Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/zint/backend/dotcode.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/zint/backend/dotcode.c Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,1551 @@ +/* dotcode.c - Handles DotCode */ +/* + libzint - the open source barcode library + Copyright (C) 2017-2024 Robin Stuart <rstuart114@gmail.com> + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + 1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + 3. Neither the name of the project nor the names of its contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE + FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + SUCH DAMAGE. + */ +/* SPDX-License-Identifier: BSD-3-Clause */ + +/* + * Attempts to encode DotCode according to (AIMD013) ISS DotCode Rev. 4.0, DRAFT 0.15, TSC Pre-PR #5, + * dated May 28, 2019 + * Incorporating suggestions from Terry Burton at BWIPP + */ + +#include <assert.h> +#include <math.h> +#include <stdio.h> +#include "common.h" +#include "gs1.h" + +#define GF 113 +#define PM 3 +#define SCORE_UNLIT_EDGE -99999 + +/* DotCode symbol character dot patterns, from Annex C */ +static const unsigned short dc_dot_patterns[113] = { + 0x155, 0x0ab, 0x0ad, 0x0b5, 0x0d5, 0x156, 0x15a, 0x16a, 0x1aa, 0x0ae, + 0x0b6, 0x0ba, 0x0d6, 0x0da, 0x0ea, 0x12b, 0x12d, 0x135, 0x14b, 0x14d, + 0x153, 0x159, 0x165, 0x169, 0x195, 0x1a5, 0x1a9, 0x057, 0x05b, 0x05d, + 0x06b, 0x06d, 0x075, 0x097, 0x09b, 0x09d, 0x0a7, 0x0b3, 0x0b9, 0x0cb, + 0x0cd, 0x0d3, 0x0d9, 0x0e5, 0x0e9, 0x12e, 0x136, 0x13a, 0x14e, 0x15c, + 0x166, 0x16c, 0x172, 0x174, 0x196, 0x19a, 0x1a6, 0x1ac, 0x1b2, 0x1b4, + 0x1ca, 0x1d2, 0x1d4, 0x05e, 0x06e, 0x076, 0x07a, 0x09e, 0x0bc, 0x0ce, + 0x0dc, 0x0e6, 0x0ec, 0x0f2, 0x0f4, 0x117, 0x11b, 0x11d, 0x127, 0x133, + 0x139, 0x147, 0x163, 0x171, 0x18b, 0x18d, 0x193, 0x199, 0x1a3, 0x1b1, + 0x1c5, 0x1c9, 0x1d1, 0x02f, 0x037, 0x03b, 0x03d, 0x04f, 0x067, 0x073, + 0x079, 0x08f, 0x0c7, 0x0e3, 0x0f1, 0x11e, 0x13c, 0x178, 0x18e, 0x19c, + 0x1b8, 0x1c6, 0x1cc +}; + +/* Printed() routine from Annex A adapted to char array of ASCII 1's and 0's */ +static int dc_get_dot(const char Dots[], const int Hgt, const int Wid, const int x, const int y) { + + if ((x >= 0) && (x < Wid) && (y >= 0) && (y < Hgt)) { + if (Dots[(y * Wid) + x] == '1') { + return 1; + } + } + + return 0; +} + +static int dc_clr_col(const char *Dots, const int Hgt, const int Wid, const int x) { + int y; + for (y = x & 1; y < Hgt; y += 2) { + if (dc_get_dot(Dots, Hgt, Wid, x, y)) { + return 0; + } + } + + return 1; +} + +static int dc_clr_row(const char *Dots, const int Hgt, const int Wid, const int y) { + int x; + for (x = y & 1; x < Wid; x += 2) { + if (dc_get_dot(Dots, Hgt, Wid, x, y)) { + return 0; + } + } + + return 1; +} + +/* calc penalty for empty interior columns */ +static int dc_col_penalty(const char *Dots, const int Hgt, const int Wid) { + int x, penalty = 0, penalty_local = 0; + + for (x = 1; x < Wid - 1; x++) { + if (dc_clr_col(Dots, Hgt, Wid, x)) { + if (penalty_local == 0) { + penalty_local = Hgt; + } else { + penalty_local *= Hgt; + } + } else { + if (penalty_local) { + penalty += penalty_local; + penalty_local = 0; + } + } + } + + return penalty + penalty_local; +} + +/* calc penalty for empty interior rows */ +static int dc_row_penalty(const char *Dots, const int Hgt, const int Wid) { + int y, penalty = 0, penalty_local = 0; + + for (y = 1; y < Hgt - 1; y++) { + if (dc_clr_row(Dots, Hgt, Wid, y)) { + if (penalty_local == 0) { + penalty_local = Wid; + } else { + penalty_local *= Wid; + } + } else { + if (penalty_local) { + penalty += penalty_local; + penalty_local = 0; + } + } + } + + return penalty + penalty_local; +} + +/* Dot pattern scoring routine from Annex A */ +static int dc_score_array(const char Dots[], const int Hgt, const int Wid) { + int x, y, worstedge, first, last, sum; + int penalty = 0; + + /* first, guard against "pathelogical" gaps in the array + subtract a penalty score for empty rows/columns from total code score for each mask, + where the penalty is Sum(N ^ n), where N is the number of positions in a column/row, + and n is the number of consecutive empty rows/columns */ + penalty = dc_row_penalty(Dots, Hgt, Wid) + dc_col_penalty(Dots, Hgt, Wid); + + sum = 0; + first = -1; + last = -1; + + /* across the top edge, count printed dots and measure their extent */ + for (x = 0; x < Wid; x += 2) { + if (dc_get_dot(Dots, Hgt, Wid, x, 0)) { + if (first < 0) { + first = x; + } + last = x; + sum++; + } + } + if (sum == 0) { + return SCORE_UNLIT_EDGE; /* guard against empty top edge */ + } + + worstedge = sum + last - first; + worstedge *= Hgt; + + sum = 0; + first = -1; + last = -1; + + /* across the bottom edge, ditto */ + for (x = Wid & 1; x < Wid; x += 2) { + if (dc_get_dot(Dots, Hgt, Wid, x, Hgt - 1)) { + if (first < 0) { + first = x; + } + last = x; + sum++; + } + } + if (sum == 0) { + return SCORE_UNLIT_EDGE; /* guard against empty bottom edge */ + } + + sum += last - first; + sum *= Hgt; + if (sum < worstedge) { + worstedge = sum; + } + + sum = 0; + first = -1; + last = -1; + + /* down the left edge, ditto */ + for (y = 0; y < Hgt; y += 2) { + if (dc_get_dot(Dots, Hgt, Wid, 0, y)) { + if (first < 0) { + first = y; + } + last = y; + sum++; + } + } + if (sum == 0) { + return SCORE_UNLIT_EDGE; /* guard against empty left edge */ + } + + sum += last - first; + sum *= Wid; + if (sum < worstedge) { + worstedge = sum; + } + + sum = 0; + first = -1; + last = -1; + + /* down the right edge, ditto */ + for (y = Hgt & 1; y < Hgt; y += 2) { + if (dc_get_dot(Dots, Hgt, Wid, Wid - 1, y)) { + if (first < 0) { + first = y; + } + last = y; + sum++; + } + } + if (sum == 0) { + return SCORE_UNLIT_EDGE; /* guard against empty right edge */ + } + + sum += last - first; + sum *= Wid; + if (sum < worstedge) { + worstedge = sum; + } + + /* throughout the array, count the # of unprinted 5-somes (cross patterns) + plus the # of printed dots surrounded by 8 unprinted neighbors */ + sum = 0; + for (y = 0; y < Hgt; y++) { + for (x = y & 1; x < Wid; x += 2) { + if (!dc_get_dot(Dots, Hgt, Wid, x - 1, y - 1) && !dc_get_dot(Dots, Hgt, Wid, x + 1, y - 1) + && !dc_get_dot(Dots, Hgt, Wid, x - 1, y + 1) && !dc_get_dot(Dots, Hgt, Wid, x + 1, y + 1) + && (!dc_get_dot(Dots, Hgt, Wid, x, y) + || (!dc_get_dot(Dots, Hgt, Wid, x - 2, y) && !dc_get_dot(Dots, Hgt, Wid, x, y - 2) + && !dc_get_dot(Dots, Hgt, Wid, x + 2, y) && !dc_get_dot(Dots, Hgt, Wid, x, y + 2)))) { + sum++; + } + } + } + + return (worstedge - sum * sum - penalty); +} + +/*------------------------------------------------------------------------- +// "rsencode(nd,nc)" adds "nc" R-S check words to "nd" data words in wd[] +// employing Galois Field GF, where GF is prime, with a prime modulus of PM +//-------------------------------------------------------------------------*/ + +static void dc_rsencode(const int nd, const int nc, unsigned char *wd) { + /* Pre-calculated coefficients for GF(113) of generator polys of degree 3 to 39. To generate run + "backend/tests/test_dotcode -f generate -g" and place result below */ + static const char coefs[820 - 5] = { /* 40*(41 + 1)/2 == 820 less 2 + 3 (degrees 1 and 2) */ + 1, 74, 12, 62, + 1, 106, 7, 107, 63, + 1, 89, 13, 101, 52, 59, + 1, 38, 107, 3, 99, 6, 42, + 1, 111, 56, 17, 92, 1, 28, 15, + 1, 104, 70, 77, 86, 35, 21, 45, 8, + 1, 83, 33, 76, 51, 37, 77, 56, 80, 58, + 1, 20, 2, 31, 9, 101, 6, 64, 55, 103, 75, + 1, 57, 64, 105, 26, 95, 14, 60, 50, 104, 44, 63, + 1, 55, 63, 90, 42, 43, 50, 32, 43, 4, 62, 88, 100, + 1, 49, 72, 51, 67, 17, 18, 71, 77, 85, 38, 55, 24, 78, + 1, 31, 94, 111, 53, 54, 51, 86, 42, 55, 90, 49, 51, 98, 65, + 1, 90, 2, 7, 48, 17, 73, 44, 31, 47, 58, 48, 4, 56, 84, 106, + 1, 41, 112, 22, 44, 38, 31, 83, 22, 110, 15, 31, 25, 86, 52, 58, 4, + 1, 7, 74, 56, 87, 11, 95, 46, 25, 40, 4, 86, 101, 27, 66, 98, 66, 90, + 1, 18, 38, 79, 25, 64, 103, 74, 79, 89, 105, 17, 30, 8, 24, 33, 14, 25, 86, + 1, 51, 67, 90, 33, 98, 68, 83, 35, 97, 104, 92, 26, 94, 62, 34, 86, 35, 7, 13, + 1, 37, 31, 56, 16, 88, 52, 35, 3, 59, 102, 105, 94, 69, 102, 70, 62, 74, 82, 28, 44, + 1, 108, 59, 110, 37, 94, 85, 111, 2, 46, 110, 2, 91, 76, 29, 80, 60, 69, 25, 87, 111, 73, + 1, 95, 11, 21, 76, 65, 106, 23, 28, 20, 77, 41, 65, 23, 58, 42, 37, 80, 32, 101, 110, 99, + 68, + 1, 56, 35, 44, 48, 39, 57, 70, 35, 58, 88, 89, 48, 87, 65, 40, 94, 106, 76, 96, 13, 103, + 49, 60, + 1, 52, 37, 17, 98, 73, 14, 68, 94, 31, 82, 76, 31, 8, 56, 6, 47, 69, 104, 18, 81, 51, + 89, 90, 99, + 1, 40, 91, 25, 7, 27, 42, 13, 69, 33, 49, 109, 23, 88, 73, 12, 88, 70, 67, 13, 91, 96, + 42, 39, 36, 55, + 1, 4, 7, 26, 11, 1, 87, 83, 53, 35, 104, 40, 54, 51, 69, 96, 108, 66, 33, 87, 75, 97, + 89, 109, 101, 2, 54, + 1, 9, 27, 61, 28, 56, 92, 66, 16, 74, 53, 108, 28, 95, 98, 102, 23, 41, 24, 26, 58, 20, + 9, 102, 81, 55, 64, 44, + 1, 24, 49, 14, 39, 24, 28, 90, 102, 88, 33, 112, 66, 63, 54, 103, 84, 47, 74, 47, 109, 99, + 83, 11, 29, 27, 98, 100, 95, + 1, 69, 112, 72, 104, 84, 91, 107, 84, 45, 38, 15, 21, 95, 64, 47, 86, 98, 42, 100, 77, 32, + 18, 17, 72, 89, 70, 103, 75, 94, + 1, 91, 48, 50, 106, 112, 18, 75, 65, 85, 11, 60, 12, 105, 7, 99, 103, 69, 51, 7, 17, 31, + 44, 74, 107, 91, 107, 61, 81, 49, 34, + 1, 44, 65, 54, 16, 102, 65, 20, 43, 81, 84, 108, 17, 106, 44, 109, 83, 87, 85, 96, 27, 23, + 56, 40, 19, 34, 11, 4, 39, 84, 104, 97, + 1, 16, 76, 42, 86, 106, 34, 8, 48, 7, 76, 16, 44, 82, 14, 7, 82, 23, 22, 89, 51, 58, + 90, 54, 29, 67, 76, 35, 40, 9, 12, 10, 109, + 1, 45, 88, 99, 61, 1, 57, 90, 54, 43, 53, 73, 56, 2, 19, 74, 59, 28, 11, 49, 33, 68, + 77, 65, 13, 4, 98, 92, 38, 39, 47, 19, 60, 110, + 1, 19, 48, 71, 86, 110, 31, 77, 87, 108, 65, 51, 79, 15, 80, 32, 56, 76, 74, 102, 2, 1, + 4, 97, 18, 5, 107, 30, 19, 68, 50, 40, 18, 19, 78, + 1, 54, 35, 56, 85, 69, 39, 32, 70, 102, 3, 66, 56, 68, 40, 7, 46, 2, 22, 93, 69, 71, + 39, 11, 23, 70, 56, 46, 52, 55, 57, 95, 62, 84, 65, 18, + 1, 46, 55, 2, 89, 67, 52, 59, 40, 107, 91, 42, 93, 72, 61, 26, 103, 86, 6, 30, 3, 84, + 36, 38, 48, 112, 61, 50, 23, 91, 69, 91, 93, 40, 71, 63, 82, + 1, 22, 81, 38, 41, 78, 26, 54, 93, 51, 9, 5, 102, 100, 28, 31, 44, 100, 89, 112, 74, 12, + 54, 78, 40, 90, 85, 55, 66, 104, 32, 17, 56, 68, 15, 54, 39, 66, + 1, 63, 79, 82, 17, 64, 60, 103, 47, 22, 66, 35, 81, 101, 60, 49, 72, 96, 8, 32, 33, 108, + 94, 32, 74, 35, 46, 37, 61, 98, 2, 86, 75, 104, 91, 104, 106, 83, 107, + 1, 73, 31, 81, 46, 8, 22, 25, 60, 40, 60, 17, 92, 7, 53, 84, 110, 25, 64, 112, 14, 99, + 44, 68, 55, 97, 57, 45, 92, 30, 78, 106, 31, 63, 1, 110, 16, 13, 33, 53, + }; + static const short cinds[39 - 2] = { /* Indexes into above coefs[] array */ + 0, 4, 9, 15, 22, 30, 39, 49, 60, 72, 85, 99, 114, 130, 147, 165, 184, 204, 225, 247, 270, 294, + 319, 345, 372, 400, 429, 459, 490, 522, 555, 589, 624, 660, 697, 735, 774, + }; + int i, j, k, nw, start, step; + const char *c; + + /* Here we compute how many interleaved R-S blocks will be needed */ + nw = nd + nc; + step = (nw + GF - 2) / (GF - 1); + + /* ...& then for each such block: */ + for (start = 0; start < step; start++) { + const int ND = (nd - start + step - 1) / step; + const int NW = (nw - start + step - 1) / step; + const int NC = NW - ND; + unsigned char *const e = wd + start + ND * step; + + /* first set the generator polynomial "c" of order "NC": */ + c = coefs + cinds[NC - 3]; + + /* & then compute the corresponding checkword values into wd[] + ... (a) starting at wd[start] & (b) stepping by step */ + for (i = 0; i < NC; i++) { + e[i * step] = 0; + } + for (i = 0; i < ND; i++) { + k = (wd[start + i * step] + e[0]) % GF; + for (j = 0; j < NC - 1; j++) { + e[j * step] = (GF - ((c[j + 1] * k) % GF) + e[(j + 1) * step]) % GF; + } + e[(NC - 1) * step] = (GF - ((c[NC] * k) % GF)) % GF; + } + for (i = 0; i < NC; i++) { + if (e[i * step]) { + e[i * step] = GF - e[i * step]; + } + } + } +} + +/* Check if the next character is directly encodable in code set A (Annex F.II.D) */ +static int dc_datum_a(const unsigned char source[], const int length, const int position) { + + if (position < length && source[position] <= 95) { + return 1; + } + + return 0; +} + +/* Check if the next character is directly encodable in code set B (Annex F.II.D). + * Note changed to return 2 if CR/LF */ +static int dc_datum_b(const unsigned char source[], const int length, const int position) { + + if (position < length) { + if ((source[position] >= 32) && (source[position] <= 127)) { + return 1; + } + + switch (source[position]) { + case 9: /* HT */ + case 28: /* FS */ + case 29: /* GS */ + case 30: /* RS */ + return 1; + break; + } + + if ((position + 1 < length) && (source[position] == 13) && (source[position + 1] == 10)) { /* CRLF */ + return 2; + } + } + + return 0; +} + +/* Check if the next characters are directly encodable in code set C (Annex F.II.D) */ +static int dc_datum_c(const unsigned char source[], const int length, const int position) { + return is_twodigits(source, length, position); +} + +/* Checks ahead for 10 or more digits starting "17xxxxxx10..." (Annex F.II.B) */ +static int dc_seventeen_ten(const unsigned char source[], const int length, const int position) { + + if (position + 9 < length && source[position] == '1' && source[position + 1] == '7' + && source[position + 8] == '1' && source[position + 9] == '0' + && cnt_digits(source, length, position + 2, 6) >= 6) { + return 1; + } + + return 0; +} + +/* Checks how many characters ahead can be reached while dc_datum_c is true, + * returning the resulting number of codewords (Annex F.II.E) + */ +static int dc_ahead_c(const unsigned char source[], const int length, const int position) { + int count = 0; + int i; + + for (i = position; (i < length) && dc_datum_c(source, length, i); i += 2) { + count++; + } + + return count; +} + +/* Annex F.II.F */ +static int dc_try_c(const unsigned char source[], const int length, const int position) { + + if (position < length && z_isdigit(source[position])) { /* cnt_digits(position) > 0 */ + const int ahead_c_position = dc_ahead_c(source, length, position); + if (ahead_c_position > dc_ahead_c(source, length, position + 1)) { + return ahead_c_position; + } + } + + return 0; +} + +/* Annex F.II.G */ +static int dc_ahead_a(const unsigned char source[], const int length, const int position) { + int count = 0; + int i; + + for (i = position; i < length && dc_datum_a(source, length, i) && dc_try_c(source, length, i) < 2; i++) { + count++; + } + + return count; +} + +/* Annex F.II.H Note: changed to return number of chars encodable. Number of codewords returned in *p_nx. */ +static int dc_ahead_b(const unsigned char source[], const int length, const int position, int *p_nx) { + int count = 0; + int i, incr; + + for (i = position; i < length && (incr = dc_datum_b(source, length, i)) + && dc_try_c(source, length, i) < 2; i += incr) { + count++; + } + + if (p_nx != NULL) { + *p_nx = count; + } + + return i - position; +} + +/* Checks if the next character is in the range 128 to 255 (Annex F.II.I) */ +static int dc_binary(const unsigned char source[], const int length, const int position) { + + if (position < length && source[position] >= 128) { + return 1; + } + + return 0; +} + +/* Empty binary buffer */ +static int dc_empty_bin_buf(unsigned char *codeword_array, int ap, uint64_t *p_bin_buf, int *p_bin_buf_size) { + int i; + int lawrencium[6]; /* Reversed radix 103 values */ + uint64_t bin_buf = *p_bin_buf; + int bin_buf_size = *p_bin_buf_size; + + if (bin_buf_size) { + for (i = 0; i < bin_buf_size + 1; i++) { + lawrencium[i] = (int) (bin_buf % 103); + bin_buf /= 103; + } + + for (i = 0; i < bin_buf_size + 1; i++) { + codeword_array[ap++] = lawrencium[bin_buf_size - i]; + } + } + + *p_bin_buf = 0; + *p_bin_buf_size = 0; + + return ap; +} + +/* Add value to binary buffer, emptying if full */ +static int dc_append_to_bin_buf(unsigned char *codeword_array, int ap, unsigned int val, uint64_t *p_bin_buf, + int *p_bin_buf_size) { + + *p_bin_buf *= 259; + *p_bin_buf += val; + (*p_bin_buf_size)++; + + if (*p_bin_buf_size == 5) { + ap = dc_empty_bin_buf(codeword_array, ap, p_bin_buf, p_bin_buf_size); + } + + return ap; +} + +/* Analyse input data stream and encode using algorithm from Annex F */ +static int dc_encode_message(struct zint_symbol *symbol, const unsigned char source[], const int length, + const int eci, const int last_seg, const int last_EOT, const int last_RSEOT, + int ap, unsigned char *codeword_array, char *p_encoding_mode, int *p_inside_macro, + uint64_t *p_bin_buf, int *p_bin_buf_size, unsigned char structapp_array[], int *p_structapp_size) { + static const char lead_specials[] = "\x09\x1C\x1D\x1E"; /* HT, FS, GS, RS */ + + int i; + int position = 0; + char encoding_mode = *p_encoding_mode; + int inside_macro = *p_inside_macro; + uint64_t bin_buf = *p_bin_buf; + int bin_buf_size = *p_bin_buf_size; + int nx; + + const int first_seg = ap == 0; + const int gs1 = (symbol->input_mode & 0x07) == GS1_MODE; + const int debug_print = (symbol->debug & ZINT_DEBUG_PRINT); + + if (first_seg) { + if (symbol->output_options & READER_INIT) { + codeword_array[ap++] = 109; /* FNC3 */ + + } else if (!gs1 && eci == 0 && length > 2 && is_twodigits(source, length, 0)) { + codeword_array[ap++] = 107; /* FNC1 */ + + } else if (posn(lead_specials, source[0]) != -1) { + /* Prevent encodation as a macro if a special character is in first position */ + codeword_array[ap++] = 101; /* Latch A */ + codeword_array[ap++] = source[0] + 64; + encoding_mode = 'A'; + position++; + + } else if (length > 5) { /* Note assuming macro headers don't straddle segments */ + /* Step C1 */ + if (source[0] == '[' && source[1] == ')' && source[2] == '>' && source[3] == 30 /*RS*/ && last_EOT) { + int format_050612 = (source[4] == '0' && (source[5] == '5' || source[5] == '6')) + || (source[4] == '1' && source[5] == '2'); + inside_macro = 0; + if (length > 6 && format_050612 && source[6] == 29 /*GS*/ && last_RSEOT) { + if (source[5] == '5') { + inside_macro = 97; + } else if (source[5] == '6') { + inside_macro = 98; + } else { + inside_macro = 99; + } + } else if (!format_050612 && is_twodigits(source, length, 4) ) { + inside_macro = 100; /* Note no longer using for malformed 05/06/12 */ + } + if (inside_macro) { + codeword_array[ap++] = 106; /* Latch B */ + encoding_mode = 'B'; + codeword_array[ap++] = inside_macro; /* Macro */ + if (inside_macro == 100) { + codeword_array[ap++] = ctoi(source[4]) + 16; + codeword_array[ap++] = ctoi(source[5]) + 16; + position += 6; + } else { + position += 7; + } + if (debug_print) printf("C1/%d ", inside_macro - 96); + } + } + } + } + + if (eci > 0) { + if (encoding_mode == 'X') { + if (eci <= 0xFF) { + ap = dc_append_to_bin_buf(codeword_array, ap, 256, &bin_buf, &bin_buf_size); + ap = dc_append_to_bin_buf(codeword_array, ap, eci, &bin_buf, &bin_buf_size); + /* Following BWIPP, assuming big-endian byte order */ + } else if (eci <= 0xFFFF) { + ap = dc_append_to_bin_buf(codeword_array, ap, 257, &bin_buf, &bin_buf_size); + ap = dc_append_to_bin_buf(codeword_array, ap, eci >> 8, &bin_buf, &bin_buf_size); + ap = dc_append_to_bin_buf(codeword_array, ap, eci & 0xFF, &bin_buf, &bin_buf_size); + } else { + ap = dc_append_to_bin_buf(codeword_array, ap, 258, &bin_buf, &bin_buf_size); + ap = dc_append_to_bin_buf(codeword_array, ap, eci >> 16, &bin_buf, &bin_buf_size); + ap = dc_append_to_bin_buf(codeword_array, ap, (eci >> 8) & 0xFF, &bin_buf, &bin_buf_size); + ap = dc_append_to_bin_buf(codeword_array, ap, eci & 0xFF, &bin_buf, &bin_buf_size); + } + } else { + codeword_array[ap++] = 108; /* FNC2 */ + if (eci <= 39) { + codeword_array[ap++] = eci; + } else { + /* the next three codewords valued A, B & C encode the ECI value of + (A - 40) * 12769 + B * 113 + C + 40 (Section 5.2.1) */ + int a, b, c; + a = (eci - 40) / 12769; + b = ((eci - 40) - (12769 * a)) / 113; + c = (eci - 40) - (12769 * a) - (113 * b); + + codeword_array[ap++] = a + 40; + codeword_array[ap++] = b; + codeword_array[ap++] = c; + } + } + } + + while (position < length) { + /* Step A */ + if (last_seg && (position == length - 2) && (inside_macro != 0) && (inside_macro != 100)) { + /* inside_macro only gets set to 97, 98 or 99 if the last two characters are RS/EOT */ + position += 2; + if (debug_print) fputs("A ", stdout); + continue; + } + + /* Step B */ + if (last_seg && (position == length - 1) && (inside_macro == 100)) { + /* inside_macro only gets set to 100 if the last character is EOT */ + position++; + if (debug_print) fputs("B ", stdout); + continue; + } + + if (encoding_mode == 'C') { + + /* Step C2 */ + if (dc_seventeen_ten(source, length, position)) { + codeword_array[ap++] = 100; /* (17)...(10) */ + codeword_array[ap++] = to_int(source + position + 2, 2); + codeword_array[ap++] = to_int(source + position + 4, 2); + codeword_array[ap++] = to_int(source + position + 6, 2); + position += 10; + if (debug_print) fputs("C2/1 ", stdout); + continue; + } + + if (dc_datum_c(source, length, position) || (gs1 && source[position] == '\x1D')) { + if (source[position] == '\x1D') { + codeword_array[ap++] = 107; /* FNC1 */ + position++; + } else { + codeword_array[ap++] = to_int(source + position, 2); + position += 2; + } + if (debug_print) fputs("C2/2 ", stdout); + continue; + } + + /* Step C3 */ + if (dc_binary(source, length, position)) { + /* cnt_digits(position + 1) > 0 */ + if (position + 1 < length && z_isdigit(source[position + 1])) { + if ((source[position] - 128) < 32) { + codeword_array[ap++] = 110; /* Upper Shift A */ + codeword_array[ap++] = source[position] - 128 + 64; + } else { + codeword_array[ap++] = 111; /* Upper Shift B */ + codeword_array[ap++] = source[position] - 128 - 32; + } + position++; + } else { + codeword_array[ap++] = 112; /* Bin Latch */ + encoding_mode = 'X'; + } + if (debug_print) fputs("C3 ", stdout); + continue; + } + + /* Step C4 */ + { + const int m = dc_ahead_a(source, length, position); + const int n = dc_ahead_b(source, length, position, &nx); + if (m > n) { + codeword_array[ap++] = 101; /* Latch A */ + encoding_mode = 'A'; + } else { + if (nx >= 1 && nx <= 4) { + codeword_array[ap++] = 101 + nx; /* nx Shift B */ + + for (i = 0; i < nx; i++) { + if (source[position] >= 32) { + codeword_array[ap++] = source[position] - 32; + } else if (source[position] == 13) { /* CR/LF */ + codeword_array[ap++] = 96; + position++; + } else { + switch (source[position]) { + case 9: codeword_array[ap++] = 97; break; /* HT */ + case 28: codeword_array[ap++] = 98; break; /* FS */ + case 29: codeword_array[ap++] = 99; break; /* GS */ + case 30: codeword_array[ap++] = 100; break; /* RS */ + } + } + position++; + } + } else { + codeword_array[ap++] = 106; /* Latch B */ + encoding_mode = 'B'; + } + } + if (debug_print) fputs("C4 ", stdout); + continue; + } + } /* encoding_mode == 'C' */ + + if (encoding_mode == 'B') { + /* Step D1 */ + const int n = dc_try_c(source, length, position); + + if (n >= 2) { + if (n <= 4) { + codeword_array[ap++] = 103 + (n - 2); /* nx Shift C */ + for (i = 0; i < n; i++) { + codeword_array[ap++] = to_int(source + position, 2); + position += 2; + } + } else { + codeword_array[ap++] = 106; /* Latch C */ + encoding_mode = 'C'; + } + if (debug_print) fputs("D1 ", stdout); + continue; + } + + /* Step D2 */ + if (gs1 && source[position] == '\x1D') { + codeword_array[ap++] = 107; /* FNC1 */ + position++; + if (debug_print) fputs("D2/1 ", stdout); + continue; + } + + if (dc_datum_b(source, length, position)) { + int done = 0; + + if ((source[position] >= 32) && (source[position] <= 127)) { + codeword_array[ap++] = source[position] - 32; + done = 1; + + } else if (source[position] == 13) { + /* CR/LF */ + codeword_array[ap++] = 96; + position++; + done = 1; + + } else if (!first_seg || position != 0) { + /* HT, FS, GS and RS in the first data position would be interpreted as a macro + * (see table 2) */ + switch (source[position]) { + case 9: codeword_array[ap++] = 97; break; /* HT */ + case 28: codeword_array[ap++] = 98; break; /* FS */ + case 29: codeword_array[ap++] = 99; break; /* GS */ + case 30: codeword_array[ap++] = 100; break; /* RS */ + } + done = 1; + } + + if (done == 1) { + position++; + if (debug_print) fputs("D2/2 ", stdout); + continue; + } + } + + /* Step D3 */ + if (dc_binary(source, length, position)) { + if (dc_datum_b(source, length, position + 1)) { + if ((source[position] - 128) < 32) { + codeword_array[ap++] = 110; /* Bin Shift A */ + codeword_array[ap++] = source[position] - 128 + 64; + } else { + codeword_array[ap++] = 111; /* Bin Shift B */ + codeword_array[ap++] = source[position] - 128 - 32; + } + position++; + } else { + codeword_array[ap++] = 112; /* Bin Latch */ + encoding_mode = 'X'; + } + if (debug_print) fputs("D3 ", stdout); + continue; + } + + /* Step D4 */ + if (dc_ahead_a(source, length, position) == 1) { + codeword_array[ap++] = 101; /* Shift A */ + if (source[position] < 32) { + codeword_array[ap++] = source[position] + 64; + } else { + codeword_array[ap++] = source[position] - 32; + } + position++; + } else { + codeword_array[ap++] = 102; /* Latch A */ + encoding_mode = 'A'; + } + if (debug_print) fputs("D4 ", stdout); + continue; + } /* encoding_mode == 'B' */ + + if (encoding_mode == 'A') { + /* Step E1 */ + const int n = dc_try_c(source, length, position); + if (n >= 2) { + if (n <= 4) { + codeword_array[ap++] = 103 + (n - 2); /* nx Shift C */ + for (i = 0; i < n; i++) { + codeword_array[ap++] = to_int(source + position, 2); + position += 2; + } + } else { + codeword_array[ap++] = 106; /* Latch C */ + encoding_mode = 'C'; + } + if (debug_print) fputs("E1 ", stdout); + continue; + } + + /* Step E2 */ + if (gs1 && source[position] == '\x1D') { + /* Note: this branch probably never reached as no reason to be in Code Set A for GS1 data */ + codeword_array[ap++] = 107; /* FNC1 */ + position++; + if (debug_print) fputs("E2/1 ", stdout); + continue; + } + if (dc_datum_a(source, length, position)) { + if (source[position] < 32) { + codeword_array[ap++] = source[position] + 64; + } else { + codeword_array[ap++] = source[position] - 32; + } + position++; + if (debug_print) fputs("E2/2 ", stdout); + continue; + } + + /* Step E3 */ + if (dc_binary(source, length, position)) { + if (dc_datum_a(source, length, position + 1)) { + if ((source[position] - 128) < 32) { + codeword_array[ap++] = 110; /* Bin Shift A */ + codeword_array[ap++] = source[position] - 128 + 64; + } else { + codeword_array[ap++] = 111; /* Bin Shift B */ + codeword_array[ap++] = source[position] - 128 - 32; + } + position++; + } else { + codeword_array[ap++] = 112; /* Bin Latch */ + encoding_mode = 'X'; + } + if (debug_print) fputs("E3 ", stdout); + continue; + } + + /* Step E4 */ + dc_ahead_b(source, length, position, &nx); + + if (nx >= 1 && nx <= 6) { + codeword_array[ap++] = 95 + nx; /* nx Shift B */ + for (i = 0; i < nx; i++) { + if (source[position] >= 32) { + codeword_array[ap++] = source[position] - 32; + } else if (source[position] == 13) { /* CR/LF */ + codeword_array[ap++] = 96; + position++; + } else { + switch (source[position]) { + case 9: codeword_array[ap++] = 97; break; /* HT */ + case 28: codeword_array[ap++] = 98; break; /* FS */ + case 29: codeword_array[ap++] = 99; break; /* GS */ + case 30: codeword_array[ap++] = 100; break; /* RS */ + } + } + position++; + } + } else { + codeword_array[ap++] = 102; /* Latch B */ + encoding_mode = 'B'; + } + if (debug_print) fputs("E4 ", stdout); + continue; + } /* encoding_mode == 'A' */ + + /* Step F1 */ + if (encoding_mode == 'X') { + const int n = dc_try_c(source, length, position); + + if (n >= 2) { + ap = dc_empty_bin_buf(codeword_array, ap, &bin_buf, &bin_buf_size); + + if (n <= 7) { + codeword_array[ap++] = 101 + n; /* Interrupt for nx Shift C */ + for (i = 0; i < n; i++) { + codeword_array[ap++] = to_int(source + position, 2); + position += 2; + } + } else { + codeword_array[ap++] = 111; /* Terminate with Latch to C */ + encoding_mode = 'C'; + } + if (debug_print) fputs("F1 ", stdout); + continue; + } + + /* Step F2 */ + /* Section 5.2.1.1 para D.2.i states: + * "Groups of six codewords, each valued between 0 and 102, are radix converted from + * base 103 into five base 259 values..." + */ + if (dc_binary(source, length, position) + || dc_binary(source, length, position + 1) + || dc_binary(source, length, position + 2) + || dc_binary(source, length, position + 3)) { + ap = dc_append_to_bin_buf(codeword_array, ap, source[position], &bin_buf, &bin_buf_size); + position++; + if (debug_print) fputs("F2 ", stdout); + continue; + } + + /* Step F3 */ + ap = dc_empty_bin_buf(codeword_array, ap, &bin_buf, &bin_buf_size); /* Empty binary buffer */ + + if (dc_ahead_a(source, length, position) > dc_ahead_b(source, length, position, NULL)) { + codeword_array[ap++] = 109; /* Terminate with Latch to A */ + encoding_mode = 'A'; + } else { + codeword_array[ap++] = 110; /* Terminate with Latch to B */ + encoding_mode = 'B'; + } + if (debug_print) fputs("F3 ", stdout); + } /* encoding_mode == 'X' */ + } + + if (last_seg) { + if (encoding_mode == 'X' && bin_buf_size != 0) { + /* Empty binary buffer */ + ap = dc_empty_bin_buf(codeword_array, ap, &bin_buf, &bin_buf_size); + } + + if (symbol->structapp.count) { + int sp = 0; + /* Need Code Set A or B - choosing A here (TEC-IT chooses B) */ + if (encoding_mode == 'C') { + structapp_array[sp++] = 101; /* Latch A */ + } else if (encoding_mode == 'X') { + structapp_array[sp++] = 109; /* Terminate with Latch A */ + } + if (symbol->structapp.index < 10) { + structapp_array[sp++] = 16 + symbol->structapp.index; /* '0' + index for 1-9 */ + } else { + structapp_array[sp++] = 33 + symbol->structapp.index - 10; /* 'A' + index for A-Z */ + } + if (symbol->structapp.count < 10) { + structapp_array[sp++] = 16 + symbol->structapp.count; /* '0' + count for 1-9 */ + } else { + structapp_array[sp++] = 33 + symbol->structapp.count - 10; /* 'A' + count for A-Z */ + } + structapp_array[sp++] = 108; /* FNC2 as last codeword */ + *p_structapp_size = sp; + } + } + + if (debug_print) { + fputc('\n', stdout); + } + + *p_encoding_mode = encoding_mode; + *p_inside_macro = inside_macro; + *p_bin_buf = bin_buf; + *p_bin_buf_size = bin_buf_size; + + return ap; +} + +/* Call `dc_encode_message()` for each segment */ +static int dc_encode_message_segs(struct zint_symbol *symbol, const struct zint_seg segs[], const int seg_count, + unsigned char *codeword_array, int *p_binary_finish, unsigned char structapp_array[], + int *p_structapp_size) { + int i; + + int last_EOT = 0; + int last_RSEOT = 0; + int ap = 0; + char encoding_mode = 'C'; + int inside_macro = 0; + uint64_t bin_buf = 0; + int bin_buf_size = 0; + + const struct zint_seg *last_seg = &segs[seg_count - 1]; + + last_EOT = last_seg->source[last_seg->length - 1] == 4; /* EOT */ + if (last_EOT && last_seg->length > 1) { + last_RSEOT = last_seg->source[last_seg->length - 2] == 30; /* RS */ + } + + for (i = 0; i < seg_count; i++) { + ap = dc_encode_message(symbol, segs[i].source, segs[i].length, segs[i].eci, i == seg_count - 1 /*last_seg*/, + last_EOT, last_RSEOT, ap, codeword_array, &encoding_mode, &inside_macro, &bin_buf, &bin_buf_size, + structapp_array, p_structapp_size); + } + + *p_binary_finish = encoding_mode == 'X'; + + return ap + *p_structapp_size; +} + +/* Convert codewords to binary data stream */ +static int dc_make_dotstream(const unsigned char masked_array[], const int array_length, char dot_stream[]) { + int i; + int bp = 0; + + /* Mask value is encoded as two dots */ + bp = bin_append_posn(masked_array[0], 2, dot_stream, bp); + + /* The rest of the data uses 9-bit dot patterns from Annex C */ + for (i = 1; i < array_length; i++) { + bp = bin_append_posn(dc_dot_patterns[masked_array[i]], 9, dot_stream, bp); + } + + return bp; +} + +/* Determines if a given dot is a reserved corner dot + * to be used by one of the last six bits + */ +static int dc_is_corner(const int column, const int row, const int width, const int height) { + + /* Top Left */ + if ((column == 0) && (row == 0)) { + return 1; + } + + /* Top Right */ + if (height & 1) { + if (((column == width - 2) && (row == 0)) + || ((column == width - 1) && (row == 1))) { + return 1; + } + } else { + if ((column == width - 1) && (row == 0)) { + return 1; + } + } + + /* Bottom Left */ + if (height & 1) { + if ((column == 0) && (row == height - 1)) { + return 1; + } + } else { + if (((column == 0) && (row == height - 2)) + || ((column == 1) && (row == height - 1))) { + return 1; + } + } + + /* Bottom Right */ + if (((column == width - 2) && (row == height - 1)) + || ((column == width - 1) && (row == height - 2))) { + return 1; + } + + return 0; +} + +/* Place the dots in the symbol*/ +static void dc_fold_dotstream(const char dot_stream[], const int width, const int height, char dot_array[]) { + int column, row; + int position = 0; + + if (height & 1) { + /* Horizontal folding */ + for (row = 0; row < height; row++) { + for (column = 0; column < width; column++) { + if (!((column + row) & 1)) { + if (dc_is_corner(column, row, width, height)) { + dot_array[(row * width) + column] = 'C'; + } else { + dot_array[((height - row - 1) * width) + column] = dot_stream[position++]; + } + } else { + dot_array[((height - row - 1) * width) + column] = ' '; /* Non-data position */ + } + } + } + + /* Corners */ + dot_array[width - 2] = dot_stream[position++]; + dot_array[(height * width) - 2] = dot_stream[position++]; + dot_array[(width * 2) - 1] = dot_stream[position++]; + dot_array[((height - 1) * width) - 1] = dot_stream[position++]; + dot_array[0] = dot_stream[position++]; + dot_array[(height - 1) * width] = dot_stream[position]; + } else { + /* Vertical folding */ + for (column = 0; column < width; column++) { + for (row = 0; row < height; row++) { + if (!((column + row) & 1)) { + if (dc_is_corner(column, row, width, height)) { + dot_array[(row * width) + column] = 'C'; + } else { + dot_array[(row * width) + column] = dot_stream[position++]; + } + } else { + dot_array[(row * width) + column] = ' '; /* Non-data position */ + } + } + } + + /* Corners */ + dot_array[((height - 1) * width) - 1] = dot_stream[position++]; + dot_array[(height - 2) * width] = dot_stream[position++]; + dot_array[(height * width) - 2] = dot_stream[position++]; + dot_array[((height - 1) * width) + 1] = dot_stream[position++]; + dot_array[width - 1] = dot_stream[position++]; + dot_array[0] = dot_stream[position]; + } +} + +static void dc_apply_mask(const int mask, const int data_length, unsigned char *masked_codeword_array, + const unsigned char *codeword_array, const int ecc_length) { + int weight = 0; + int j; + + assert(mask >= 0 && mask <= 3); /* Suppress clang-analyzer taking default branch */ + assert(data_length > 0); /* Suppress clang-analyzer-core.UndefinedBinaryOperatorResult */ + switch (mask) { + case 0: + masked_codeword_array[0] = 0; + for (j = 0; j < data_length; j++) { + masked_codeword_array[j + 1] = codeword_array[j]; + } + break; + case 1: + masked_codeword_array[0] = 1; + for (j = 0; j < data_length; j++) { + masked_codeword_array[j + 1] = (weight + codeword_array[j]) % 113; + weight += 3; + } + break; + case 2: + masked_codeword_array[0] = 2; + for (j = 0; j < data_length; j++) { + masked_codeword_array[j + 1] = (weight + codeword_array[j]) % 113; + weight += 7; + } + break; + case 3: + masked_codeword_array[0] = 3; + for (j = 0; j < data_length; j++) { + masked_codeword_array[j + 1] = (weight + codeword_array[j]) % 113; + weight += 17; + } + break; + } + + dc_rsencode(data_length + 1, ecc_length, masked_codeword_array); +} + +static void dc_force_corners(const int width, const int height, char *dot_array) { + if (width & 1) { + /* "Vertical" symbol */ + dot_array[0] = '1'; + dot_array[width - 1] = '1'; + dot_array[(height - 2) * width] = '1'; + dot_array[((height - 1) * width) - 1] = '1'; + dot_array[((height - 1) * width) + 1] = '1'; + dot_array[(height * width) - 2] = '1'; + } else { + /* "Horizontal" symbol */ + dot_array[0] = '1'; + dot_array[width - 2] = '1'; + dot_array[(2 * width) - 1] = '1'; + dot_array[((height - 1) * width) - 1] = '1'; + dot_array[(height - 1) * width] = '1'; + dot_array[(height * width) - 2] = '1'; + } +} + +INTERNAL int dotcode(struct zint_symbol *symbol, struct zint_seg segs[], const int seg_count) { + int warn_number = 0; + int i, j, k; + int jc, n_dots; + int data_length, ecc_length; + int min_dots, min_area; + int height, width; + int mask_score[8]; + int user_mask; + int dot_stream_length; + int high_score, best_mask; + int binary_finish = 0; + unsigned char structapp_array[5]; + int structapp_size = 0; + int padding_dots; + const int gs1 = (symbol->input_mode & 0x07) == GS1_MODE; + const int debug_print = (symbol->debug & ZINT_DEBUG_PRINT); + /* Allow 4 codewords per input + 2 (FNC) + seg_count * 4 (ECI) + 2 (special char 1st position) + + 5 (Structured Append) + 10 (PAD) */ + const int codeword_array_len = segs_length(segs, seg_count) * 4 + 2 + seg_count * 4 + 2 + 5 + 10; + unsigned char *codeword_array = (unsigned char *) z_alloca(codeword_array_len); + char *dot_stream; + char *dot_array; + unsigned char *masked_codeword_array; + + if (symbol->eci > 811799) { + return errtxtf(ZINT_ERROR_INVALID_OPTION, symbol, 525, "ECI code '%d' out of range (0 to 811799)", + symbol->eci); + } + + user_mask = (symbol->option_3 >> 8) & 0x0F; /* User mask is mask + 1, so >= 1 and <= 8 */ + if (user_mask > 8) { + user_mask = 0; /* Ignore */ + } + + if (symbol->structapp.count) { + if (symbol->structapp.count < 2 || symbol->structapp.count > 35) { + return errtxtf(ZINT_ERROR_INVALID_OPTION, symbol, 730, + "Structured Append count '%d' out of range (2 to 35)", symbol->structapp.count); + } + if (symbol->structapp.index < 1 || symbol->structapp.index > symbol->structapp.count) { + return errtxtf(ZINT_ERROR_INVALID_OPTION, symbol, 731, + "Structured Append index '%1$d' out of range (1 to count %2$d)", + symbol->structapp.index, symbol->structapp.count); + } + if (symbol->structapp.id[0]) { + return errtxt(ZINT_ERROR_INVALID_OPTION, symbol, 732, "Structured Append ID not available for DotCode"); + } + } + + /* GS1 General Specifications 22.0 section 5.8.2 says Structured Append and ECIs not supported + for GS1 DotCode so check and return ZINT_WARN_NONCOMPLIANT if either true */ + if (gs1 && warn_number == 0) { + for (i = 0; i < seg_count; i++) { + if (segs[i].eci) { + warn_number = errtxt(ZINT_WARN_NONCOMPLIANT, symbol, 733, + "Using ECI in GS1 mode not supported by GS1 standards"); + break; + } + } + if (warn_number == 0 && symbol->structapp.count) { + warn_number = errtxt(ZINT_WARN_NONCOMPLIANT, symbol, 734, + "Using Structured Append in GS1 mode not supported by GS1 standards"); + } + } + + data_length = dc_encode_message_segs(symbol, segs, seg_count, codeword_array, &binary_finish, structapp_array, + &structapp_size); + + /* Suppresses clang-tidy clang-analyzer-core.UndefinedBinaryOperatorResult/uninitialized.ArraySubscript + * warnings */ + assert(data_length > 0); + + ecc_length = 3 + (data_length / 2); + + min_dots = 9 * (data_length + 3 + (data_length / 2)) + 2; + min_area = min_dots * 2; + + if (symbol->option_2 == 0) { + /* Automatic sizing */ + /* Following Rule 3 (Section 5.2.2) and applying a recommended width to height ratio 3:2 */ + /* Eliminates under sized symbols */ + + float h = (float) (sqrt(min_area * 0.666)); + float w = (float) (sqrt(min_area * 1.5)); + + height = (int) h; + width = (int) w; + + if (((width + height) & 1) == 1) { + if ((width * height) < min_area) { + width++; + height++; + } + } else { + if ((h * width) < (w * height)) { + width++; + if ((width * height) < min_area) { + width--; + height++; + if ((width * height) < min_area) { + width += 2; + } + } + } else { + height++; + if ((width * height) < min_area) { + width++; + height--; + if ((width * height) < min_area) { + height += 2; + } + } + } + } + + } else { + /* User defined width */ + /* Eliminates under sized symbols */ + + width = symbol->option_2; + height = (min_area + (width - 1)) / width; + + if (!((width + height) & 1)) { + height++; + } + } + + if (debug_print) { + printf("Width = %d, Height = %d\n", width, height); + } + + if ((height > 200) || (width > 200)) { + if (height > 200 && width > 200) { + errtxtf(0, symbol, 526, "Symbol size '%1$dx%2$d' (WxH) is too large", width, height); + } else { + errtxtf(0, symbol, 528, "Symbol %1$s '%2$d' is too large", + width > 200 ? "width" : "height", width > 200 ? width : height); + } + return ZINT_ERROR_INVALID_OPTION; + } + + if ((height < 5) || (width < 5)) { + if (height < 5 && width < 5) { /* Won't happen as if width < 5, min height is 19 */ + errtxtf(0, symbol, 527, "Symbol size '%1$dx%2$d' (WxH) is too small", width, height); /* Not reached */ + } else { + errtxtf(0, symbol, 529, "Symbol %1$s '%2$d' is too small", + width < 5 ? "width" : "height", width < 5 ? width : height); + } + return ZINT_ERROR_INVALID_OPTION; + } + + n_dots = (height * width) / 2; + + dot_stream = (char *) z_alloca(height * width * 3); + dot_array = (char *) z_alloca(width * height); + + /* Add pad characters */ + padding_dots = n_dots - min_dots; /* get the number of free dots available for padding */ + + if (padding_dots >= 9) { + int is_first = 1; /* first padding character flag */ + int padp = data_length - structapp_size; + while (padding_dots >= 9) { + if (padding_dots < 18 && (data_length & 1) == 0) { + padding_dots -= 9; + } else if (padding_dots >= 18) { + if ((data_length & 1) == 0) { + padding_dots -= 9; + } else { + padding_dots -= 18; + } + } else { + break; /* not enough padding dots left for padding */ + } + if (is_first && binary_finish) { + codeword_array[padp++] = 109; + } else { + codeword_array[padp++] = 106; + } + + data_length++; + is_first = 0; + } + if (structapp_size) { + if (structapp_array[0] == 109) { /* Binary latch no longer valid */ + structapp_array[0] = 106; + } + for (i = 0; i < structapp_size; i++) { + codeword_array[padp++] = structapp_array[i]; + } + } + } else if (structapp_size) { + data_length -= structapp_size; + for (i = 0; i < structapp_size; i++) { + codeword_array[data_length++] = structapp_array[i]; + } + } + + if (debug_print) { + printf("Codeword length = %d, ECC length = %d\n", data_length, ecc_length); + fputs("Codewords:", stdout); + for (i = 0; i < data_length; i++) { + printf(" %d", codeword_array[i]); + } + fputc('\n', stdout); + } +#ifdef ZINT_TEST + if (symbol->debug & ZINT_DEBUG_TEST) { + debug_test_codeword_dump(symbol, codeword_array, data_length); + } +#endif + + ecc_length = 3 + (data_length / 2); + + masked_codeword_array = (unsigned char *) z_alloca(data_length + 1 + ecc_length); + + if (user_mask) { + best_mask = user_mask - 1; + if (debug_print) { + printf("Applying mask %d (specified)\n", best_mask); + } + } else { + /* Evaluate data mask options */ + for (i = 0; i < 4; i++) { + + dc_apply_mask(i, data_length, masked_codeword_array, codeword_array, ecc_length); + + dot_stream_length = dc_make_dotstream(masked_codeword_array, (data_length + ecc_length + 1), dot_stream); + + /* Add pad bits */ + for (jc = dot_stream_length; jc < n_dots; jc++) { + dot_stream[dot_stream_length++] = '1'; + } + + dc_fold_dotstream(dot_stream, width, height, dot_array); + + mask_score[i] = dc_score_array(dot_array, height, width); + + if (debug_print) { + printf("Mask %d score is %d\n", i, mask_score[i]); + } + } + + high_score = mask_score[0]; + best_mask = 0; + + for (i = 1; i < 4; i++) { + if (mask_score[i] >= high_score) { + high_score = mask_score[i]; + best_mask = i; + } + } + + /* Re-evaluate using forced corners if needed */ + if (high_score <= (height * width) / 2) { + if (debug_print) { + printf("High score %d <= %d (height * width) / 2\n", high_score, (height * width) / 2); + } + + for (i = 0; i < 4; i++) { + + dc_apply_mask(i, data_length, masked_codeword_array, codeword_array, ecc_length); + + dot_stream_length = dc_make_dotstream(masked_codeword_array, (data_length + ecc_length + 1), + dot_stream); + + /* Add pad bits */ + for (jc = dot_stream_length; jc < n_dots; jc++) { + dot_stream[dot_stream_length++] = '1'; + } + + dc_fold_dotstream(dot_stream, width, height, dot_array); + + dc_force_corners(width, height, dot_array); + + mask_score[i + 4] = dc_score_array(dot_array, height, width); + + if (debug_print) { + printf("Mask %d score is %d\n", i + 4, mask_score[i + 4]); + } + } + + for (i = 4; i < 8; i++) { + if (mask_score[i] >= high_score) { + high_score = mask_score[i]; + best_mask = i; + } + } + } + + if (debug_print) { + printf("Applying mask %d, high_score %d\n", best_mask, high_score); + } + } + + /* Apply best mask */ + dc_apply_mask(best_mask % 4, data_length, masked_codeword_array, codeword_array, ecc_length); + + if (debug_print) { + printf("Masked codewords (%d):", data_length); + for (i = 1; i < data_length + 1; i++) { + printf(" [%d]", masked_codeword_array[i]); + } + fputc('\n', stdout); + printf("Masked ECCs (%d):", ecc_length); + for (i = data_length + 1; i < data_length + ecc_length + 1; i++) { + printf(" [%d]", masked_codeword_array[i]); + } + fputc('\n', stdout); + } + + dot_stream_length = dc_make_dotstream(masked_codeword_array, (data_length + ecc_length + 1), dot_stream); + + /* Add pad bits */ + for (jc = dot_stream_length; jc < n_dots; jc++) { + dot_stream[dot_stream_length++] = '1'; + } + if (debug_print) printf("Binary (%d): %.*s\n", dot_stream_length, dot_stream_length, dot_stream); + + dc_fold_dotstream(dot_stream, width, height, dot_array); + + if (best_mask >= 4) { + dc_force_corners(width, height, dot_array); + } + + /* Copy values to symbol */ + symbol->width = width; + symbol->rows = height; + + for (k = 0; k < height; k++) { + for (j = 0; j < width; j++) { + if (dot_array[(k * width) + j] == '1') { + set_module(symbol, k, j); + } + } + symbol->row_height[k] = 1; + } + symbol->height = height; + + symbol->output_options |= BARCODE_DOTTY_MODE; + + return warn_number; +} + +/* vim: set ts=4 sw=4 et : */
