Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/tesseract/src/wordrec/params_model.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/tesseract/src/wordrec/params_model.cpp Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,166 @@ +/////////////////////////////////////////////////////////////////////// +// File: params_model.cpp +// Description: Trained language model parameters. +// Author: David Eger +// +// (C) Copyright 2012, Google Inc. +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +/////////////////////////////////////////////////////////////////////// + +#include "params_model.h" + +#include <cctype> +#include <cmath> +#include <cstdio> + +#include "bitvector.h" +#include "helpers.h" // for ClipToRange +#include "serialis.h" // for TFile +#include "tprintf.h" + +namespace tesseract { + +// Scale factor to apply to params model scores. +static const float kScoreScaleFactor = 100.0f; +// Minimum cost result to return. +static const float kMinFinalCost = 0.001f; +// Maximum cost result to return. +static const float kMaxFinalCost = 100.0f; + +void ParamsModel::Print() { + for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) { + tprintf("ParamsModel for pass %d lang %s\n", p, lang_.c_str()); + for (unsigned i = 0; i < weights_vec_[p].size(); ++i) { + tprintf("%s = %g\n", kParamsTrainingFeatureTypeName[i], weights_vec_[p][i]); + } + } +} + +void ParamsModel::Copy(const ParamsModel &other_model) { + for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) { + weights_vec_[p] = other_model.weights_for_pass(static_cast<PassEnum>(p)); + } +} + +// Given a (modifiable) line, parse out a key / value pair. +// Return true on success. +bool ParamsModel::ParseLine(char *line, char **key, float *val) { + if (line[0] == '#') { + return false; + } + int end_of_key = 0; + while (line[end_of_key] && !(isascii(line[end_of_key]) && isspace(line[end_of_key]))) { + end_of_key++; + } + if (!line[end_of_key]) { + tprintf("ParamsModel::Incomplete line %s\n", line); + return false; + } + line[end_of_key++] = 0; + *key = line; + if (sscanf(line + end_of_key, " %f", val) != 1) { + return false; + } + return true; +} + +// Applies params model weights to the given features. +// Assumes that features is an array of size PTRAIN_NUM_FEATURE_TYPES. +// The cost is set to a number that can be multiplied by the outline length, +// as with the old ratings scheme. This enables words of different length +// and combinations of words to be compared meaningfully. +float ParamsModel::ComputeCost(const float features[]) const { + float unnorm_score = 0.0; + for (int f = 0; f < PTRAIN_NUM_FEATURE_TYPES; ++f) { + unnorm_score += weights_vec_[pass_][f] * features[f]; + } + return ClipToRange(-unnorm_score / kScoreScaleFactor, kMinFinalCost, kMaxFinalCost); +} + +bool ParamsModel::Equivalent(const ParamsModel &that) const { + float epsilon = 0.0001f; + for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) { + if (weights_vec_[p].size() != that.weights_vec_[p].size()) { + return false; + } + for (unsigned i = 0; i < weights_vec_[p].size(); i++) { + if (weights_vec_[p][i] != that.weights_vec_[p][i] && + std::fabs(weights_vec_[p][i] - that.weights_vec_[p][i]) > epsilon) { + return false; + } + } + } + return true; +} + +bool ParamsModel::LoadFromFp(const char *lang, TFile *fp) { + const int kMaxLineSize = 100; + char line[kMaxLineSize]; + BitVector present; + present.Init(PTRAIN_NUM_FEATURE_TYPES); + lang_ = lang; + // Load weights for passes with adaption on. + std::vector<float> &weights = weights_vec_[pass_]; + weights.clear(); + weights.resize(PTRAIN_NUM_FEATURE_TYPES, 0.0f); + + while (fp->FGets(line, kMaxLineSize) != nullptr) { + char *key = nullptr; + float value; + if (!ParseLine(line, &key, &value)) { + continue; + } + int idx = ParamsTrainingFeatureByName(key); + if (idx < 0) { + tprintf("ParamsModel::Unknown parameter %s\n", key); + continue; + } + if (!present[idx]) { + present.SetValue(idx, true); + } + weights[idx] = value; + } + bool complete = (present.NumSetBits() == PTRAIN_NUM_FEATURE_TYPES); + if (!complete) { + for (int i = 0; i < PTRAIN_NUM_FEATURE_TYPES; i++) { + if (!present[i]) { + tprintf("Missing field %s.\n", kParamsTrainingFeatureTypeName[i]); + } + } + lang_ = ""; + weights.clear(); + } + return complete; +} + +bool ParamsModel::SaveToFile(const char *full_path) const { + const std::vector<float> &weights = weights_vec_[pass_]; + if (weights.size() != PTRAIN_NUM_FEATURE_TYPES) { + tprintf("Refusing to save ParamsModel that has not been initialized.\n"); + return false; + } + FILE *fp = fopen(full_path, "wb"); + if (!fp) { + tprintf("Could not open %s for writing.\n", full_path); + return false; + } + bool all_good = true; + for (unsigned i = 0; i < weights.size(); i++) { + if (fprintf(fp, "%s %f\n", kParamsTrainingFeatureTypeName[i], weights[i]) < 0) { + all_good = false; + } + } + fclose(fp); + return all_good; +} + +} // namespace tesseract
