diff mupdf-source/thirdparty/zxing-cpp/core/src/ConcentricFinder.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/zxing-cpp/core/src/ConcentricFinder.cpp	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,264 @@
+/*
+* Copyright 2020 Axel Waggershauser
+*/
+// SPDX-License-Identifier: Apache-2.0
+
+#include "ConcentricFinder.h"
+
+#include "LogMatrix.h"
+#include "RegressionLine.h"
+#include "ZXAlgorithms.h"
+
+namespace ZXing {
+
+std::optional<PointF> AverageEdgePixels(BitMatrixCursorI cur, int range, int numOfEdges)
+{
+	PointF sum = {};
+	for (int i = 0; i < numOfEdges; ++i) {
+		if (!cur.isIn())
+			return {};
+		cur.stepToEdge(1, range);
+		sum += centered(cur.p) + centered(cur.p + cur.back());
+		log(cur.p + cur.back(), 2);
+	}
+	return sum / (2 * numOfEdges);
+}
+
+std::optional<PointF> CenterOfDoubleCross(const BitMatrix& image, PointI center, int range, int numOfEdges)
+{
+	PointF sum = {};
+	for (auto d : {PointI{0, 1}, {1, 0}, {1, 1}, {1, -1}}) {
+		auto avr1 = AverageEdgePixels({image, center,  d}, range, numOfEdges);
+		auto avr2 = AverageEdgePixels({image, center, -d}, range, numOfEdges);
+		if (!avr1 || !avr2)
+			return {};
+		sum += *avr1 + *avr2;
+	}
+	return sum / 8;
+}
+
+std::optional<PointF> CenterOfRing(const BitMatrix& image, PointI center, int range, int nth, bool requireCircle)
+{
+#if 0
+	if (requireCircle) {
+		// alternative implementation with the aim of discarding closed loops that are not all circle like (M > 5*m)
+		auto points = CollectRingPoints(image, center, range, std::abs(nth), nth < 0);
+		if (points.empty())
+			return {};
+		auto res = Reduce(points, PointF{}, std::plus{}) / Size(points);
+
+		double m = range, M = 0;
+		for (auto p : points)
+			UpdateMinMax(m, M, maxAbsComponent(p - res));
+
+		if (M > 5 * m)
+			return {};
+
+		return res;
+	}
+#endif
+	// range is the approximate width/height of the nth ring, if nth>1 then it would be plausible to limit the search radius
+	// to approximately range / 2 * sqrt(2) == range * 0.75 but it turned out to be too limiting with realworld/noisy data.
+	int radius = range;
+	bool inner = nth < 0;
+	nth = std::abs(nth);
+	log(center, 3);
+	BitMatrixCursorI cur(image, center, {0, 1});
+	if (!cur.stepToEdge(nth, radius, inner))
+		return {};
+	cur.turnRight(); // move clock wise and keep edge on the right/left depending on backup
+	const auto edgeDir = inner ? Direction::LEFT : Direction::RIGHT;
+
+	uint32_t neighbourMask = 0;
+	auto start = cur.p;
+	PointF sum = {};
+	int n = 0;
+	do {
+		log(cur.p, 4);
+		sum += centered(cur.p);
+		++n;
+
+		// find out if we come full circle around the center. 8 bits have to be set in the end.
+		neighbourMask |= (1 << (4 + dot(bresenhamDirection(cur.p - center), PointI(1, 3))));
+
+		if (!cur.stepAlongEdge(edgeDir))
+			return {};
+
+		// use L-inf norm, simply because it is a lot faster than L2-norm and sufficiently accurate
+		if (maxAbsComponent(cur.p - center) > radius || center == cur.p || n > 4 * 2 * range)
+			return {};
+	} while (cur.p != start);
+
+	if (requireCircle && neighbourMask != 0b111101111)
+		return {};
+
+	return sum / n;
+}
+
+std::optional<PointF> CenterOfRings(const BitMatrix& image, PointF center, int range, int numOfRings)
+{
+	int n = 1;
+	PointF sum = center;
+	for (int i = 2; i < numOfRings + 1; ++i) {
+		auto c = CenterOfRing(image, PointI(center), range, i);
+		if (!c) {
+			if (n == 1)
+				return {};
+			else
+				return sum / n;
+		} else if (distance(*c, center) > range / numOfRings / 2) {
+			return {};
+		}
+
+		sum += *c;
+		n++;
+	}
+	return sum / n;
+}
+
+static std::vector<PointF> CollectRingPoints(const BitMatrix& image, PointF center, int range, int edgeIndex, bool backup)
+{
+	PointI centerI(center);
+	int radius = range;
+	BitMatrixCursorI cur(image, centerI, {0, 1});
+	if (!cur.stepToEdge(edgeIndex, radius, backup))
+		return {};
+	cur.turnRight(); // move clock wise and keep edge on the right/left depending on backup
+	const auto edgeDir = backup ? Direction::LEFT : Direction::RIGHT;
+
+	uint32_t neighbourMask = 0;
+	auto start = cur.p;
+	std::vector<PointF> points;
+	points.reserve(4 * range);
+
+	do {
+		log(cur.p, 4);
+		points.push_back(centered(cur.p));
+
+		// find out if we come full circle around the center. 8 bits have to be set in the end.
+		neighbourMask |= (1 << (4 + dot(bresenhamDirection(cur.p - centerI), PointI(1, 3))));
+
+		if (!cur.stepAlongEdge(edgeDir))
+			return {};
+
+		// use L-inf norm, simply because it is a lot faster than L2-norm and sufficiently accurate
+		if (maxAbsComponent(cur.p - centerI) > radius || centerI == cur.p || Size(points) > 4 * 2 * range)
+			return {};
+
+	} while (cur.p != start);
+
+	if (neighbourMask != 0b111101111)
+		return {};
+
+	return points;
+}
+
+static std::optional<QuadrilateralF> FitQadrilateralToPoints(PointF center, std::vector<PointF>& points)
+{
+	auto dist2Center = [c = center](auto a, auto b) { return distance(a, c) < distance(b, c); };
+	// rotate points such that the first one is the furthest away from the center (hence, a corner)
+	std::rotate(points.begin(), std::max_element(points.begin(), points.end(), dist2Center), points.end());
+
+	std::array<const PointF*, 4> corners;
+	corners[0] = &points[0];
+	// find the oposite corner by looking for the farthest point near the oposite point
+	corners[2] = std::max_element(&points[Size(points) * 3 / 8], &points[Size(points) * 5 / 8], dist2Center);
+
+	// find the two in between corners by looking for the points farthest from the long diagonal
+	auto dist2Diagonal = [l = RegressionLine(*corners[0], *corners[2])](auto a, auto b) { return l.distance(a) < l.distance(b); };
+	corners[1] = std::max_element(&points[Size(points) * 1 / 8], &points[Size(points) * 3 / 8], dist2Diagonal);
+	corners[3] = std::max_element(&points[Size(points) * 5 / 8], &points[Size(points) * 7 / 8], dist2Diagonal);
+
+	std::array lines{RegressionLine{corners[0] + 1, corners[1]}, RegressionLine{corners[1] + 1, corners[2]},
+					 RegressionLine{corners[2] + 1, corners[3]}, RegressionLine{corners[3] + 1, &points.back() + 1}};
+
+	if (std::any_of(lines.begin(), lines.end(), [](auto line) { return !line.isValid(); }))
+		return {};
+
+	std::array<const PointF*, 4> beg = {corners[0] + 1, corners[1] + 1, corners[2] + 1, corners[3] + 1};
+	std::array<const PointF*, 4> end = {corners[1], corners[2], corners[3], &points.back() + 1};
+
+	// check if all points belonging to each line segment are sufficiently close to that line
+	for (int i = 0; i < 4; ++i)
+		for (const PointF* p = beg[i]; p != end[i]; ++p) {
+			auto len = std::distance(beg[i], end[i]);
+			if (len > 3 && lines[i].distance(*p) > std::max(1., std::min(8., len / 8.))) {
+#ifdef PRINT_DEBUG
+				printf("%d: %.2f > %.2f @ %.fx%.f\n", i, lines[i].distance(*p), std::distance(beg[i], end[i]) / 1., p->x, p->y);
+#endif
+				return {};
+			}
+		}
+
+	QuadrilateralF res;
+	for (int i = 0; i < 4; ++i)
+		res[i] = intersect(lines[i], lines[(i + 1) % 4]);
+
+	return res;
+}
+
+static bool QuadrilateralIsPlausibleSquare(const QuadrilateralF q, int lineIndex)
+{
+	double m, M;
+	m = M = distance(q[0], q[3]);
+	for (int i = 1; i < 4; ++i)
+		UpdateMinMax(m, M, distance(q[i - 1], q[i]));
+
+	return m >= lineIndex * 2 && m > M / 3;
+}
+
+static std::optional<QuadrilateralF> FitSquareToPoints(const BitMatrix& image, PointF center, int range, int lineIndex, bool backup)
+{
+	auto points = CollectRingPoints(image, center, range, lineIndex, backup);
+	if (points.empty())
+		return {};
+
+	auto res = FitQadrilateralToPoints(center, points);
+	if (!res || !QuadrilateralIsPlausibleSquare(*res, lineIndex - backup))
+		return {};
+
+	return res;
+}
+
+std::optional<QuadrilateralF> FindConcentricPatternCorners(const BitMatrix& image, PointF center, int range, int lineIndex)
+{
+	auto innerCorners = FitSquareToPoints(image, center, range, lineIndex, false);
+	if (!innerCorners)
+		return {};
+
+	auto outerCorners = FitSquareToPoints(image, center, range, lineIndex + 1, true);
+	if (!outerCorners)
+		return {};
+
+	auto res = Blend(*innerCorners, *outerCorners);
+
+	for (auto p : *innerCorners)
+		log(p, 3);
+
+	for (auto p : *outerCorners)
+		log(p, 3);
+
+	for (auto p : res)
+		log(p, 3);
+
+	return res;
+}
+
+std::optional<PointF> FinetuneConcentricPatternCenter(const BitMatrix& image, PointF center, int range, int finderPatternSize)
+{
+	// make sure we have at least one path of white around the center
+	if (auto res1 = CenterOfRing(image, PointI(center), range, 1); res1 && image.get(*res1)) {
+		// and then either at least one more ring around that
+		if (auto res2 = CenterOfRings(image, *res1, range, finderPatternSize / 2); res2 && image.get(*res2))
+			return res2;
+		// or the center can be approximated by a square
+		if (FitSquareToPoints(image, *res1, range, 1, false))
+			return res1;
+		// TODO: this is currently only keeping #258 alive, evaluate if still worth it
+		if (auto res2 = CenterOfDoubleCross(image, PointI(*res1), range, finderPatternSize / 2 + 1); res2 && image.get(*res2))
+			return res2;
+	}
+	return {};
+}
+
+} // ZXing