diff mupdf-source/thirdparty/zint/backend/reedsol.c @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/zint/backend/reedsol.c	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,376 @@
+/* This is a simple Reed-Solomon encoder */
+/*
+  (C) Cliff Hones 2004
+
+    Redistribution and use in source and binary forms, with or without
+    modification, are permitted provided that the following conditions
+    are met:
+
+    1. Redistributions of source code must retain the above copyright
+       notice, this list of conditions and the following disclaimer.
+    2. Redistributions in binary form must reproduce the above copyright
+       notice, this list of conditions and the following disclaimer in the
+       documentation and/or other materials provided with the distribution.
+    3. Neither the name of the project nor the names of its contributors
+       may be used to endorse or promote products derived from this software
+       without specific prior written permission.
+
+    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+    ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+    IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+    ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+    FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+    OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+    HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+    OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+    SUCH DAMAGE.
+ */
+/* SPDX-License-Identifier: BSD-3-Clause */
+
+/* It is not written with high efficiency in mind, so is probably
+// not suitable for real-time encoding.  The aim was to keep it
+// simple, general and clear.
+//
+// <Some notes on the theory and implementation need to be added here>
+
+// Usage:
+// First call rs_init_gf(&rs, prime_poly) to set up the Galois Field parameters.
+// Then  call rs_init_code(&rs, nsym, index) to set the encoding size
+// Then  call rs_encode(&rs, datalen, data, out) to encode the data.
+//
+// These can be called repeatedly as required - but note that
+// rs_init_code must be called following any rs_init_gf call.
+//
+// If the parameters are fixed, some of the statics below can be
+// replaced with constants in the obvious way, and additionally
+// malloc/free can be avoided by using static arrays of a suitable
+// size.
+// Note: use of statics has been done for (up to) 8-bit tables.
+*/
+
+#include "common.h"
+#include "reedsol.h"
+#include "reedsol_logs.h"
+
+/* rs_init_gf(&rs, prime_poly) initialises the parameters for the Galois Field.
+// The symbol size is determined from the highest bit set in poly
+// This implementation will support sizes up to 8 bits (see rs_uint_init_gf()
+// for sizes > 8 bits and <= 30 bits) - bit sizes of 8 or 4 are typical
+//
+// The poly is the bit pattern representing the GF characteristic
+// polynomial.  e.g. for ECC200 (8-bit symbols) the polynomial is
+// a**8 + a**5 + a**3 + a**2 + 1, which translates to 0x12d.
+*/
+
+INTERNAL void rs_init_gf(rs_t *rs, const unsigned int prime_poly) {
+    struct item {
+        const unsigned char *logt;
+        const unsigned char *alog;
+    };
+    /* To add a new prime poly of degree <= 8 add its details to this table and to the table in `test_generate()`
+       in "backend/tests/test_reedsol.c" and regenerate the log tables by running
+       "backend/tests/test_reedsol -f generate -g". Paste the result in "reedsol_logs.h" */
+    static const struct item data[] = {
+        { logt_0x13, alog_0x13 },   /* 0 000- */
+        { logt_0x25, alog_0x25 },   /* 0 001- */
+        { logt_0x43, alog_0x43 },   /* 0 010- */
+        { NULL, NULL },
+        { logt_0x89, alog_0x89 },   /* 0 100- */
+        { NULL, NULL },
+        { NULL, NULL },
+        { NULL, NULL },
+        { logt_0x11d, alog_0x11d }, /* 1 000- */
+        { logt_0x12d, alog_0x12d }, /* 1 001- */
+        { NULL, NULL },
+        { logt_0x163, alog_0x163 }, /* 1 011- */
+    };
+
+    /* Using bits 9-6 as hash to save a few cycles */
+    /* Alter this hash or just iterate if new prime poly added that doesn't fit */
+    const unsigned int hash = prime_poly >> 5;
+
+    rs->logt = data[hash].logt;
+    rs->alog = data[hash].alog;
+}
+
+/* rs_init_code(&rs, nsym, index) initialises the Reed-Solomon encoder
+// nsym is the number of symbols to be generated (to be appended
+// to the input data).  index is usually 1 - it is the index of
+// the constant in the first term (i) of the RS generator polynomial:
+// (x + 2**i)*(x + 2**(i+1))*...   [nsym terms]
+// For ECC200, index is 1.
+*/
+
+INTERNAL void rs_init_code(rs_t *rs, const int nsym, int index) {
+    int i, k;
+    const unsigned char *const logt = rs->logt;
+    const unsigned char *const alog = rs->alog;
+    unsigned char *rspoly = rs->rspoly;
+    unsigned char *log_rspoly = rs->log_rspoly;
+
+    rs->nsym = nsym;
+
+    rspoly[0] = 1;
+    for (i = 1; i <= nsym; i++) {
+        rspoly[i] = 1;
+        for (k = i - 1; k > 0; k--) {
+            if (rspoly[k])
+                rspoly[k] = alog[logt[rspoly[k]] + index]; /* Multiply coeff by 2**index */
+            rspoly[k] ^= rspoly[k - 1]; /* Add coeff of x**(k-1) * x */
+        }
+        rspoly[0] = alog[logt[rspoly[0]] + index]; /* 2**(i + (i+1) + ... + index) */
+        index++;
+    }
+
+    /* Set logs of poly and check if have zero coeffs */
+    rs->zero = 0;
+    for (i = 0; i <= nsym; i++) {
+        log_rspoly[i] = logt[rspoly[i]]; /* For simplicity allow log of 0 */
+        rs->zero |= rspoly[i] == 0;
+    }
+}
+
+/* rs_encode(&rs, datalen, data, res) generates nsym Reed-Solomon codes (nsym as given in rs_init_code()) */
+INTERNAL void rs_encode(const rs_t *rs, const int datalen, const unsigned char *data, unsigned char *res) {
+    int i, k;
+    const unsigned char *const logt = rs->logt;
+    const unsigned char *const alog = rs->alog;
+    const unsigned char *const rspoly = rs->rspoly;
+    const unsigned char *const log_rspoly = rs->log_rspoly;
+    const int nsym = rs->nsym;
+    const int nsym_halved = nsym >> 1;
+
+    memset(res, 0, nsym);
+    if (rs->zero) { /* Poly has a zero coeff so need to check in inner loop */
+        for (i = 0; i < datalen; i++) {
+            const unsigned int m = res[nsym - 1] ^ data[i];
+            if (m) {
+                const unsigned int log_m = logt[m];
+                for (k = nsym - 1; k > 0; k--) {
+                    if (rspoly[k])
+                        res[k] = (unsigned char) (res[k - 1] ^ alog[log_m + log_rspoly[k]]);
+                    else
+                        res[k] = res[k - 1];
+                }
+                res[0] = alog[log_m + log_rspoly[0]];
+            } else {
+                memmove(res + 1, res, nsym - 1);
+                res[0] = 0;
+            }
+        }
+    } else { /* Avoid a branch in inner loop */
+        for (i = 0; i < datalen; i++) {
+            const unsigned int m = res[nsym - 1] ^ data[i];
+            if (m) {
+                const unsigned int log_m = logt[m];
+                for (k = nsym - 1; k > 0; k--) {
+                    res[k] = (unsigned char) (res[k - 1] ^ alog[log_m + log_rspoly[k]]);
+                }
+                res[0] = alog[log_m + log_rspoly[0]];
+            } else {
+                memmove(res + 1, res, nsym - 1);
+                res[0] = 0;
+            }
+        }
+    }
+    /* Reverse the result */
+    for (i = 0; i < nsym_halved; i++) {
+        const unsigned char tmp = res[i];
+        res[i] = res[nsym - 1 - i];
+        res[nsym - 1 - i] = tmp;
+    }
+}
+
+/* The same as above but for unsigned int data and result - Aztec code compatible */
+
+INTERNAL void rs_encode_uint(const rs_t *rs, const int datalen, const unsigned int *data, unsigned int *res) {
+    int i, k;
+    const unsigned char *const logt = rs->logt;
+    const unsigned char *const alog = rs->alog;
+    const unsigned char *const rspoly = rs->rspoly;
+    const unsigned char *const log_rspoly = rs->log_rspoly;
+    const int nsym = rs->nsym;
+    const int nsym_halved = nsym >> 1;
+
+    memset(res, 0, sizeof(unsigned int) * nsym);
+    if (rs->zero) { /* Poly has a zero coeff so need to check in inner loop */
+        for (i = 0; i < datalen; i++) {
+            const unsigned int m = res[nsym - 1] ^ data[i];
+            if (m) {
+                const unsigned int log_m = logt[m];
+                for (k = nsym - 1; k > 0; k--) {
+                    if (rspoly[k])
+                        res[k] = res[k - 1] ^ alog[log_m + log_rspoly[k]];
+                    else
+                        res[k] = res[k - 1];
+                }
+                res[0] = alog[log_m + log_rspoly[0]];
+            } else {
+                memmove(res + 1, res, sizeof(unsigned int) * (nsym - 1));
+                res[0] = 0;
+            }
+        }
+    } else { /* Avoid a branch in inner loop */
+        for (i = 0; i < datalen; i++) {
+            const unsigned int m = res[nsym - 1] ^ data[i];
+            if (m) {
+                const unsigned int log_m = logt[m];
+                for (k = nsym - 1; k > 0; k--) {
+                    res[k] = res[k - 1] ^ alog[log_m + log_rspoly[k]];
+                }
+                res[0] = alog[log_m + log_rspoly[0]];
+            } else {
+                memmove(res + 1, res, sizeof(unsigned int) * (nsym - 1));
+                res[0] = 0;
+            }
+        }
+    }
+    /* Reverse the result */
+    for (i = 0; i < nsym_halved; i++) {
+        const unsigned int tmp = res[i];
+        res[i] = res[nsym - 1 - i];
+        res[nsym - 1 - i] = tmp;
+    }
+}
+
+/* Versions of the above for bitlengths > 8 and <= 30 and unsigned int data and results - Aztec code compatible */
+
+/* Usage:
+// First call rs_uint_init_gf(&rs_uint, prime_poly, logmod) to set up the Galois Field parameters.
+// Then  call rs_uint_init_code(&rs_uint, nsym, index) to set the encoding size
+// Then  call rs_uint_encode(&rs_uint, datalen, data, out) to encode the data.
+// Then  call rs_uint_free(&rs_uint) to free the log tables.
+*/
+
+/* `logmod` (field characteristic) will be 2**bitlength - 1, eg 1023 for bitlength 10, 4095 for bitlength 12 */
+INTERNAL int rs_uint_init_gf(rs_uint_t *rs_uint, const unsigned int prime_poly, const int logmod) {
+    int b, p, v;
+    unsigned int *logt, *alog;
+
+    b = logmod + 1;
+
+    rs_uint->logt = NULL;
+    rs_uint->alog = NULL;
+
+    if (!(logt = (unsigned int *) calloc(b, sizeof(unsigned int)))) {
+        return 0;
+    }
+    if (!(alog = (unsigned int *) calloc(b * 2, sizeof(unsigned int)))) {
+        free(logt);
+        return 0;
+    }
+
+    /* Calculate the log/alog tables */
+    for (p = 1, v = 0; v < logmod; v++) {
+        alog[v] = p;
+        alog[logmod + v] = p; /* Double up, avoids mod */
+        logt[p] = v;
+        p <<= 1;
+        if (p & b) /* If overflow */
+            p ^= prime_poly; /* Subtract prime poly */
+    }
+    rs_uint->logt = logt;
+    rs_uint->alog = alog;
+    return 1;
+}
+
+INTERNAL void rs_uint_init_code(rs_uint_t *rs_uint, const int nsym, int index) {
+    int i, k;
+    const unsigned int *const logt = rs_uint->logt;
+    const unsigned int *const alog = rs_uint->alog;
+    unsigned short *rspoly = rs_uint->rspoly;
+    unsigned int *log_rspoly = rs_uint->log_rspoly;
+
+    if (logt == NULL || alog == NULL) {
+        return;
+    }
+    rs_uint->nsym = nsym;
+
+    rspoly[0] = 1;
+    for (i = 1; i <= nsym; i++) {
+        rspoly[i] = 1;
+        for (k = i - 1; k > 0; k--) {
+            if (rspoly[k])
+                rspoly[k] = alog[(logt[rspoly[k]] + index)];
+            rspoly[k] ^= rspoly[k - 1];
+        }
+        rspoly[0] = alog[(logt[rspoly[0]] + index)];
+        index++;
+    }
+
+    /* Set logs of poly and check if have zero coeffs */
+    rs_uint->zero = 0;
+    for (i = 0; i <= nsym; i++) {
+        log_rspoly[i] = logt[rspoly[i]]; /* For simplicity allow log of 0 */
+        rs_uint->zero |= rspoly[i] == 0;
+    }
+}
+
+INTERNAL void rs_uint_encode(const rs_uint_t *rs_uint, const int datalen, const unsigned int *data,
+                unsigned int *res) {
+    int i, k;
+    const unsigned int *const logt = rs_uint->logt;
+    const unsigned int *const alog = rs_uint->alog;
+    const unsigned short *const rspoly = rs_uint->rspoly;
+    const unsigned int *const log_rspoly = rs_uint->log_rspoly;
+    const int nsym = rs_uint->nsym;
+    const int nsym_halved = nsym >> 1;
+
+    memset(res, 0, sizeof(unsigned int) * nsym);
+    if (logt == NULL || alog == NULL) {
+        return;
+    }
+    if (rs_uint->zero) { /* Poly has a zero coeff so need to check in inner loop */
+        for (i = 0; i < datalen; i++) {
+            const unsigned int m = res[nsym - 1] ^ data[i];
+            if (m) {
+                const unsigned int log_m = logt[m];
+                for (k = nsym - 1; k > 0; k--) {
+                    if (rspoly[k])
+                        res[k] = res[k - 1] ^ alog[log_m + log_rspoly[k]];
+                    else
+                        res[k] = res[k - 1];
+                }
+                res[0] = alog[log_m + log_rspoly[0]];
+            } else {
+                memmove(res + 1, res, sizeof(unsigned int) * (nsym - 1));
+                res[0] = 0;
+            }
+        }
+    } else { /* Avoid a branch in inner loop */
+        for (i = 0; i < datalen; i++) {
+            const unsigned int m = res[nsym - 1] ^ data[i];
+            if (m) {
+                const unsigned int log_m = logt[m];
+                for (k = nsym - 1; k > 0; k--) {
+                    res[k] = res[k - 1] ^ alog[log_m + log_rspoly[k]];
+                }
+                res[0] = alog[log_m + log_rspoly[0]];
+            } else {
+                memmove(res + 1, res, sizeof(unsigned int) * (nsym - 1));
+                res[0] = 0;
+            }
+        }
+    }
+    /* Reverse the result */
+    for (i = 0; i < nsym_halved; i++) {
+        const unsigned int tmp = res[i];
+        res[i] = res[nsym - 1 - i];
+        res[nsym - 1 - i] = tmp;
+    }
+}
+
+INTERNAL void rs_uint_free(rs_uint_t *rs_uint) {
+    if (rs_uint->logt) {
+        free(rs_uint->logt);
+        rs_uint->logt = NULL;
+    }
+    if (rs_uint->alog) {
+        free(rs_uint->alog);
+        rs_uint->alog = NULL;
+    }
+}
+
+/* vim: set ts=4 sw=4 et : */