diff mupdf-source/thirdparty/zint/backend/gridmtx.c @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/zint/backend/gridmtx.c	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,1250 @@
+/*  gridmtx.c - Grid Matrix */
+/*
+    libzint - the open source barcode library
+    Copyright (C) 2009-2024 Robin Stuart <rstuart114@gmail.com>
+
+    Redistribution and use in source and binary forms, with or without
+    modification, are permitted provided that the following conditions
+    are met:
+
+    1. Redistributions of source code must retain the above copyright
+       notice, this list of conditions and the following disclaimer.
+    2. Redistributions in binary form must reproduce the above copyright
+       notice, this list of conditions and the following disclaimer in the
+       documentation and/or other materials provided with the distribution.
+    3. Neither the name of the project nor the names of its contributors
+       may be used to endorse or promote products derived from this software
+       without specific prior written permission.
+
+    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+    ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+    IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+    ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+    FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+    OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+    HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+    OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+    SUCH DAMAGE.
+ */
+/* SPDX-License-Identifier: BSD-3-Clause */
+
+/* This file implements Grid Matrix as specified in
+   AIM Global Document Number AIMD014 Rev. 1.63 Revised 9 Dec 2008 */
+
+#include <stdio.h>
+#include "common.h"
+#include "reedsol.h"
+#include "gridmtx.h"
+#include "eci.h"
+
+static const char EUROPIUM[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz ";
+static const char EUROPIUM_UPR[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ ";
+static const char EUROPIUM_LWR[] = "abcdefghijklmnopqrstuvwxyz ";
+
+/* gm_define_mode() stuff */
+
+/* Bits multiplied by this for costs, so as to be whole integer divisible by 2 and 3 */
+#define GM_MULT 6
+
+/* Non-digit numeral set, excluding EOL (carriage return/linefeed) */
+static const char gm_numeral_nondigits[] = " +-.,";
+
+/* Whether in numeral or not. If in numeral, *p_numeral_end is set to position after numeral,
+ * and *p_numeral_cost is set to per-numeral cost */
+static int gm_in_numeral(const unsigned int ddata[], const int length, const int in_posn,
+            unsigned int *p_numeral_end, unsigned int *p_numeral_cost) {
+    int i, digit_cnt, nondigit, nondigit_posn;
+
+    if (in_posn < (int) *p_numeral_end) {
+        return 1;
+    }
+
+    /* Attempt to calculate the average 'cost' of using numeric mode in number of bits (times GM_MULT) */
+    /* Also ensures that numeric mode is not selected when it cannot be used: for example in
+       a string which has "2.2.0" (cannot have more than one non-numeric character for each
+       block of three numeric characters) */
+    for (i = in_posn, digit_cnt = 0, nondigit = 0, nondigit_posn = 0; i < length && i < in_posn + 4 && digit_cnt < 3;
+            i++) {
+        if (z_isdigit(ddata[i])) {
+            digit_cnt++;
+        } else if (posn(gm_numeral_nondigits, (const char) ddata[i]) != -1) {
+            if (nondigit) {
+                break;
+            }
+            nondigit = 1;
+            nondigit_posn = i;
+        } else if (i < length - 1 && ddata[i] == 13 && ddata[i + 1] == 10) {
+            if (nondigit) {
+                break;
+            }
+            i++;
+            nondigit = 2;
+            nondigit_posn = i;
+        } else {
+            break;
+        }
+    }
+    if (digit_cnt == 0) { /* Must have at least one digit */
+        *p_numeral_end = 0;
+        return 0;
+    }
+    if (nondigit && nondigit_posn == i - 1) { /* Non-digit can't be at end */
+        nondigit = 0;
+    }
+    *p_numeral_end = in_posn + digit_cnt + nondigit;
+    /* Calculate per-numeral cost where 120 == (10 + 10) * GM_MULT, 60 == 10 * GM_MULT */
+    if (digit_cnt == 3) {
+        *p_numeral_cost = nondigit == 2 ? 24 /* (120 / 5) */ : nondigit == 1 ? 30 /* (120 / 4) */ : 20 /* (60 / 3) */;
+    } else if (digit_cnt == 2) {
+        *p_numeral_cost = nondigit == 2 ? 30 /* (120 / 4) */ : nondigit == 1 ? 40 /* (120 / 3) */ : 30 /* (60 / 2) */;
+    } else {
+        *p_numeral_cost = nondigit == 2 ? 40 /* (120 / 3) */ : nondigit == 1 ? 60 /* (120 / 2) */ : 60 /* (60 / 1) */;
+    }
+    return 1;
+}
+
+/* Encoding modes */
+#define GM_CHINESE  'H'
+#define GM_NUMBER   'N'
+#define GM_LOWER    'L'
+#define GM_UPPER    'U'
+#define GM_MIXED    'M'
+#define GM_BYTE     'B'
+/* Note Control is a submode of Lower, Upper and Mixed modes */
+
+/* Indexes into mode_types array */
+#define GM_H   0 /* Chinese (Hanzi) */
+#define GM_N   1 /* Numeral */
+#define GM_L   2 /* Lower case */
+#define GM_U   3 /* Upper case */
+#define GM_M   4 /* Mixed */
+#define GM_B   5 /* Byte */
+
+#define GM_NUM_MODES 6
+
+/* Calculate optimized encoding modes. Adapted from Project Nayuki */
+/* Copyright (c) Project Nayuki. (MIT License) See qr.c for detailed notice */
+static void gm_define_mode(char *mode, const unsigned int ddata[], const int length, const int debug_print) {
+    /* Must be in same order as GM_H etc */
+    static const char mode_types[] = { GM_CHINESE, GM_NUMBER, GM_LOWER, GM_UPPER, GM_MIXED, GM_BYTE, '\0' };
+
+    /* Initial mode costs */
+    static const unsigned int head_costs[GM_NUM_MODES] = {
+    /*  H            N (+pad prefix)    L            U            M            B (+byte count) */
+        4 * GM_MULT, (4 + 2) * GM_MULT, 4 * GM_MULT, 4 * GM_MULT, 4 * GM_MULT, (4 + 9) * GM_MULT
+    };
+
+    /* Cost of switching modes from k to j - see AIMD014 Rev. 1.63 Table 9 – Type conversion codes */
+    static const unsigned char switch_costs[GM_NUM_MODES][GM_NUM_MODES] = {
+        /*      H             N                   L             U             M             B  */
+        /*H*/ {            0, (13 + 2) * GM_MULT, 13 * GM_MULT, 13 * GM_MULT, 13 * GM_MULT, (13 + 9) * GM_MULT },
+        /*N*/ { 10 * GM_MULT,                  0, 10 * GM_MULT, 10 * GM_MULT, 10 * GM_MULT, (10 + 9) * GM_MULT },
+        /*L*/ {  5 * GM_MULT,  (5 + 2) * GM_MULT,            0,  5 * GM_MULT,  7 * GM_MULT,  (7 + 9) * GM_MULT },
+        /*U*/ {  5 * GM_MULT,  (5 + 2) * GM_MULT,  5 * GM_MULT,            0,  7 * GM_MULT,  (7 + 9) * GM_MULT },
+        /*M*/ { 10 * GM_MULT, (10 + 2) * GM_MULT, 10 * GM_MULT, 10 * GM_MULT,            0, (10 + 9) * GM_MULT },
+        /*B*/ {  4 * GM_MULT,  (4 + 2) * GM_MULT,  4 * GM_MULT,  4 * GM_MULT,  4 * GM_MULT,                  0 },
+    };
+
+    /* Final end-of-data cost - see AIMD014 Rev. 1.63 Table 9 – Type conversion codes */
+    static const unsigned char eod_costs[GM_NUM_MODES] = {
+    /*  H             N             L            U            M             B  */
+        13 * GM_MULT, 10 * GM_MULT, 5 * GM_MULT, 5 * GM_MULT, 10 * GM_MULT, 4 * GM_MULT
+    };
+
+    unsigned int numeral_end = 0, numeral_cost = 0, byte_count = 0; /* State */
+    int double_byte, space, numeric, lower, upper, control, double_digit, eol;
+
+    int i, j, k;
+    unsigned int min_cost;
+    char cur_mode;
+    unsigned int prev_costs[GM_NUM_MODES];
+    unsigned int cur_costs[GM_NUM_MODES];
+    char (*char_modes)[GM_NUM_MODES] = (char (*)[GM_NUM_MODES]) z_alloca(GM_NUM_MODES * length);
+
+    /* char_modes[i][j] represents the mode to encode the code point at index i such that the final segment
+       ends in mode_types[j] and the total number of bits is minimized over all possible choices */
+    memset(char_modes, 0, length * GM_NUM_MODES);
+
+    /* At the beginning of each iteration of the loop below, prev_costs[j] is the minimum number of 1/6 (1/XX_MULT)
+     * bits needed to encode the entire string prefix of length i, and end in mode_types[j] */
+    memcpy(prev_costs, head_costs, GM_NUM_MODES * sizeof(unsigned int));
+
+    /* Calculate costs using dynamic programming */
+    for (i = 0; i < length; i++) {
+        memset(cur_costs, 0, GM_NUM_MODES * sizeof(unsigned int));
+
+        space = numeric = lower = upper = control = double_digit = eol = 0;
+
+        double_byte = ddata[i] > 0xFF;
+        if (!double_byte) {
+            space = ddata[i] == ' ';
+            if (!space) {
+                numeric = z_isdigit(ddata[i]);
+                if (!numeric) {
+                    lower = z_islower(ddata[i]);
+                    if (!lower) {
+                        upper = z_isupper(ddata[i]);
+                        if (!upper) {
+                            control = ddata[i] < 0x7F; /* Exclude DEL */
+                            if (control && i + 1 < length) {
+                                eol = ddata[i] == 13 && ddata[i + 1] == 10;
+                            }
+                        }
+                    }
+                } else if (i + 1 < length) {
+                    double_digit = z_isdigit(ddata[i + 1]);
+                }
+            }
+        }
+
+        /* Hanzi mode can encode anything */
+        cur_costs[GM_H] = prev_costs[GM_H] + (double_digit || eol ? 39 : 78); /* (6.5 : 13) * GM_MULT */
+        char_modes[i][GM_H] = GM_CHINESE;
+
+        /* Byte mode can encode anything */
+        if (byte_count == 512 || (double_byte && byte_count == 511)) {
+            cur_costs[GM_B] = head_costs[GM_B];
+            if (double_byte && byte_count == 511) {
+                cur_costs[GM_B] += 48; /* 8 * GM_MULT */
+                double_byte = 0; /* Splitting double-byte so mark as single */
+            }
+            byte_count = 0;
+        }
+        cur_costs[GM_B] += prev_costs[GM_B] + (double_byte ? 96 : 48); /* (16 : 8) * GM_MULT */
+        char_modes[i][GM_B] = GM_BYTE;
+        byte_count += double_byte ? 2 : 1;
+
+        if (gm_in_numeral(ddata, length, i, &numeral_end, &numeral_cost)) {
+            cur_costs[GM_N] = prev_costs[GM_N] + numeral_cost;
+            char_modes[i][GM_N] = GM_NUMBER;
+        }
+
+        if (control) {
+            cur_costs[GM_L] = prev_costs[GM_L] + 78; /* (7 + 6) * GM_MULT */
+            char_modes[i][GM_L] = GM_LOWER;
+            cur_costs[GM_U] = prev_costs[GM_U] + 78; /* (7 + 6) * GM_MULT */
+            char_modes[i][GM_U] = GM_UPPER;
+            cur_costs[GM_M] = prev_costs[GM_M] + 96; /* (10 + 6) * GM_MULT */
+            char_modes[i][GM_M] = GM_MIXED;
+        } else {
+            if (lower || space) {
+                cur_costs[GM_L] = prev_costs[GM_L] + 30; /* 5 * GM_MULT */
+                char_modes[i][GM_L] = GM_LOWER;
+            }
+            if (upper || space) {
+                cur_costs[GM_U] = prev_costs[GM_U] + 30; /* 5 * GM_MULT */
+                char_modes[i][GM_U] = GM_UPPER;
+            }
+            if (numeric || lower || upper || space) {
+                cur_costs[GM_M] = prev_costs[GM_M] + 36; /* 6 * GM_MULT */
+                char_modes[i][GM_M] = GM_MIXED;
+            }
+        }
+
+        if (i == length - 1) { /* Add end of data costs if last character */
+            for (j = 0; j < GM_NUM_MODES; j++) {
+                if (char_modes[i][j]) {
+                    cur_costs[j] += eod_costs[j];
+                }
+            }
+        }
+
+        /* Start new segment at the end to switch modes */
+        for (j = 0; j < GM_NUM_MODES; j++) { /* To mode */
+            for (k = 0; k < GM_NUM_MODES; k++) { /* From mode */
+                if (j != k && char_modes[i][k]) {
+                    const unsigned int new_cost = cur_costs[k] + switch_costs[k][j];
+                    if (!char_modes[i][j] || new_cost < cur_costs[j]) {
+                        cur_costs[j] = new_cost;
+                        char_modes[i][j] = mode_types[k];
+                    }
+                }
+            }
+        }
+
+        memcpy(prev_costs, cur_costs, GM_NUM_MODES * sizeof(unsigned int));
+    }
+
+    /* Find optimal ending mode */
+    min_cost = prev_costs[0];
+    cur_mode = mode_types[0];
+    for (i = 1; i < GM_NUM_MODES; i++) {
+        if (prev_costs[i] < min_cost) {
+            min_cost = prev_costs[i];
+            cur_mode = mode_types[i];
+        }
+    }
+
+    /* Get optimal mode for each code point by tracing backwards */
+    for (i = length - 1; i >= 0; i--) {
+        j = posn(mode_types, cur_mode);
+        cur_mode = char_modes[i][j];
+        mode[i] = cur_mode;
+    }
+
+    if (debug_print) {
+        printf("  Mode: %.*s\n", length, mode);
+    }
+}
+
+/* Add the length indicator for byte encoded blocks */
+static void gm_add_byte_count(char binary[], const int byte_count_posn, const int byte_count) {
+    /* AIMD014 6.3.7: "Let L be the number of bytes of input data to be encoded in the 8-bit binary data set.
+     * First output (L-1) as a 9-bit binary prefix to record the number of bytes..." */
+    bin_append_posn(byte_count - 1, 9, binary, byte_count_posn);
+}
+
+/* Add a control character to the data stream */
+static int gm_add_shift_char(char binary[], int bp, int shifty, const int debug_print) {
+    int i;
+    int glyph = 0;
+
+    if (shifty < 32) {
+        glyph = shifty;
+    } else {
+        for (i = 32; i < 64; i++) {
+            if (gm_shift_set[i] == shifty) {
+                glyph = i;
+                break;
+            }
+        }
+    }
+
+    if (debug_print) {
+        printf("SHIFT [%d] ", glyph);
+    }
+
+    bp = bin_append_posn(glyph, 6, binary, bp);
+
+    return bp;
+}
+
+static int gm_encode(unsigned int ddata[], const int length, char binary[], const int eci, int *p_bp,
+            const int debug_print) {
+    /* Create a binary stream representation of the input data.
+       7 sets are defined - Chinese characters, Numerals, Lower case letters, Upper case letters,
+       Mixed numerals and latters, Control characters and 8-bit binary data */
+    int sp = 0;
+    int current_mode = 0;
+    int last_mode;
+    unsigned int glyph = 0;
+    int c1, c2, done;
+    int p = 0, ppos;
+    int numbuf[3], punt = 0;
+    int number_pad_posn = 0;
+    int byte_count_posn = 0;
+    int byte_count = 0;
+    int shift;
+    int bp = *p_bp;
+    char *mode = (char *) z_alloca(length);
+
+    if (eci != 0) {
+        /* ECI assignment according to Table 8 */
+        bp = bin_append_posn(12, 4, binary, bp); /* ECI */
+        if (eci <= 1023) {
+            bp = bin_append_posn(eci, 11, binary, bp);
+        } else if (eci <= 32767) {
+            bp = bin_append_posn(2, 2, binary, bp);
+            bp = bin_append_posn(eci, 15, binary, bp);
+        } else {
+            bp = bin_append_posn(3, 2, binary, bp);
+            bp = bin_append_posn(eci, 20, binary, bp);
+        }
+    }
+
+    gm_define_mode(mode, ddata, length, debug_print);
+
+    do {
+        const int next_mode = mode[sp];
+
+        if (next_mode != current_mode) {
+            switch (current_mode) {
+                case 0:
+                    switch (next_mode) {
+                        case GM_CHINESE: bp = bin_append_posn(1, 4, binary, bp);
+                            break;
+                        case GM_NUMBER: bp = bin_append_posn(2, 4, binary, bp);
+                            break;
+                        case GM_LOWER: bp = bin_append_posn(3, 4, binary, bp);
+                            break;
+                        case GM_UPPER: bp = bin_append_posn(4, 4, binary, bp);
+                            break;
+                        case GM_MIXED: bp = bin_append_posn(5, 4, binary, bp);
+                            break;
+                        case GM_BYTE: bp = bin_append_posn(6, 4, binary, bp);
+                            break;
+                    }
+                    break;
+                case GM_CHINESE:
+                    switch (next_mode) {
+                        case GM_NUMBER: bp = bin_append_posn(8161, 13, binary, bp);
+                            break;
+                        case GM_LOWER: bp = bin_append_posn(8162, 13, binary, bp);
+                            break;
+                        case GM_UPPER: bp = bin_append_posn(8163, 13, binary, bp);
+                            break;
+                        case GM_MIXED: bp = bin_append_posn(8164, 13, binary, bp);
+                            break;
+                        case GM_BYTE: bp = bin_append_posn(8165, 13, binary, bp);
+                            break;
+                    }
+                    break;
+                case GM_NUMBER:
+                    /* add numeric block padding value */
+                    switch (p) {
+                        case 1: binary[number_pad_posn] = '1';
+                            binary[number_pad_posn + 1] = '0';
+                            break; /* 2 pad digits */
+                        case 2: binary[number_pad_posn] = '0';
+                            binary[number_pad_posn + 1] = '1';
+                            break; /* 1 pad digits */
+                        case 3: binary[number_pad_posn] = '0';
+                            binary[number_pad_posn + 1] = '0';
+                            break; /* 0 pad digits */
+                    }
+                    switch (next_mode) {
+                        case GM_CHINESE: bp = bin_append_posn(1019, 10, binary, bp);
+                            break;
+                        case GM_LOWER: bp = bin_append_posn(1020, 10, binary, bp);
+                            break;
+                        case GM_UPPER: bp = bin_append_posn(1021, 10, binary, bp);
+                            break;
+                        case GM_MIXED: bp = bin_append_posn(1022, 10, binary, bp);
+                            break;
+                        case GM_BYTE: bp = bin_append_posn(1023, 10, binary, bp);
+                            break;
+                    }
+                    break;
+                case GM_LOWER:
+                case GM_UPPER:
+                    switch (next_mode) {
+                        case GM_CHINESE: bp = bin_append_posn(28, 5, binary, bp);
+                            break;
+                        case GM_NUMBER: bp = bin_append_posn(29, 5, binary, bp);
+                            break;
+                        case GM_LOWER:
+                        case GM_UPPER: bp = bin_append_posn(30, 5, binary, bp);
+                            break;
+                        case GM_MIXED: bp = bin_append_posn(124, 7, binary, bp);
+                            break;
+                        case GM_BYTE: bp = bin_append_posn(126, 7, binary, bp);
+                            break;
+                    }
+                    break;
+                case GM_MIXED:
+                    switch (next_mode) {
+                        case GM_CHINESE: bp = bin_append_posn(1009, 10, binary, bp);
+                            break;
+                        case GM_NUMBER: bp = bin_append_posn(1010, 10, binary, bp);
+                            break;
+                        case GM_LOWER: bp = bin_append_posn(1011, 10, binary, bp);
+                            break;
+                        case GM_UPPER: bp = bin_append_posn(1012, 10, binary, bp);
+                            break;
+                        case GM_BYTE: bp = bin_append_posn(1015, 10, binary, bp);
+                            break;
+                    }
+                    break;
+                case GM_BYTE:
+                    /* add byte block length indicator */
+                    gm_add_byte_count(binary, byte_count_posn, byte_count);
+                    byte_count = 0;
+                    switch (next_mode) {
+                        case GM_CHINESE: bp = bin_append_posn(1, 4, binary, bp);
+                            break;
+                        case GM_NUMBER: bp = bin_append_posn(2, 4, binary, bp);
+                            break;
+                        case GM_LOWER: bp = bin_append_posn(3, 4, binary, bp);
+                            break;
+                        case GM_UPPER: bp = bin_append_posn(4, 4, binary, bp);
+                            break;
+                        case GM_MIXED: bp = bin_append_posn(5, 4, binary, bp);
+                            break;
+                    }
+                    break;
+            }
+            if (debug_print) {
+                switch (next_mode) {
+                    case GM_CHINESE: fputs("CHIN ", stdout);
+                        break;
+                    case GM_NUMBER: fputs("NUMB ", stdout);
+                        break;
+                    case GM_LOWER: fputs("LOWR ", stdout);
+                        break;
+                    case GM_UPPER: fputs("UPPR ", stdout);
+                        break;
+                    case GM_MIXED: fputs("MIXD ", stdout);
+                        break;
+                    case GM_BYTE: fputs("BYTE ", stdout);
+                        break;
+                }
+            }
+        }
+        last_mode = current_mode;
+        current_mode = next_mode;
+
+        switch (current_mode) {
+            case GM_CHINESE:
+                done = 0;
+                if (ddata[sp] > 0xff) {
+                    /* GB2312 character */
+                    c1 = (ddata[sp] & 0xff00) >> 8;
+                    c2 = ddata[sp] & 0xff;
+
+                    if ((c1 >= 0xa1) && (c1 <= 0xa9)) {
+                        glyph = (0x60 * (c1 - 0xa1)) + (c2 - 0xa0);
+                    } else if ((c1 >= 0xb0) && (c1 <= 0xf7)) {
+                        glyph = (0x60 * (c1 - 0xb0 + 9)) + (c2 - 0xa0);
+                    }
+                    done = 1; /* GB 2312 always within above ranges */
+                    /* Note not using the unallocated glyphs 7776 to 8191 mentioned in AIMD014 section 6.3.1.2 */
+                }
+                if (!(done)) {
+                    if (sp != (length - 1)) {
+                        if ((ddata[sp] == 13) && (ddata[sp + 1] == 10)) {
+                            /* End of Line */
+                            glyph = 7776;
+                            sp++;
+                            done = 1;
+                        }
+                    }
+                }
+                if (!(done)) {
+                    if (sp != (length - 1)) {
+                        if (z_isdigit(ddata[sp]) && z_isdigit(ddata[sp + 1])) {
+                            /* Two digits */
+                            glyph = 8033 + (10 * (ddata[sp] - '0')) + (ddata[sp + 1] - '0');
+                            sp++;
+                            done = 1;
+                        }
+                    }
+                }
+                if (!(done)) {
+                    /* Byte value */
+                    glyph = 7777 + ddata[sp];
+                }
+
+                if (debug_print) {
+                    printf("[%d] ", (int) glyph);
+                }
+
+                bp = bin_append_posn(glyph, 13, binary, bp);
+                sp++;
+                break;
+
+            case GM_NUMBER:
+                if (last_mode != current_mode) {
+                    /* Reserve a space for numeric digit padding value (2 bits) */
+                    number_pad_posn = bp;
+                    bp = bin_append_posn(0, 2, binary, bp);
+                }
+                p = 0;
+                ppos = -1;
+
+                /* Numeric compression can also include certain combinations of
+                   non-numeric character */
+
+                numbuf[0] = '0';
+                numbuf[1] = '0';
+                numbuf[2] = '0';
+                do {
+                    if (z_isdigit(ddata[sp])) {
+                        numbuf[p] = ddata[sp];
+                        p++;
+                    } else if (posn(gm_numeral_nondigits, (const char) ddata[sp]) != -1) {
+                        if (ppos != -1) {
+                            break;
+                        }
+                        punt = ddata[sp];
+                        ppos = p;
+                    } else if (sp < (length - 1) && (ddata[sp] == 13) && (ddata[sp + 1] == 10)) {
+                        /* <end of line> */
+                        if (ppos != -1) {
+                            break;
+                        }
+                        punt = ddata[sp];
+                        sp++;
+                        ppos = p;
+                    } else {
+                        break;
+                    }
+                    sp++;
+                } while ((p < 3) && (sp < length) && mode[sp] == GM_NUMBER);
+
+                if (ppos != -1) {
+                    switch (punt) {
+                        case ' ': glyph = 0;
+                            break;
+                        case '+': glyph = 3;
+                            break;
+                        case '-': glyph = 6;
+                            break;
+                        case '.': glyph = 9;
+                            break;
+                        case ',': glyph = 12;
+                            break;
+                        case 13: glyph = 15;
+                            break;
+                    }
+                    glyph += ppos;
+                    glyph += 1000;
+
+                    if (debug_print) {
+                        printf("[%d] ", (int) glyph);
+                    }
+
+                    bp = bin_append_posn(glyph, 10, binary, bp);
+                }
+
+                glyph = (100 * (numbuf[0] - '0')) + (10 * (numbuf[1] - '0')) + (numbuf[2] - '0');
+                if (debug_print) {
+                    printf("[%d] ", (int) glyph);
+                }
+
+                bp = bin_append_posn(glyph, 10, binary, bp);
+                break;
+
+            case GM_BYTE:
+                if (last_mode != current_mode) {
+                    /* Reserve space for byte block length indicator (9 bits) */
+                    byte_count_posn = bp;
+                    bp = bin_append_posn(0, 9, binary, bp);
+                }
+                glyph = ddata[sp];
+                if (byte_count == 512 || (glyph > 0xFF && byte_count == 511)) {
+                    /* Maximum byte block size is 512 bytes. If longer is needed then start a new block */
+                    if (glyph > 0xFF && byte_count == 511) { /* Split double-byte */
+                        bp = bin_append_posn(glyph >> 8, 8, binary, bp);
+                        glyph &= 0xFF;
+                        byte_count++;
+                    }
+                    gm_add_byte_count(binary, byte_count_posn, byte_count);
+                    bp = bin_append_posn(7, 4, binary, bp);
+                    byte_count_posn = bp;
+                    bp = bin_append_posn(0, 9, binary, bp);
+                    byte_count = 0;
+                }
+
+                if (debug_print) {
+                    printf("[%d] ", (int) glyph);
+                }
+                bp = bin_append_posn(glyph, glyph > 0xFF ? 16 : 8, binary, bp);
+                sp++;
+                byte_count++;
+                if (glyph > 0xFF) {
+                    byte_count++;
+                }
+                break;
+
+            case GM_MIXED:
+                shift = 1;
+                if (z_isdigit(ddata[sp])) {
+                    shift = 0;
+                } else if (z_isupper(ddata[sp])) {
+                    shift = 0;
+                } else if (z_islower(ddata[sp])) {
+                    shift = 0;
+                } else if (ddata[sp] == ' ') {
+                    shift = 0;
+                }
+
+                if (shift == 0) {
+                    /* Mixed Mode character */
+                    glyph = posn(EUROPIUM, (const char) ddata[sp]);
+                    if (debug_print) {
+                        printf("[%d] ", (int) glyph);
+                    }
+
+                    bp = bin_append_posn(glyph, 6, binary, bp);
+                } else {
+                    /* Shift Mode character */
+                    bp = bin_append_posn(1014, 10, binary, bp); /* shift indicator */
+                    bp = gm_add_shift_char(binary, bp, ddata[sp], debug_print);
+                }
+
+                sp++;
+                break;
+
+            case GM_UPPER:
+                shift = 1;
+                if (z_isupper(ddata[sp])) {
+                    shift = 0;
+                } else if (ddata[sp] == ' ') {
+                    shift = 0;
+                }
+
+                if (shift == 0) {
+                    /* Upper Case character */
+                    glyph = posn(EUROPIUM_UPR, (const char) ddata[sp]);
+                    if (debug_print) {
+                        printf("[%d] ", (int) glyph);
+                    }
+
+                    bp = bin_append_posn(glyph, 5, binary, bp);
+                } else {
+                    /* Shift Mode character */
+                    bp = bin_append_posn(125, 7, binary, bp); /* shift indicator */
+                    bp = gm_add_shift_char(binary, bp, ddata[sp], debug_print);
+                }
+
+                sp++;
+                break;
+
+            case GM_LOWER:
+                shift = 1;
+                if (z_islower(ddata[sp])) {
+                    shift = 0;
+                } else if (ddata[sp] == ' ') {
+                    shift = 0;
+                }
+
+                if (shift == 0) {
+                    /* Lower Case character */
+                    glyph = posn(EUROPIUM_LWR, (const char) ddata[sp]);
+                    if (debug_print) {
+                        printf("[%d] ", (int) glyph);
+                    }
+
+                    bp = bin_append_posn(glyph, 5, binary, bp);
+                } else {
+                    /* Shift Mode character */
+                    bp = bin_append_posn(125, 7, binary, bp); /* shift indicator */
+                    bp = gm_add_shift_char(binary, bp, ddata[sp], debug_print);
+                }
+
+                sp++;
+                break;
+        }
+        if (bp > 9191) {
+            return ZINT_ERROR_TOO_LONG;
+        }
+
+    } while (sp < length);
+
+    if (current_mode == GM_NUMBER) {
+        /* add numeric block padding value */
+        switch (p) {
+            case 1: binary[number_pad_posn] = '1';
+                binary[number_pad_posn + 1] = '0';
+                break; /* 2 pad digits */
+            case 2: binary[number_pad_posn] = '0';
+                binary[number_pad_posn + 1] = '1';
+                break; /* 1 pad digit */
+            case 3: binary[number_pad_posn] = '0';
+                binary[number_pad_posn + 1] = '0';
+                break; /* 0 pad digits */
+        }
+    }
+
+    if (current_mode == GM_BYTE) {
+        /* Add byte block length indicator */
+        gm_add_byte_count(binary, byte_count_posn, byte_count);
+    }
+
+    /* Add "end of data" character */
+    switch (current_mode) {
+        case GM_CHINESE: bp = bin_append_posn(8160, 13, binary, bp);
+            break;
+        case GM_NUMBER: bp = bin_append_posn(1018, 10, binary, bp);
+            break;
+        case GM_LOWER:
+        case GM_UPPER: bp = bin_append_posn(27, 5, binary, bp);
+            break;
+        case GM_MIXED: bp = bin_append_posn(1008, 10, binary, bp);
+            break;
+        case GM_BYTE: bp = bin_append_posn(0, 4, binary, bp);
+            break;
+    }
+
+    if (bp > 9191) {
+        return ZINT_ERROR_TOO_LONG;
+    }
+
+    *p_bp = bp;
+
+    if (debug_print) {
+        printf("\nBinary (%d): %.*s\n", bp, bp, binary);
+    }
+
+    return 0;
+}
+
+static int gm_encode_segs(unsigned int ddata[], const struct zint_seg segs[], const int seg_count, char binary[],
+            const int reader, const struct zint_structapp *p_structapp, int *p_bin_len, const int debug_print) {
+    int i;
+    unsigned int *dd = ddata;
+    int bp = 0;
+    int p;
+
+    if (reader && (!p_structapp || p_structapp->index == 1)) { /* Appears only in 1st symbol if Structured Append */
+        bp = bin_append_posn(10, 4, binary, bp); /* FNC3 - Reader Initialisation */
+    }
+
+    if (p_structapp) {
+        bp = bin_append_posn(9, 4, binary, bp); /* FNC2 - Structured Append */
+        bp = bin_append_posn(to_int((const unsigned char *) p_structapp->id, (int) strlen(p_structapp->id)), 8,
+                binary, bp); /* File signature */
+        bp = bin_append_posn(p_structapp->count - 1, 4, binary, bp);
+        bp = bin_append_posn(p_structapp->index - 1, 4, binary, bp);
+    }
+
+    for (i = 0; i < seg_count; i++) {
+        int error_number = gm_encode(dd, segs[i].length, binary, segs[i].eci, &bp, debug_print);
+        if (error_number != 0) {
+            return error_number;
+        }
+        dd += segs[i].length;
+    }
+
+    /* Add padding bits if required */
+    p = 7 - (bp % 7);
+    if (p % 7) {
+        bp = bin_append_posn(0, p, binary, bp);
+    }
+    /* Note bit-padding can't tip `bp` over max 9191 (1313 * 7) */
+
+    if (debug_print) {
+        printf("\nBinary (%d): %.*s\n", bp, bp, binary);
+    }
+
+    *p_bin_len = bp;
+
+    return 0;
+}
+
+static void gm_add_ecc(const char binary[], const int data_posn, const int layers, const int ecc_level,
+            unsigned char word[]) {
+    int data_cw, i, j, wp, p;
+    int n1, b1, n2, b2, e1, b3, e2;
+    int block_size, ecc_size;
+    unsigned char data[1320], block[130];
+    unsigned char data_block[115], ecc_block[70];
+    rs_t rs;
+
+    data_cw = gm_data_codewords[((layers - 1) * 5) + (ecc_level - 1)];
+
+    for (i = 0; i < 1320; i++) {
+        data[i] = 0;
+    }
+
+    /* Convert from binary stream to 7-bit codewords */
+    for (i = 0; i < data_posn; i++) {
+        for (p = 0; p < 7; p++) {
+            if (binary[i * 7 + p] == '1') {
+                data[i] += (0x40 >> p);
+            }
+        }
+    }
+
+    /* Add padding codewords */
+    data[data_posn] = 0x00;
+    for (i = (data_posn + 1); i < data_cw; i++) {
+        if (i & 1) {
+            data[i] = 0x7e;
+        } else {
+            data[i] = 0x00;
+        }
+    }
+
+    /* Get block sizes */
+    n1 = gm_n1[(layers - 1)];
+    b1 = gm_b1[(layers - 1)];
+    n2 = n1 - 1;
+    b2 = gm_b2[(layers - 1)];
+    e1 = gm_ebeb[((layers - 1) * 20) + ((ecc_level - 1) * 4)];
+    b3 = gm_ebeb[((layers - 1) * 20) + ((ecc_level - 1) * 4) + 1];
+    e2 = gm_ebeb[((layers - 1) * 20) + ((ecc_level - 1) * 4) + 2];
+
+    rs_init_gf(&rs, 0x89);
+
+    /* Split the data into blocks */
+    wp = 0;
+    for (i = 0; i < (b1 + b2); i++) {
+        int data_size;
+        if (i < b1) {
+            block_size = n1;
+        } else {
+            block_size = n2;
+        }
+        if (i < b3) {
+            ecc_size = e1;
+        } else {
+            ecc_size = e2;
+        }
+        data_size = block_size - ecc_size;
+
+        /* printf("block %d/%d: data %d / ecc %d\n", i + 1, (b1 + b2), data_size, ecc_size);*/
+
+        for (j = 0; j < data_size; j++) {
+            data_block[j] = data[wp];
+            wp++;
+        }
+
+        /* Calculate ECC data for this block */
+        rs_init_code(&rs, ecc_size, 1);
+        rs_encode(&rs, data_size, data_block, ecc_block);
+
+        /* Add error correction data */
+        for (j = 0; j < data_size; j++) {
+            block[j] = data_block[j];
+        }
+        for (j = 0; j < ecc_size; j++) {
+            block[j + data_size] = ecc_block[j];
+        }
+
+        for (j = 0; j < n2; j++) {
+            word[((b1 + b2) * j) + i] = block[j];
+        }
+        if (block_size == n1) {
+            word[((b1 + b2) * (n1 - 1)) + i] = block[(n1 - 1)];
+        }
+    }
+}
+
+static void gm_place_macromodule(char grid[], int x, int y, int word1, int word2, int size) {
+    int i, j;
+
+    i = (x * 6) + 1;
+    j = (y * 6) + 1;
+
+    if (word2 & 0x40) {
+        grid[(j * size) + i + 2] = '1';
+    }
+    if (word2 & 0x20) {
+        grid[(j * size) + i + 3] = '1';
+    }
+    if (word2 & 0x10) {
+        grid[((j + 1) * size) + i] = '1';
+    }
+    if (word2 & 0x08) {
+        grid[((j + 1) * size) + i + 1] = '1';
+    }
+    if (word2 & 0x04) {
+        grid[((j + 1) * size) + i + 2] = '1';
+    }
+    if (word2 & 0x02) {
+        grid[((j + 1) * size) + i + 3] = '1';
+    }
+    if (word2 & 0x01) {
+        grid[((j + 2) * size) + i] = '1';
+    }
+    if (word1 & 0x40) {
+        grid[((j + 2) * size) + i + 1] = '1';
+    }
+    if (word1 & 0x20) {
+        grid[((j + 2) * size) + i + 2] = '1';
+    }
+    if (word1 & 0x10) {
+        grid[((j + 2) * size) + i + 3] = '1';
+    }
+    if (word1 & 0x08) {
+        grid[((j + 3) * size) + i] = '1';
+    }
+    if (word1 & 0x04) {
+        grid[((j + 3) * size) + i + 1] = '1';
+    }
+    if (word1 & 0x02) {
+        grid[((j + 3) * size) + i + 2] = '1';
+    }
+    if (word1 & 0x01) {
+        grid[((j + 3) * size) + i + 3] = '1';
+    }
+}
+
+static void gm_place_data_in_grid(unsigned char word[], char grid[], int modules, int size) {
+    int x, y, macromodule, offset;
+
+    offset = 13 - ((modules - 1) / 2);
+    for (y = 0; y < modules; y++) {
+        for (x = 0; x < modules; x++) {
+            macromodule = gm_macro_matrix[((y + offset) * 27) + (x + offset)];
+            gm_place_macromodule(grid, x, y, word[macromodule * 2], word[(macromodule * 2) + 1], size);
+        }
+    }
+}
+
+/* Place the layer ID into each macromodule */
+static void gm_place_layer_id(char *grid, int size, int layers, int modules, int ecc_level) {
+    int i, j, layer, start, stop;
+    int *layerid = (int *) z_alloca(sizeof(int) * (layers + 1));
+    int *id = (int *) z_alloca(sizeof(int) * (modules * modules));
+
+    /* Calculate Layer IDs */
+    for (i = 0; i <= layers; i++) {
+        if (ecc_level == 1) {
+            layerid[i] = 3 - (i % 4);
+        } else {
+            layerid[i] = (i + 5 - ecc_level) % 4;
+        }
+    }
+
+    for (i = 0; i < modules; i++) {
+        for (j = 0; j < modules; j++) {
+            id[(i * modules) + j] = 0;
+        }
+    }
+
+    /* Calculate which value goes in each macromodule */
+    start = modules / 2;
+    stop = modules / 2;
+    for (layer = 0; layer <= layers; layer++) {
+        for (i = start; i <= stop; i++) {
+            id[(start * modules) + i] = layerid[layer];
+            id[(i * modules) + start] = layerid[layer];
+            id[((modules - start - 1) * modules) + i] = layerid[layer];
+            id[(i * modules) + (modules - start - 1)] = layerid[layer];
+        }
+        start--;
+        stop++;
+    }
+
+    /* Place the data in the grid */
+    for (i = 0; i < modules; i++) {
+        for (j = 0; j < modules; j++) {
+            if (id[(i * modules) + j] & 0x02) {
+                grid[(((i * 6) + 1) * size) + (j * 6) + 1] = '1';
+            }
+            if (id[(i * modules) + j] & 0x01) {
+                grid[(((i * 6) + 1) * size) + (j * 6) + 2] = '1';
+            }
+        }
+    }
+}
+
+INTERNAL int gridmatrix(struct zint_symbol *symbol, struct zint_seg segs[], const int seg_count) {
+    int warn_number = 0;
+    int size, modules, error_number;
+    int auto_layers, min_layers, layers, auto_ecc_level, min_ecc_level, ecc_level;
+    int x, y, i;
+    int full_multibyte;
+    char binary[9300];
+    int data_cw, input_latch = 0;
+    unsigned char word[1460] = {0};
+    int data_max, reader = 0;
+    const struct zint_structapp *p_structapp = NULL;
+    int size_squared;
+    int bin_len;
+    const int debug_print = symbol->debug & ZINT_DEBUG_PRINT;
+    const int eci_length_segs = get_eci_length_segs(segs, seg_count);
+    struct zint_seg *local_segs = (struct zint_seg *) z_alloca(sizeof(struct zint_seg) * seg_count);
+    unsigned int *ddata = (unsigned int *) z_alloca(sizeof(unsigned int) * eci_length_segs);
+    char *grid;
+
+    segs_cpy(symbol, segs, seg_count, local_segs); /* Shallow copy (needed to set default ECIs & protect lengths) */
+
+    /* If ZINT_FULL_MULTIBYTE set use Hanzi mode in DATA_MODE or for non-GB 2312 in UNICODE_MODE */
+    full_multibyte = (symbol->option_3 & 0xFF) == ZINT_FULL_MULTIBYTE;
+
+    if ((symbol->input_mode & 0x07) == DATA_MODE) {
+        gb2312_cpy_segs(local_segs, seg_count, ddata, full_multibyte);
+    } else {
+        unsigned int *dd = ddata;
+        for (i = 0; i < seg_count; i++) {
+            int done = 0;
+            if (local_segs[i].eci != 0 && local_segs[i].eci != 29) { /* Unless default or ECI 29 (GB 2312) */
+                /* Try other conversions */
+                error_number = gb2312_utf8_to_eci(local_segs[i].eci, local_segs[i].source, &local_segs[i].length,
+                                                    dd, full_multibyte);
+                if (error_number == 0) {
+                    done = 1;
+                } else {
+                    return errtxtf(error_number, symbol, 535, "Invalid character in input for ECI '%d'",
+                                    local_segs[i].eci);
+                }
+            }
+            if (!done) {
+                /* Try GB 2312 (EUC-CN) */
+                error_number = gb2312_utf8(symbol, local_segs[i].source, &local_segs[i].length, dd);
+                if (error_number != 0) {
+                    return error_number;
+                }
+            }
+            dd += local_segs[i].length;
+        }
+    }
+
+    if (symbol->output_options & READER_INIT) reader = 1;
+
+    if (symbol->structapp.count) {
+        if (symbol->structapp.count < 2 || symbol->structapp.count > 16) {
+            return errtxtf(ZINT_ERROR_INVALID_OPTION, symbol, 536,
+                            "Structured Append count '%d' out of range (2 to 16)", symbol->structapp.count);
+        }
+        if (symbol->structapp.index < 1 || symbol->structapp.index > symbol->structapp.count) {
+            return errtxtf(ZINT_ERROR_INVALID_OPTION, symbol, 537,
+                            "Structured Append index '%1$d' out of range (1 to count %2$d)",
+                            symbol->structapp.index, symbol->structapp.count);
+        }
+        if (symbol->structapp.id[0]) {
+            int id, id_len;
+
+            for (id_len = 1; id_len < 4 && symbol->structapp.id[id_len]; id_len++);
+
+            if (id_len > 3) { /* 255 (8 bits) */
+                return errtxtf(ZINT_ERROR_INVALID_OPTION, symbol, 538,
+                                "Structured Append ID length %d too long (3 digit maximum)", id_len);
+            }
+
+            id = to_int((const unsigned char *) symbol->structapp.id, id_len);
+            if (id == -1) {
+                return errtxt(ZINT_ERROR_INVALID_OPTION, symbol, 539, "Invalid Structured Append ID (digits only)");
+            }
+            if (id > 255) {
+                return errtxtf(ZINT_ERROR_INVALID_OPTION, symbol, 530,
+                                "Structured Append ID value '%d' out of range (0 to 255)", id);
+            }
+        }
+        p_structapp = &symbol->structapp;
+    }
+
+    if (symbol->eci > 811799) {
+        return errtxtf(ZINT_ERROR_INVALID_OPTION, symbol, 533, "ECI code '%d' out of range (0 to 811799)",
+                        symbol->eci);
+    }
+
+    error_number = gm_encode_segs(ddata, local_segs, seg_count, binary, reader, p_structapp, &bin_len, debug_print);
+    if (error_number != 0) {
+        return errtxt(error_number, symbol, 531, "Input too long, requires too many codewords (maximum 1313)");
+    }
+
+    /* Determine the size of the symbol */
+    data_cw = bin_len / 7; /* Binary length always a multiple of 7 */
+
+    auto_layers = 13;
+    for (i = 12; i > 0; i--) {
+        if (gm_recommend_cw[(i - 1)] >= data_cw) {
+            auto_layers = i;
+        }
+    }
+    min_layers = 13;
+    for (i = 12; i > 0; i--) {
+        if (gm_max_cw[(i - 1)] >= data_cw) {
+            min_layers = i;
+        }
+    }
+    layers = auto_layers;
+
+    if ((symbol->option_2 >= 1) && (symbol->option_2 <= 13)) {
+        input_latch = 1;
+        if (symbol->option_2 >= min_layers) {
+            layers = symbol->option_2;
+        } else {
+            return errtxtf(ZINT_ERROR_TOO_LONG, symbol, 534,
+                        "Input too long for Version %1$d, requires %2$d codewords (maximum %3$d)",
+                        symbol->option_2, data_cw, gm_max_cw[symbol->option_2 - 1]);
+        }
+    }
+
+    auto_ecc_level = 3;
+    if (layers == 1) {
+        auto_ecc_level = 5;
+    } else if ((layers == 2) || (layers == 3)) {
+        auto_ecc_level = 4;
+    }
+    ecc_level = auto_ecc_level;
+
+    min_ecc_level = 1;
+    if (layers == 1) {
+        min_ecc_level = 4;
+    } else if (layers == 2) {
+        min_ecc_level = 2;
+    }
+
+    if ((symbol->option_1 >= 1) && (symbol->option_1 <= 5)) {
+        if (symbol->option_1 >= min_ecc_level) {
+            ecc_level = symbol->option_1;
+        } else {
+            ecc_level = min_ecc_level;
+        }
+    }
+    if (data_cw > gm_data_codewords[(5 * (layers - 1)) + (ecc_level - 1)]) {
+        /* If layers user-specified (option_2), try reducing ECC level first */
+        if (input_latch && ecc_level > min_ecc_level) {
+            do {
+                ecc_level--;
+            } while ((data_cw > gm_data_codewords[(5 * (layers - 1)) + (ecc_level - 1)])
+                        && (ecc_level > min_ecc_level));
+        }
+        while (data_cw > gm_data_codewords[(5 * (layers - 1)) + (ecc_level - 1)] && (layers < 13)) {
+            layers++;
+        }
+        /* ECC min level 1 for layers > 2 */
+        while (data_cw > gm_data_codewords[(5 * (layers - 1)) + (ecc_level - 1)] && ecc_level > 1) {
+            ecc_level--;
+        }
+    }
+
+    data_max = 1313;
+    switch (ecc_level) {
+        case 2: data_max = 1167;
+            break;
+        case 3: data_max = 1021;
+            break;
+        case 4: data_max = 875;
+            break;
+        case 5: data_max = 729;
+            break;
+    }
+
+    if (data_cw > data_max) {
+        return errtxtf(ZINT_ERROR_TOO_LONG, symbol, 532,
+                        "Input too long for ECC level %1$d, requires %2$d codewords (maximum %3$d)",
+                        ecc_level, data_cw, data_max);
+    }
+    if (debug_print) {
+        printf("Layers: %d, ECC level: %d, Data Codewords: %d\n", layers, ecc_level, data_cw);
+    }
+
+    gm_add_ecc(binary, data_cw, layers, ecc_level, word);
+#ifdef ZINT_TEST
+    if (symbol->debug & ZINT_DEBUG_TEST) debug_test_codeword_dump(symbol, word, data_cw);
+#endif
+    size = 6 + (layers * 12);
+    modules = 1 + (layers * 2);
+    size_squared = size * size;
+
+    grid = (char *) z_alloca(size_squared);
+    memset(grid, '0', size_squared);
+
+    gm_place_data_in_grid(word, grid, modules, size);
+    gm_place_layer_id(grid, size, layers, modules, ecc_level);
+
+    /* Add macromodule frames */
+    for (x = 0; x < modules; x++) {
+        int dark = 1 - (x & 1);
+        for (y = 0; y < modules; y++) {
+            if (dark == 1) {
+                for (i = 0; i < 5; i++) {
+                    grid[((y * 6) * size) + (x * 6) + i] = '1';
+                    grid[(((y * 6) + 5) * size) + (x * 6) + i] = '1';
+                    grid[(((y * 6) + i) * size) + (x * 6)] = '1';
+                    grid[(((y * 6) + i) * size) + (x * 6) + 5] = '1';
+                }
+                grid[(((y * 6) + 5) * size) + (x * 6) + 5] = '1';
+                dark = 0;
+            } else {
+                dark = 1;
+            }
+        }
+    }
+
+    /* Copy values to symbol */
+    symbol->width = size;
+    symbol->rows = size;
+
+    for (x = 0; x < size; x++) {
+        for (y = 0; y < size; y++) {
+            if (grid[(y * size) + x] == '1') {
+                set_module(symbol, y, x);
+            }
+        }
+        symbol->row_height[x] = 1;
+    }
+    symbol->height = size;
+
+    return warn_number;
+}
+
+/* vim: set ts=4 sw=4 et : */