diff mupdf-source/thirdparty/tesseract/src/wordrec/params_model.h @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/wordrec/params_model.h	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,93 @@
+///////////////////////////////////////////////////////////////////////
+// File:        params_model.h
+// Description: Trained feature serialization for language parameter training.
+// Author:      David Eger
+//
+// (C) Copyright 2011, Google Inc.
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+///////////////////////////////////////////////////////////////////////
+
+#ifndef TESSERACT_WORDREC_PARAMS_MODEL_H_
+#define TESSERACT_WORDREC_PARAMS_MODEL_H_
+
+#include <tesseract/export.h>        // for TESS_API
+#include "params_training_featdef.h" // for PTRAIN_NUM_FEATURE_TYPES
+
+namespace tesseract {
+
+class TFile;
+
+// Represents the learned weights for a given language.
+class TESS_API ParamsModel {
+public:
+  // Enum for expressing OCR pass.
+  enum PassEnum {
+    PTRAIN_PASS1,
+    PTRAIN_PASS2,
+
+    PTRAIN_NUM_PASSES
+  };
+
+  ParamsModel() : pass_(PTRAIN_PASS1) {}
+  ParamsModel(const char *lang, const std::vector<float> &weights)
+      : lang_(lang), pass_(PTRAIN_PASS1) {
+    weights_vec_[pass_] = weights;
+  }
+  inline bool Initialized() {
+    return weights_vec_[pass_].size() == PTRAIN_NUM_FEATURE_TYPES;
+  }
+  // Prints out feature weights.
+  void Print();
+  // Clears weights for all passes.
+  void Clear() {
+    for (auto &p : weights_vec_) {
+      p.clear();
+    }
+  }
+  // Copies the weights of the given params model.
+  void Copy(const ParamsModel &other_model);
+  // Applies params model weights to the given features.
+  // Assumes that features is an array of size PTRAIN_NUM_FEATURE_TYPES.
+  float ComputeCost(const float features[]) const;
+  bool Equivalent(const ParamsModel &that) const;
+
+  // Returns true on success.
+  bool SaveToFile(const char *full_path) const;
+
+  // Returns true on success.
+  bool LoadFromFp(const char *lang, TFile *fp);
+
+  const std::vector<float> &weights() const {
+    return weights_vec_[pass_];
+  }
+  const std::vector<float> &weights_for_pass(PassEnum pass) const {
+    return weights_vec_[pass];
+  }
+  void SetPass(PassEnum pass) {
+    pass_ = pass;
+  }
+
+private:
+  bool ParseLine(char *line, char **key, float *val);
+
+  std::string lang_;
+  // Set to the current pass type and used to determine which set of weights
+  // should be used for ComputeCost() and other functions.
+  PassEnum pass_;
+  // Several sets of weights for various OCR passes (e.g. pass1 with adaption,
+  // pass2 without adaption, etc).
+  std::vector<float> weights_vec_[PTRAIN_NUM_PASSES];
+};
+
+} // namespace tesseract
+
+#endif // TESSERACT_WORDREC_PARAMS_MODEL_H_