diff mupdf-source/thirdparty/zxing-cpp/core/src/Quadrilateral.h @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/zxing-cpp/core/src/Quadrilateral.h	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,177 @@
+/*
+* Copyright 2020 Axel Waggershauser
+*/
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "Point.h"
+#include "ZXAlgorithms.h"
+
+#include <array>
+#include <cmath>
+#include <string>
+
+namespace ZXing {
+
+template <typename T>
+class Quadrilateral : public std::array<T, 4>
+{
+	using Base = std::array<T, 4>;
+	using Base::at;
+public:
+	using Point = T;
+
+	Quadrilateral() = default;
+	Quadrilateral(T tl, T tr, T br, T bl) : Base{tl, tr, br, bl} {}
+	template <typename U>
+	Quadrilateral(PointT<U> tl, PointT<U> tr, PointT<U> br, PointT<U> bl)
+		: Quadrilateral(Point(tl), Point(tr), Point(br), Point(bl))
+	{}
+
+	constexpr Point topLeft() const noexcept { return at(0); }
+	constexpr Point topRight() const noexcept { return at(1); }
+	constexpr Point bottomRight() const noexcept { return at(2); }
+	constexpr Point bottomLeft() const noexcept { return at(3); }
+
+	double orientation() const
+	{
+		auto centerLine = (topRight() + bottomRight()) - (topLeft() + bottomLeft());
+		if (centerLine == Point{})
+			return 0.;
+		auto centerLineF = normalized(centerLine);
+		return std::atan2(centerLineF.y, centerLineF.x);
+	}
+};
+
+using QuadrilateralF = Quadrilateral<PointF>;
+using QuadrilateralI = Quadrilateral<PointI>;
+
+template <typename PointT = PointF>
+Quadrilateral<PointT> Rectangle(int width, int height, typename PointT::value_t margin = 0)
+{
+	return {
+		PointT{margin, margin}, {width - margin, margin}, {width - margin, height - margin}, {margin, height - margin}};
+}
+
+template <typename PointT = PointF>
+Quadrilateral<PointT> CenteredSquare(int size)
+{
+	return Scale(Quadrilateral(PointT{-1, -1}, {1, -1}, {1, 1}, {-1, 1}), size / 2);
+}
+
+template <typename PointT = PointI>
+Quadrilateral<PointT> Line(int y, int xStart, int xStop)
+{
+	return {PointT{xStart, y}, {xStop, y}, {xStop, y}, {xStart, y}};
+}
+
+template <typename PointT>
+bool IsConvex(const Quadrilateral<PointT>& poly)
+{
+	const int N = Size(poly);
+	bool sign = false;
+
+	typename PointT::value_t m = INFINITY, M = 0;
+
+	for(int i = 0; i < N; i++)
+	{
+		auto d1 = poly[(i + 2) % N] - poly[(i + 1) % N];
+		auto d2 = poly[i] - poly[(i + 1) % N];
+		auto cp = cross(d1, d2);
+
+		// TODO: see if the isInside check for all boundary points in GridSampler is still required after fixing the wrong fabs()
+		// application in the following line
+		UpdateMinMax(m, M, std::fabs(cp));
+
+		if (i == 0)
+			sign = cp > 0;
+		else if (sign != (cp > 0))
+			return false;
+	}
+
+	// It turns out being convex is not enough to prevent a "numerical instability"
+	// that can cause the corners being projected inside the image boundaries but
+	// some points near the corners being projected outside. This has been observed
+	// where one corner is almost in line with two others. The M/m ratio is below 2
+	// for the complete existing sample set. For very "skewed" QRCodes a value of
+	// around 3 is realistic. A value of 14 has been observed to trigger the
+	// instability.
+	return M / m < 4.0;
+}
+
+template <typename PointT>
+Quadrilateral<PointT> Scale(const Quadrilateral<PointT>& q, int factor)
+{
+	return {factor * q[0], factor * q[1], factor * q[2], factor * q[3]};
+}
+
+template <typename PointT>
+PointT Center(const Quadrilateral<PointT>& q)
+{
+	return Reduce(q) / Size(q);
+}
+
+template <typename PointT>
+Quadrilateral<PointT> RotatedCorners(const Quadrilateral<PointT>& q, int n = 1, bool mirror = false)
+{
+	Quadrilateral<PointT> res;
+	std::rotate_copy(q.begin(), q.begin() + ((n + 4) % 4), q.end(), res.begin());
+	if (mirror)
+		std::swap(res[1], res[3]);
+	return res;
+}
+
+template <typename PointT>
+bool IsInside(const PointT& p, const Quadrilateral<PointT>& q)
+{
+	// Test if p is on the same side (right or left) of all polygon segments
+	int pos = 0, neg = 0;
+	for (int i = 0; i < Size(q); ++i)
+		(cross(p - q[i], q[(i + 1) % Size(q)] - q[i]) < 0 ? neg : pos)++;
+	return pos == 0 || neg == 0;
+}
+
+template <typename PointT>
+Quadrilateral<PointT> BoundingBox(const Quadrilateral<PointT>& q)
+{
+	auto [minX, maxX] = std::minmax({q[0].x, q[1].x, q[2].x, q[3].x});
+	auto [minY, maxY] = std::minmax({q[0].y, q[1].y, q[2].y, q[3].y});
+	return {PointT{minX, minY}, {maxX, minY}, {maxX, maxY}, {minX, maxY}};
+}
+
+template <typename PointT>
+bool HaveIntersectingBoundingBoxes(const Quadrilateral<PointT>& a, const Quadrilateral<PointT>& b)
+{
+	auto bba = BoundingBox(a), bbb = BoundingBox(b);
+
+	bool x = bbb.topRight().x < bba.topLeft().x || bbb.topLeft().x > bba.topRight().x;
+	bool y = bbb.bottomLeft().y < bba.topLeft().y || bbb.topLeft().y > bba.bottomLeft().y;
+	return !(x || y);
+}
+
+template <typename PointT>
+Quadrilateral<PointT> Blend(const Quadrilateral<PointT>& a, const Quadrilateral<PointT>& b)
+{
+	auto dist2First = [r = a[0]](auto s, auto t) { return distance(s, r) < distance(t, r); };
+	// rotate points such that the the two topLeft points are closest to each other
+	auto offset = std::min_element(b.begin(), b.end(), dist2First) - b.begin();
+
+	Quadrilateral<PointT> res;
+	for (int i = 0; i < 4; ++i)
+		res[i] = (a[i] + b[(i + offset) % 4]) / 2;
+
+	return res;
+}
+
+template <typename T>
+std::string ToString(const Quadrilateral<PointT<T>>& points)
+{
+	std::string res;
+	for (const auto& p : points)
+		res += std::to_string(p.x) + "x" + std::to_string(p.y) + (&p == &points.back() ? "" : " ");
+	return res;
+}
+
+} // ZXing
+