Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/zint/backend/reedsol.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/zint/backend/reedsol.c Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,376 @@ +/* This is a simple Reed-Solomon encoder */ +/* + (C) Cliff Hones 2004 + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + 1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + 3. Neither the name of the project nor the names of its contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE + FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + SUCH DAMAGE. + */ +/* SPDX-License-Identifier: BSD-3-Clause */ + +/* It is not written with high efficiency in mind, so is probably +// not suitable for real-time encoding. The aim was to keep it +// simple, general and clear. +// +// <Some notes on the theory and implementation need to be added here> + +// Usage: +// First call rs_init_gf(&rs, prime_poly) to set up the Galois Field parameters. +// Then call rs_init_code(&rs, nsym, index) to set the encoding size +// Then call rs_encode(&rs, datalen, data, out) to encode the data. +// +// These can be called repeatedly as required - but note that +// rs_init_code must be called following any rs_init_gf call. +// +// If the parameters are fixed, some of the statics below can be +// replaced with constants in the obvious way, and additionally +// malloc/free can be avoided by using static arrays of a suitable +// size. +// Note: use of statics has been done for (up to) 8-bit tables. +*/ + +#include "common.h" +#include "reedsol.h" +#include "reedsol_logs.h" + +/* rs_init_gf(&rs, prime_poly) initialises the parameters for the Galois Field. +// The symbol size is determined from the highest bit set in poly +// This implementation will support sizes up to 8 bits (see rs_uint_init_gf() +// for sizes > 8 bits and <= 30 bits) - bit sizes of 8 or 4 are typical +// +// The poly is the bit pattern representing the GF characteristic +// polynomial. e.g. for ECC200 (8-bit symbols) the polynomial is +// a**8 + a**5 + a**3 + a**2 + 1, which translates to 0x12d. +*/ + +INTERNAL void rs_init_gf(rs_t *rs, const unsigned int prime_poly) { + struct item { + const unsigned char *logt; + const unsigned char *alog; + }; + /* To add a new prime poly of degree <= 8 add its details to this table and to the table in `test_generate()` + in "backend/tests/test_reedsol.c" and regenerate the log tables by running + "backend/tests/test_reedsol -f generate -g". Paste the result in "reedsol_logs.h" */ + static const struct item data[] = { + { logt_0x13, alog_0x13 }, /* 0 000- */ + { logt_0x25, alog_0x25 }, /* 0 001- */ + { logt_0x43, alog_0x43 }, /* 0 010- */ + { NULL, NULL }, + { logt_0x89, alog_0x89 }, /* 0 100- */ + { NULL, NULL }, + { NULL, NULL }, + { NULL, NULL }, + { logt_0x11d, alog_0x11d }, /* 1 000- */ + { logt_0x12d, alog_0x12d }, /* 1 001- */ + { NULL, NULL }, + { logt_0x163, alog_0x163 }, /* 1 011- */ + }; + + /* Using bits 9-6 as hash to save a few cycles */ + /* Alter this hash or just iterate if new prime poly added that doesn't fit */ + const unsigned int hash = prime_poly >> 5; + + rs->logt = data[hash].logt; + rs->alog = data[hash].alog; +} + +/* rs_init_code(&rs, nsym, index) initialises the Reed-Solomon encoder +// nsym is the number of symbols to be generated (to be appended +// to the input data). index is usually 1 - it is the index of +// the constant in the first term (i) of the RS generator polynomial: +// (x + 2**i)*(x + 2**(i+1))*... [nsym terms] +// For ECC200, index is 1. +*/ + +INTERNAL void rs_init_code(rs_t *rs, const int nsym, int index) { + int i, k; + const unsigned char *const logt = rs->logt; + const unsigned char *const alog = rs->alog; + unsigned char *rspoly = rs->rspoly; + unsigned char *log_rspoly = rs->log_rspoly; + + rs->nsym = nsym; + + rspoly[0] = 1; + for (i = 1; i <= nsym; i++) { + rspoly[i] = 1; + for (k = i - 1; k > 0; k--) { + if (rspoly[k]) + rspoly[k] = alog[logt[rspoly[k]] + index]; /* Multiply coeff by 2**index */ + rspoly[k] ^= rspoly[k - 1]; /* Add coeff of x**(k-1) * x */ + } + rspoly[0] = alog[logt[rspoly[0]] + index]; /* 2**(i + (i+1) + ... + index) */ + index++; + } + + /* Set logs of poly and check if have zero coeffs */ + rs->zero = 0; + for (i = 0; i <= nsym; i++) { + log_rspoly[i] = logt[rspoly[i]]; /* For simplicity allow log of 0 */ + rs->zero |= rspoly[i] == 0; + } +} + +/* rs_encode(&rs, datalen, data, res) generates nsym Reed-Solomon codes (nsym as given in rs_init_code()) */ +INTERNAL void rs_encode(const rs_t *rs, const int datalen, const unsigned char *data, unsigned char *res) { + int i, k; + const unsigned char *const logt = rs->logt; + const unsigned char *const alog = rs->alog; + const unsigned char *const rspoly = rs->rspoly; + const unsigned char *const log_rspoly = rs->log_rspoly; + const int nsym = rs->nsym; + const int nsym_halved = nsym >> 1; + + memset(res, 0, nsym); + if (rs->zero) { /* Poly has a zero coeff so need to check in inner loop */ + for (i = 0; i < datalen; i++) { + const unsigned int m = res[nsym - 1] ^ data[i]; + if (m) { + const unsigned int log_m = logt[m]; + for (k = nsym - 1; k > 0; k--) { + if (rspoly[k]) + res[k] = (unsigned char) (res[k - 1] ^ alog[log_m + log_rspoly[k]]); + else + res[k] = res[k - 1]; + } + res[0] = alog[log_m + log_rspoly[0]]; + } else { + memmove(res + 1, res, nsym - 1); + res[0] = 0; + } + } + } else { /* Avoid a branch in inner loop */ + for (i = 0; i < datalen; i++) { + const unsigned int m = res[nsym - 1] ^ data[i]; + if (m) { + const unsigned int log_m = logt[m]; + for (k = nsym - 1; k > 0; k--) { + res[k] = (unsigned char) (res[k - 1] ^ alog[log_m + log_rspoly[k]]); + } + res[0] = alog[log_m + log_rspoly[0]]; + } else { + memmove(res + 1, res, nsym - 1); + res[0] = 0; + } + } + } + /* Reverse the result */ + for (i = 0; i < nsym_halved; i++) { + const unsigned char tmp = res[i]; + res[i] = res[nsym - 1 - i]; + res[nsym - 1 - i] = tmp; + } +} + +/* The same as above but for unsigned int data and result - Aztec code compatible */ + +INTERNAL void rs_encode_uint(const rs_t *rs, const int datalen, const unsigned int *data, unsigned int *res) { + int i, k; + const unsigned char *const logt = rs->logt; + const unsigned char *const alog = rs->alog; + const unsigned char *const rspoly = rs->rspoly; + const unsigned char *const log_rspoly = rs->log_rspoly; + const int nsym = rs->nsym; + const int nsym_halved = nsym >> 1; + + memset(res, 0, sizeof(unsigned int) * nsym); + if (rs->zero) { /* Poly has a zero coeff so need to check in inner loop */ + for (i = 0; i < datalen; i++) { + const unsigned int m = res[nsym - 1] ^ data[i]; + if (m) { + const unsigned int log_m = logt[m]; + for (k = nsym - 1; k > 0; k--) { + if (rspoly[k]) + res[k] = res[k - 1] ^ alog[log_m + log_rspoly[k]]; + else + res[k] = res[k - 1]; + } + res[0] = alog[log_m + log_rspoly[0]]; + } else { + memmove(res + 1, res, sizeof(unsigned int) * (nsym - 1)); + res[0] = 0; + } + } + } else { /* Avoid a branch in inner loop */ + for (i = 0; i < datalen; i++) { + const unsigned int m = res[nsym - 1] ^ data[i]; + if (m) { + const unsigned int log_m = logt[m]; + for (k = nsym - 1; k > 0; k--) { + res[k] = res[k - 1] ^ alog[log_m + log_rspoly[k]]; + } + res[0] = alog[log_m + log_rspoly[0]]; + } else { + memmove(res + 1, res, sizeof(unsigned int) * (nsym - 1)); + res[0] = 0; + } + } + } + /* Reverse the result */ + for (i = 0; i < nsym_halved; i++) { + const unsigned int tmp = res[i]; + res[i] = res[nsym - 1 - i]; + res[nsym - 1 - i] = tmp; + } +} + +/* Versions of the above for bitlengths > 8 and <= 30 and unsigned int data and results - Aztec code compatible */ + +/* Usage: +// First call rs_uint_init_gf(&rs_uint, prime_poly, logmod) to set up the Galois Field parameters. +// Then call rs_uint_init_code(&rs_uint, nsym, index) to set the encoding size +// Then call rs_uint_encode(&rs_uint, datalen, data, out) to encode the data. +// Then call rs_uint_free(&rs_uint) to free the log tables. +*/ + +/* `logmod` (field characteristic) will be 2**bitlength - 1, eg 1023 for bitlength 10, 4095 for bitlength 12 */ +INTERNAL int rs_uint_init_gf(rs_uint_t *rs_uint, const unsigned int prime_poly, const int logmod) { + int b, p, v; + unsigned int *logt, *alog; + + b = logmod + 1; + + rs_uint->logt = NULL; + rs_uint->alog = NULL; + + if (!(logt = (unsigned int *) calloc(b, sizeof(unsigned int)))) { + return 0; + } + if (!(alog = (unsigned int *) calloc(b * 2, sizeof(unsigned int)))) { + free(logt); + return 0; + } + + /* Calculate the log/alog tables */ + for (p = 1, v = 0; v < logmod; v++) { + alog[v] = p; + alog[logmod + v] = p; /* Double up, avoids mod */ + logt[p] = v; + p <<= 1; + if (p & b) /* If overflow */ + p ^= prime_poly; /* Subtract prime poly */ + } + rs_uint->logt = logt; + rs_uint->alog = alog; + return 1; +} + +INTERNAL void rs_uint_init_code(rs_uint_t *rs_uint, const int nsym, int index) { + int i, k; + const unsigned int *const logt = rs_uint->logt; + const unsigned int *const alog = rs_uint->alog; + unsigned short *rspoly = rs_uint->rspoly; + unsigned int *log_rspoly = rs_uint->log_rspoly; + + if (logt == NULL || alog == NULL) { + return; + } + rs_uint->nsym = nsym; + + rspoly[0] = 1; + for (i = 1; i <= nsym; i++) { + rspoly[i] = 1; + for (k = i - 1; k > 0; k--) { + if (rspoly[k]) + rspoly[k] = alog[(logt[rspoly[k]] + index)]; + rspoly[k] ^= rspoly[k - 1]; + } + rspoly[0] = alog[(logt[rspoly[0]] + index)]; + index++; + } + + /* Set logs of poly and check if have zero coeffs */ + rs_uint->zero = 0; + for (i = 0; i <= nsym; i++) { + log_rspoly[i] = logt[rspoly[i]]; /* For simplicity allow log of 0 */ + rs_uint->zero |= rspoly[i] == 0; + } +} + +INTERNAL void rs_uint_encode(const rs_uint_t *rs_uint, const int datalen, const unsigned int *data, + unsigned int *res) { + int i, k; + const unsigned int *const logt = rs_uint->logt; + const unsigned int *const alog = rs_uint->alog; + const unsigned short *const rspoly = rs_uint->rspoly; + const unsigned int *const log_rspoly = rs_uint->log_rspoly; + const int nsym = rs_uint->nsym; + const int nsym_halved = nsym >> 1; + + memset(res, 0, sizeof(unsigned int) * nsym); + if (logt == NULL || alog == NULL) { + return; + } + if (rs_uint->zero) { /* Poly has a zero coeff so need to check in inner loop */ + for (i = 0; i < datalen; i++) { + const unsigned int m = res[nsym - 1] ^ data[i]; + if (m) { + const unsigned int log_m = logt[m]; + for (k = nsym - 1; k > 0; k--) { + if (rspoly[k]) + res[k] = res[k - 1] ^ alog[log_m + log_rspoly[k]]; + else + res[k] = res[k - 1]; + } + res[0] = alog[log_m + log_rspoly[0]]; + } else { + memmove(res + 1, res, sizeof(unsigned int) * (nsym - 1)); + res[0] = 0; + } + } + } else { /* Avoid a branch in inner loop */ + for (i = 0; i < datalen; i++) { + const unsigned int m = res[nsym - 1] ^ data[i]; + if (m) { + const unsigned int log_m = logt[m]; + for (k = nsym - 1; k > 0; k--) { + res[k] = res[k - 1] ^ alog[log_m + log_rspoly[k]]; + } + res[0] = alog[log_m + log_rspoly[0]]; + } else { + memmove(res + 1, res, sizeof(unsigned int) * (nsym - 1)); + res[0] = 0; + } + } + } + /* Reverse the result */ + for (i = 0; i < nsym_halved; i++) { + const unsigned int tmp = res[i]; + res[i] = res[nsym - 1 - i]; + res[nsym - 1 - i] = tmp; + } +} + +INTERNAL void rs_uint_free(rs_uint_t *rs_uint) { + if (rs_uint->logt) { + free(rs_uint->logt); + rs_uint->logt = NULL; + } + if (rs_uint->alog) { + free(rs_uint->alog); + rs_uint->alog = NULL; + } +} + +/* vim: set ts=4 sw=4 et : */
