty(), word->space_certainty, std::min(word->space_certainty, word->best_choice->certainty()) * kCertaintyScale, word_certainty); word->best_choice->print(); } word->best_choice->set_certainty(word_certainty); word->tess_accepted = stopper_dict->AcceptableResult(word); } } } } // namespace tesseract.
