diff mupdf-source/thirdparty/tesseract/src/training/unicharset/lstmtrainer.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/training/unicharset/lstmtrainer.cpp	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,1479 @@
+///////////////////////////////////////////////////////////////////////
+// File:        lstmtrainer.cpp
+// Description: Top-level line trainer class for LSTM-based networks.
+// Author:      Ray Smith
+//
+// (C) Copyright 2013, Google Inc.
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+///////////////////////////////////////////////////////////////////////
+
+#define _USE_MATH_DEFINES // needed to get definition of M_SQRT1_2
+
+// Include automatically generated configuration file if running autoconf.
+#ifdef HAVE_CONFIG_H
+#  include "config_auto.h"
+#endif
+
+#include <cmath>
+#include <iomanip>             // for std::setprecision
+#include <locale>              // for std::locale::classic
+#include <string>
+#include "lstmtrainer.h"
+
+#include <allheaders.h>
+#include "boxread.h"
+#include "ctc.h"
+#include "imagedata.h"
+#include "input.h"
+#include "networkbuilder.h"
+#include "ratngs.h"
+#include "recodebeam.h"
+#include "tprintf.h"
+
+namespace tesseract {
+
+// Min actual error rate increase to constitute divergence.
+const double kMinDivergenceRate = 50.0;
+// Min iterations since last best before acting on a stall.
+const int kMinStallIterations = 10000;
+// Fraction of current char error rate that sub_trainer_ has to be ahead
+// before we declare the sub_trainer_ a success and switch to it.
+const double kSubTrainerMarginFraction = 3.0 / 128;
+// Factor to reduce learning rate on divergence.
+const double kLearningRateDecay = M_SQRT1_2;
+// LR adjustment iterations.
+const int kNumAdjustmentIterations = 100;
+// How often to add data to the error_graph_.
+const int kErrorGraphInterval = 1000;
+// Number of training images to train between calls to MaintainCheckpoints.
+const int kNumPagesPerBatch = 100;
+// Min percent error rate to consider start-up phase over.
+const int kMinStartedErrorRate = 75;
+// Error rate at which to transition to stage 1.
+const double kStageTransitionThreshold = 10.0;
+// Confidence beyond which the truth is more likely wrong than the recognizer.
+const double kHighConfidence = 0.9375; // 15/16.
+// Fraction of weight sign-changing total to constitute a definite improvement.
+const double kImprovementFraction = 15.0 / 16.0;
+// Fraction of last written best to make it worth writing another.
+const double kBestCheckpointFraction = 31.0 / 32.0;
+#ifndef GRAPHICS_DISABLED
+// Scale factor for display of target activations of CTC.
+const int kTargetXScale = 5;
+const int kTargetYScale = 100;
+#endif // !GRAPHICS_DISABLED
+
+LSTMTrainer::LSTMTrainer()
+    : randomly_rotate_(false), training_data_(0), sub_trainer_(nullptr) {
+  EmptyConstructor();
+  debug_interval_ = 0;
+}
+
+LSTMTrainer::LSTMTrainer(const std::string &model_base, const std::string &checkpoint_name,
+                         int debug_interval, int64_t max_memory)
+    : randomly_rotate_(false),
+      training_data_(max_memory),
+      sub_trainer_(nullptr) {
+  EmptyConstructor();
+  debug_interval_ = debug_interval;
+  model_base_ = model_base;
+  checkpoint_name_ = checkpoint_name;
+}
+
+LSTMTrainer::~LSTMTrainer() {
+#ifndef GRAPHICS_DISABLED
+  delete align_win_;
+  delete target_win_;
+  delete ctc_win_;
+  delete recon_win_;
+#endif
+}
+
+// Tries to deserialize a trainer from the given file and silently returns
+// false in case of failure.
+bool LSTMTrainer::TryLoadingCheckpoint(const char *filename,
+                                       const char *old_traineddata) {
+  std::vector<char> data;
+  if (!LoadDataFromFile(filename, &data)) {
+    return false;
+  }
+  tprintf("Loaded file %s, unpacking...\n", filename);
+  if (!ReadTrainingDump(data, *this)) {
+    return false;
+  }
+  if (IsIntMode()) {
+    tprintf("Error, %s is an integer (fast) model, cannot continue training\n",
+            filename);
+    return false;
+  }
+  if (((old_traineddata == nullptr || *old_traineddata == '\0') &&
+       network_->NumOutputs() == recoder_.code_range()) ||
+      filename == old_traineddata) {
+    return true; // Normal checkpoint load complete.
+  }
+  tprintf("Code range changed from %d to %d!\n", network_->NumOutputs(),
+          recoder_.code_range());
+  if (old_traineddata == nullptr || *old_traineddata == '\0') {
+    tprintf("Must supply the old traineddata for code conversion!\n");
+    return false;
+  }
+  TessdataManager old_mgr;
+  ASSERT_HOST(old_mgr.Init(old_traineddata));
+  TFile fp;
+  if (!old_mgr.GetComponent(TESSDATA_LSTM_UNICHARSET, &fp)) {
+    return false;
+  }
+  UNICHARSET old_chset;
+  if (!old_chset.load_from_file(&fp, false)) {
+    return false;
+  }
+  if (!old_mgr.GetComponent(TESSDATA_LSTM_RECODER, &fp)) {
+    return false;
+  }
+  UnicharCompress old_recoder;
+  if (!old_recoder.DeSerialize(&fp)) {
+    return false;
+  }
+  std::vector<int> code_map = MapRecoder(old_chset, old_recoder);
+  // Set the null_char_ to the new value.
+  int old_null_char = null_char_;
+  SetNullChar();
+  // Map the softmax(s) in the network.
+  network_->RemapOutputs(old_recoder.code_range(), code_map);
+  tprintf("Previous null char=%d mapped to %d\n", old_null_char, null_char_);
+  return true;
+}
+
+// Initializes the trainer with a network_spec in the network description
+// net_flags control network behavior according to the NetworkFlags enum.
+// There isn't really much difference between them - only where the effects
+// are implemented.
+// For other args see NetworkBuilder::InitNetwork.
+// Note: Be sure to call InitCharSet before InitNetwork!
+bool LSTMTrainer::InitNetwork(const char *network_spec, int append_index,
+                              int net_flags, float weight_range,
+                              float learning_rate, float momentum,
+                              float adam_beta) {
+  mgr_.SetVersionString(mgr_.VersionString() + ":" + network_spec);
+  adam_beta_ = adam_beta;
+  learning_rate_ = learning_rate;
+  momentum_ = momentum;
+  SetNullChar();
+  if (!NetworkBuilder::InitNetwork(recoder_.code_range(), network_spec,
+                                   append_index, net_flags, weight_range,
+                                   &randomizer_, &network_)) {
+    return false;
+  }
+  network_str_ += network_spec;
+  tprintf("Built network:%s from request %s\n", network_->spec().c_str(),
+          network_spec);
+  tprintf(
+      "Training parameters:\n  Debug interval = %d,"
+      " weights = %g, learning rate = %g, momentum=%g\n",
+      debug_interval_, weight_range, learning_rate_, momentum_);
+  tprintf("null char=%d\n", null_char_);
+  return true;
+}
+
+// Resets all the iteration counters for fine tuning or traininng a head,
+// where we want the error reporting to reset.
+void LSTMTrainer::InitIterations() {
+  sample_iteration_ = 0;
+  training_iteration_ = 0;
+  learning_iteration_ = 0;
+  prev_sample_iteration_ = 0;
+  best_error_rate_ = 100.0;
+  best_iteration_ = 0;
+  worst_error_rate_ = 0.0;
+  worst_iteration_ = 0;
+  stall_iteration_ = kMinStallIterations;
+  best_error_history_.clear();
+  best_error_iterations_.clear();
+  improvement_steps_ = kMinStallIterations;
+  perfect_delay_ = 0;
+  last_perfect_training_iteration_ = 0;
+  for (int i = 0; i < ET_COUNT; ++i) {
+    best_error_rates_[i] = 100.0;
+    worst_error_rates_[i] = 0.0;
+    error_buffers_[i].clear();
+    error_buffers_[i].resize(kRollingBufferSize_);
+    error_rates_[i] = 100.0;
+  }
+  error_rate_of_last_saved_best_ = kMinStartedErrorRate;
+}
+
+// If the training sample is usable, grid searches for the optimal
+// dict_ratio/cert_offset, and returns the results in a string of space-
+// separated triplets of ratio,offset=worderr.
+Trainability LSTMTrainer::GridSearchDictParams(
+    const ImageData *trainingdata, int iteration, double min_dict_ratio,
+    double dict_ratio_step, double max_dict_ratio, double min_cert_offset,
+    double cert_offset_step, double max_cert_offset, std::string &results) {
+  sample_iteration_ = iteration;
+  NetworkIO fwd_outputs, targets;
+  Trainability result =
+      PrepareForBackward(trainingdata, &fwd_outputs, &targets);
+  if (result == UNENCODABLE || result == HI_PRECISION_ERR || dict_ == nullptr) {
+    return result;
+  }
+
+  // Encode/decode the truth to get the normalization.
+  std::vector<int> truth_labels, ocr_labels, xcoords;
+  ASSERT_HOST(EncodeString(trainingdata->transcription(), &truth_labels));
+  // NO-dict error.
+  RecodeBeamSearch base_search(recoder_, null_char_, SimpleTextOutput(),
+                               nullptr);
+  base_search.Decode(fwd_outputs, 1.0, 0.0, RecodeBeamSearch::kMinCertainty,
+                     nullptr);
+  base_search.ExtractBestPathAsLabels(&ocr_labels, &xcoords);
+  std::string truth_text = DecodeLabels(truth_labels);
+  std::string ocr_text = DecodeLabels(ocr_labels);
+  double baseline_error = ComputeWordError(&truth_text, &ocr_text);
+  results += "0,0=" + std::to_string(baseline_error);
+
+  RecodeBeamSearch search(recoder_, null_char_, SimpleTextOutput(), dict_);
+  for (double r = min_dict_ratio; r < max_dict_ratio; r += dict_ratio_step) {
+    for (double c = min_cert_offset; c < max_cert_offset;
+         c += cert_offset_step) {
+      search.Decode(fwd_outputs, r, c, RecodeBeamSearch::kMinCertainty,
+                    nullptr);
+      search.ExtractBestPathAsLabels(&ocr_labels, &xcoords);
+      truth_text = DecodeLabels(truth_labels);
+      ocr_text = DecodeLabels(ocr_labels);
+      // This is destructive on both strings.
+      double word_error = ComputeWordError(&truth_text, &ocr_text);
+      if ((r == min_dict_ratio && c == min_cert_offset) ||
+          !std::isfinite(word_error)) {
+        std::string t = DecodeLabels(truth_labels);
+        std::string o = DecodeLabels(ocr_labels);
+        tprintf("r=%g, c=%g, truth=%s, ocr=%s, wderr=%g, truth[0]=%d\n", r, c,
+                t.c_str(), o.c_str(), word_error, truth_labels[0]);
+      }
+      results += " " + std::to_string(r);
+      results += "," + std::to_string(c);
+      results += "=" + std::to_string(word_error);
+    }
+  }
+  return result;
+}
+
+// Provides output on the distribution of weight values.
+void LSTMTrainer::DebugNetwork() {
+  network_->DebugWeights();
+}
+
+// Loads a set of lstmf files that were created using the lstm.train config to
+// tesseract into memory ready for training. Returns false if nothing was
+// loaded.
+bool LSTMTrainer::LoadAllTrainingData(const std::vector<std::string> &filenames,
+                                      CachingStrategy cache_strategy,
+                                      bool randomly_rotate) {
+  randomly_rotate_ = randomly_rotate;
+  training_data_.Clear();
+  return training_data_.LoadDocuments(filenames, cache_strategy,
+                                      LoadDataFromFile);
+}
+
+// Keeps track of best and locally worst char error_rate and launches tests
+// using tester, when a new min or max is reached.
+// Writes checkpoints at appropriate times and builds and returns a log message
+// to indicate progress. Returns false if nothing interesting happened.
+bool LSTMTrainer::MaintainCheckpoints(const TestCallback &tester,
+                                      std::stringstream &log_msg) {
+  PrepareLogMsg(log_msg);
+  double error_rate = CharError();
+  int iteration = learning_iteration();
+  if (iteration >= stall_iteration_ &&
+      error_rate > best_error_rate_ * (1.0 + kSubTrainerMarginFraction) &&
+      best_error_rate_ < kMinStartedErrorRate && !best_trainer_.empty()) {
+    // It hasn't got any better in a long while, and is a margin worse than the
+    // best, so go back to the best model and try a different learning rate.
+    StartSubtrainer(log_msg);
+  }
+  SubTrainerResult sub_trainer_result = STR_NONE;
+  if (sub_trainer_ != nullptr) {
+    sub_trainer_result = UpdateSubtrainer(log_msg);
+    if (sub_trainer_result == STR_REPLACED) {
+      // Reset the inputs, as we have overwritten *this.
+      error_rate = CharError();
+      iteration = learning_iteration();
+      PrepareLogMsg(log_msg);
+    }
+  }
+  bool result = true; // Something interesting happened.
+  std::vector<char> rec_model_data;
+  if (error_rate < best_error_rate_) {
+    SaveRecognitionDump(&rec_model_data);
+    log_msg << " New best BCER = " << error_rate;
+    log_msg << UpdateErrorGraph(iteration, error_rate, rec_model_data, tester);
+    // If sub_trainer_ is not nullptr, either *this beat it to a new best, or it
+    // just overwrote *this. In either case, we have finished with it.
+    sub_trainer_.reset();
+    stall_iteration_ = learning_iteration() + kMinStallIterations;
+    if (TransitionTrainingStage(kStageTransitionThreshold)) {
+      log_msg << " Transitioned to stage " << CurrentTrainingStage();
+    }
+    SaveTrainingDump(NO_BEST_TRAINER, *this, &best_trainer_);
+    if (error_rate < error_rate_of_last_saved_best_ * kBestCheckpointFraction) {
+      std::string best_model_name = DumpFilename();
+      if (!SaveDataToFile(best_trainer_, best_model_name.c_str())) {
+        log_msg << " failed to write best model:";
+      } else {
+        log_msg << " wrote best model:";
+        error_rate_of_last_saved_best_ = best_error_rate_;
+      }
+      log_msg << best_model_name;
+    }
+  } else if (error_rate > worst_error_rate_) {
+    SaveRecognitionDump(&rec_model_data);
+    log_msg << " New worst BCER = " << error_rate;
+    log_msg << UpdateErrorGraph(iteration, error_rate, rec_model_data, tester);
+    if (worst_error_rate_ > best_error_rate_ + kMinDivergenceRate &&
+        best_error_rate_ < kMinStartedErrorRate && !best_trainer_.empty()) {
+      // Error rate has ballooned. Go back to the best model.
+      log_msg << "\nDivergence! ";
+      // Copy best_trainer_ before reading it, as it will get overwritten.
+      std::vector<char> revert_data(best_trainer_);
+      if (ReadTrainingDump(revert_data, *this)) {
+        LogIterations("Reverted to", log_msg);
+        ReduceLearningRates(this, log_msg);
+      } else {
+        LogIterations("Failed to Revert at", log_msg);
+      }
+      // If it fails again, we will wait twice as long before reverting again.
+      stall_iteration_ = iteration + 2 * (iteration - learning_iteration());
+      // Re-save the best trainer with the new learning rates and stall
+      // iteration.
+      SaveTrainingDump(NO_BEST_TRAINER, *this, &best_trainer_);
+    }
+  } else {
+    // Something interesting happened only if the sub_trainer_ was trained.
+    result = sub_trainer_result != STR_NONE;
+  }
+  if (checkpoint_name_.length() > 0) {
+    // Write a current checkpoint.
+    std::vector<char> checkpoint;
+    if (!SaveTrainingDump(FULL, *this, &checkpoint) ||
+        !SaveDataToFile(checkpoint, checkpoint_name_.c_str())) {
+      log_msg << " failed to write checkpoint.";
+    } else {
+      log_msg << " wrote checkpoint.";
+    }
+  }
+  return result;
+}
+
+// Builds a string containing a progress message with current error rates.
+void LSTMTrainer::PrepareLogMsg(std::stringstream &log_msg) const {
+  LogIterations("At", log_msg);
+  log_msg << std::fixed << std::setprecision(3)
+          << ", mean rms=" << error_rates_[ET_RMS]
+          << "%, delta=" << error_rates_[ET_DELTA]
+          << "%, BCER train=" << error_rates_[ET_CHAR_ERROR]
+          << "%, BWER train=" << error_rates_[ET_WORD_RECERR]
+          << "%, skip ratio=" << error_rates_[ET_SKIP_RATIO] << "%,";
+}
+
+// Appends <intro_str> iteration learning_iteration()/training_iteration()/
+// sample_iteration() to the log_msg.
+void LSTMTrainer::LogIterations(const char *intro_str,
+                                std::stringstream &log_msg) const {
+  log_msg << intro_str
+          << " iteration " << learning_iteration()
+          << "/" << training_iteration()
+          << "/" << sample_iteration();
+}
+
+// Returns true and increments the training_stage_ if the error rate has just
+// passed through the given threshold for the first time.
+bool LSTMTrainer::TransitionTrainingStage(float error_threshold) {
+  if (best_error_rate_ < error_threshold &&
+      training_stage_ + 1 < num_training_stages_) {
+    ++training_stage_;
+    return true;
+  }
+  return false;
+}
+
+// Writes to the given file. Returns false in case of error.
+bool LSTMTrainer::Serialize(SerializeAmount serialize_amount,
+                            const TessdataManager *mgr, TFile *fp) const {
+  if (!LSTMRecognizer::Serialize(mgr, fp)) {
+    return false;
+  }
+  if (!fp->Serialize(&learning_iteration_)) {
+    return false;
+  }
+  if (!fp->Serialize(&prev_sample_iteration_)) {
+    return false;
+  }
+  if (!fp->Serialize(&perfect_delay_)) {
+    return false;
+  }
+  if (!fp->Serialize(&last_perfect_training_iteration_)) {
+    return false;
+  }
+  for (const auto &error_buffer : error_buffers_) {
+    if (!fp->Serialize(error_buffer)) {
+      return false;
+    }
+  }
+  if (!fp->Serialize(&error_rates_[0], countof(error_rates_))) {
+    return false;
+  }
+  if (!fp->Serialize(&training_stage_)) {
+    return false;
+  }
+  uint8_t amount = serialize_amount;
+  if (!fp->Serialize(&amount)) {
+    return false;
+  }
+  if (serialize_amount == LIGHT) {
+    return true; // We are done.
+  }
+  if (!fp->Serialize(&best_error_rate_)) {
+    return false;
+  }
+  if (!fp->Serialize(&best_error_rates_[0], countof(best_error_rates_))) {
+    return false;
+  }
+  if (!fp->Serialize(&best_iteration_)) {
+    return false;
+  }
+  if (!fp->Serialize(&worst_error_rate_)) {
+    return false;
+  }
+  if (!fp->Serialize(&worst_error_rates_[0], countof(worst_error_rates_))) {
+    return false;
+  }
+  if (!fp->Serialize(&worst_iteration_)) {
+    return false;
+  }
+  if (!fp->Serialize(&stall_iteration_)) {
+    return false;
+  }
+  if (!fp->Serialize(best_model_data_)) {
+    return false;
+  }
+  if (!fp->Serialize(worst_model_data_)) {
+    return false;
+  }
+  if (serialize_amount != NO_BEST_TRAINER && !fp->Serialize(best_trainer_)) {
+    return false;
+  }
+  std::vector<char> sub_data;
+  if (sub_trainer_ != nullptr &&
+      !SaveTrainingDump(LIGHT, *sub_trainer_, &sub_data)) {
+    return false;
+  }
+  if (!fp->Serialize(sub_data)) {
+    return false;
+  }
+  if (!fp->Serialize(best_error_history_)) {
+    return false;
+  }
+  if (!fp->Serialize(best_error_iterations_)) {
+    return false;
+  }
+  return fp->Serialize(&improvement_steps_);
+}
+
+// Reads from the given file. Returns false in case of error.
+// NOTE: It is assumed that the trainer is never read cross-endian.
+bool LSTMTrainer::DeSerialize(const TessdataManager *mgr, TFile *fp) {
+  if (!LSTMRecognizer::DeSerialize(mgr, fp)) {
+    return false;
+  }
+  if (!fp->DeSerialize(&learning_iteration_)) {
+    // Special case. If we successfully decoded the recognizer, but fail here
+    // then it means we were just given a recognizer, so issue a warning and
+    // allow it.
+    tprintf("Warning: LSTMTrainer deserialized an LSTMRecognizer!\n");
+    learning_iteration_ = 0;
+    network_->SetEnableTraining(TS_ENABLED);
+    return true;
+  }
+  if (!fp->DeSerialize(&prev_sample_iteration_)) {
+    return false;
+  }
+  if (!fp->DeSerialize(&perfect_delay_)) {
+    return false;
+  }
+  if (!fp->DeSerialize(&last_perfect_training_iteration_)) {
+    return false;
+  }
+  for (auto &error_buffer : error_buffers_) {
+    if (!fp->DeSerialize(error_buffer)) {
+      return false;
+    }
+  }
+  if (!fp->DeSerialize(&error_rates_[0], countof(error_rates_))) {
+    return false;
+  }
+  if (!fp->DeSerialize(&training_stage_)) {
+    return false;
+  }
+  uint8_t amount;
+  if (!fp->DeSerialize(&amount)) {
+    return false;
+  }
+  if (amount == LIGHT) {
+    return true; // Don't read the rest.
+  }
+  if (!fp->DeSerialize(&best_error_rate_)) {
+    return false;
+  }
+  if (!fp->DeSerialize(&best_error_rates_[0], countof(best_error_rates_))) {
+    return false;
+  }
+  if (!fp->DeSerialize(&best_iteration_)) {
+    return false;
+  }
+  if (!fp->DeSerialize(&worst_error_rate_)) {
+    return false;
+  }
+  if (!fp->DeSerialize(&worst_error_rates_[0], countof(worst_error_rates_))) {
+    return false;
+  }
+  if (!fp->DeSerialize(&worst_iteration_)) {
+    return false;
+  }
+  if (!fp->DeSerialize(&stall_iteration_)) {
+    return false;
+  }
+  if (!fp->DeSerialize(best_model_data_)) {
+    return false;
+  }
+  if (!fp->DeSerialize(worst_model_data_)) {
+    return false;
+  }
+  if (amount != NO_BEST_TRAINER && !fp->DeSerialize(best_trainer_)) {
+    return false;
+  }
+  std::vector<char> sub_data;
+  if (!fp->DeSerialize(sub_data)) {
+    return false;
+  }
+  if (sub_data.empty()) {
+    sub_trainer_ = nullptr;
+  } else {
+    sub_trainer_ = std::make_unique<LSTMTrainer>();
+    if (!ReadTrainingDump(sub_data, *sub_trainer_)) {
+      return false;
+    }
+  }
+  if (!fp->DeSerialize(best_error_history_)) {
+    return false;
+  }
+  if (!fp->DeSerialize(best_error_iterations_)) {
+    return false;
+  }
+  return fp->DeSerialize(&improvement_steps_);
+}
+
+// De-serializes the saved best_trainer_ into sub_trainer_, and adjusts the
+// learning rates (by scaling reduction, or layer specific, according to
+// NF_LAYER_SPECIFIC_LR).
+void LSTMTrainer::StartSubtrainer(std::stringstream &log_msg) {
+  sub_trainer_ = std::make_unique<LSTMTrainer>();
+  if (!ReadTrainingDump(best_trainer_, *sub_trainer_)) {
+    log_msg << " Failed to revert to previous best for trial!";
+    sub_trainer_.reset();
+  } else {
+    log_msg << " Trial sub_trainer_ from iteration "
+            << sub_trainer_->training_iteration();
+    // Reduce learning rate so it doesn't diverge this time.
+    sub_trainer_->ReduceLearningRates(this, log_msg);
+    // If it fails again, we will wait twice as long before reverting again.
+    int stall_offset =
+        learning_iteration() - sub_trainer_->learning_iteration();
+    stall_iteration_ = learning_iteration() + 2 * stall_offset;
+    sub_trainer_->stall_iteration_ = stall_iteration_;
+    // Re-save the best trainer with the new learning rates and stall iteration.
+    SaveTrainingDump(NO_BEST_TRAINER, *sub_trainer_, &best_trainer_);
+  }
+}
+
+// While the sub_trainer_ is behind the current training iteration and its
+// training error is at least kSubTrainerMarginFraction better than the
+// current training error, trains the sub_trainer_, and returns STR_UPDATED if
+// it did anything. If it catches up, and has a better error rate than the
+// current best, as well as a margin over the current error rate, then the
+// trainer in *this is replaced with sub_trainer_, and STR_REPLACED is
+// returned. STR_NONE is returned if the subtrainer wasn't good enough to
+// receive any training iterations.
+SubTrainerResult LSTMTrainer::UpdateSubtrainer(std::stringstream &log_msg) {
+  double training_error = CharError();
+  double sub_error = sub_trainer_->CharError();
+  double sub_margin = (training_error - sub_error) / sub_error;
+  if (sub_margin >= kSubTrainerMarginFraction) {
+    log_msg << " sub_trainer=" << sub_error
+            << " margin=" << 100.0 * sub_margin << "\n";
+    // Catch up to current iteration.
+    int end_iteration = training_iteration();
+    while (sub_trainer_->training_iteration() < end_iteration &&
+           sub_margin >= kSubTrainerMarginFraction) {
+      int target_iteration =
+          sub_trainer_->training_iteration() + kNumPagesPerBatch;
+      while (sub_trainer_->training_iteration() < target_iteration) {
+        sub_trainer_->TrainOnLine(this, false);
+      }
+      std::stringstream batch_log("Sub:");
+      batch_log.imbue(std::locale::classic());
+      sub_trainer_->PrepareLogMsg(batch_log);
+      batch_log << "\n";
+      tprintf("UpdateSubtrainer:%s", batch_log.str().c_str());
+      log_msg << batch_log.str();
+      sub_error = sub_trainer_->CharError();
+      sub_margin = (training_error - sub_error) / sub_error;
+    }
+    if (sub_error < best_error_rate_ &&
+        sub_margin >= kSubTrainerMarginFraction) {
+      // The sub_trainer_ has won the race to a new best. Switch to it.
+      std::vector<char> updated_trainer;
+      SaveTrainingDump(LIGHT, *sub_trainer_, &updated_trainer);
+      ReadTrainingDump(updated_trainer, *this);
+      log_msg << " Sub trainer wins at iteration "
+              << training_iteration() << "\n";
+      return STR_REPLACED;
+    }
+    return STR_UPDATED;
+  }
+  return STR_NONE;
+}
+
+// Reduces network learning rates, either for everything, or for layers
+// independently, according to NF_LAYER_SPECIFIC_LR.
+void LSTMTrainer::ReduceLearningRates(LSTMTrainer *samples_trainer,
+                                      std::stringstream &log_msg) {
+  if (network_->TestFlag(NF_LAYER_SPECIFIC_LR)) {
+    int num_reduced = ReduceLayerLearningRates(
+        kLearningRateDecay, kNumAdjustmentIterations, samples_trainer);
+    log_msg << "\nReduced learning rate on layers: " << num_reduced;
+  } else {
+    ScaleLearningRate(kLearningRateDecay);
+    log_msg << "\nReduced learning rate to :" << learning_rate_;
+  }
+  log_msg << "\n";
+}
+
+// Considers reducing the learning rate independently for each layer down by
+// factor(<1), or leaving it the same, by double-training the given number of
+// samples and minimizing the amount of changing of sign of weight updates.
+// Even if it looks like all weights should remain the same, an adjustment
+// will be made to guarantee a different result when reverting to an old best.
+// Returns the number of layer learning rates that were reduced.
+int LSTMTrainer::ReduceLayerLearningRates(TFloat factor, int num_samples,
+                                          LSTMTrainer *samples_trainer) {
+  enum WhichWay {
+    LR_DOWN, // Learning rate will go down by factor.
+    LR_SAME, // Learning rate will stay the same.
+    LR_COUNT // Size of arrays.
+  };
+  std::vector<std::string> layers = EnumerateLayers();
+  int num_layers = layers.size();
+  std::vector<int> num_weights(num_layers);
+  std::vector<TFloat> bad_sums[LR_COUNT];
+  std::vector<TFloat> ok_sums[LR_COUNT];
+  for (int i = 0; i < LR_COUNT; ++i) {
+    bad_sums[i].resize(num_layers, 0.0);
+    ok_sums[i].resize(num_layers, 0.0);
+  }
+  auto momentum_factor = 1 / (1 - momentum_);
+  std::vector<char> orig_trainer;
+  samples_trainer->SaveTrainingDump(LIGHT, *this, &orig_trainer);
+  for (int i = 0; i < num_layers; ++i) {
+    Network *layer = GetLayer(layers[i]);
+    num_weights[i] = layer->IsTraining() ? layer->num_weights() : 0;
+  }
+  int iteration = sample_iteration();
+  for (int s = 0; s < num_samples; ++s) {
+    // Which way will we modify the learning rate?
+    for (int ww = 0; ww < LR_COUNT; ++ww) {
+      // Transfer momentum to learning rate and adjust by the ww factor.
+      auto ww_factor = momentum_factor;
+      if (ww == LR_DOWN) {
+        ww_factor *= factor;
+      }
+      // Make a copy of *this, so we can mess about without damaging anything.
+      LSTMTrainer copy_trainer;
+      samples_trainer->ReadTrainingDump(orig_trainer, copy_trainer);
+      // Clear the updates, doing nothing else.
+      copy_trainer.network_->Update(0.0, 0.0, 0.0, 0);
+      // Adjust the learning rate in each layer.
+      for (int i = 0; i < num_layers; ++i) {
+        if (num_weights[i] == 0) {
+          continue;
+        }
+        copy_trainer.ScaleLayerLearningRate(layers[i], ww_factor);
+      }
+      copy_trainer.SetIteration(iteration);
+      // Train on the sample, but keep the update in updates_ instead of
+      // applying to the weights.
+      const ImageData *trainingdata =
+          copy_trainer.TrainOnLine(samples_trainer, true);
+      if (trainingdata == nullptr) {
+        continue;
+      }
+      // We'll now use this trainer again for each layer.
+      std::vector<char> updated_trainer;
+      samples_trainer->SaveTrainingDump(LIGHT, copy_trainer, &updated_trainer);
+      for (int i = 0; i < num_layers; ++i) {
+        if (num_weights[i] == 0) {
+          continue;
+        }
+        LSTMTrainer layer_trainer;
+        samples_trainer->ReadTrainingDump(updated_trainer, layer_trainer);
+        Network *layer = layer_trainer.GetLayer(layers[i]);
+        // Update the weights in just the layer, using Adam if enabled.
+        layer->Update(0.0, momentum_, adam_beta_,
+                      layer_trainer.training_iteration_ + 1);
+        // Zero the updates matrix again.
+        layer->Update(0.0, 0.0, 0.0, 0);
+        // Train again on the same sample, again holding back the updates.
+        layer_trainer.TrainOnLine(trainingdata, true);
+        // Count the sign changes in the updates in layer vs in copy_trainer.
+        float before_bad = bad_sums[ww][i];
+        float before_ok = ok_sums[ww][i];
+        layer->CountAlternators(*copy_trainer.GetLayer(layers[i]),
+                                &ok_sums[ww][i], &bad_sums[ww][i]);
+        float bad_frac =
+            bad_sums[ww][i] + ok_sums[ww][i] - before_bad - before_ok;
+        if (bad_frac > 0.0f) {
+          bad_frac = (bad_sums[ww][i] - before_bad) / bad_frac;
+        }
+      }
+    }
+    ++iteration;
+  }
+  int num_lowered = 0;
+  for (int i = 0; i < num_layers; ++i) {
+    if (num_weights[i] == 0) {
+      continue;
+    }
+    Network *layer = GetLayer(layers[i]);
+    float lr = GetLayerLearningRate(layers[i]);
+    TFloat total_down = bad_sums[LR_DOWN][i] + ok_sums[LR_DOWN][i];
+    TFloat total_same = bad_sums[LR_SAME][i] + ok_sums[LR_SAME][i];
+    TFloat frac_down = bad_sums[LR_DOWN][i] / total_down;
+    TFloat frac_same = bad_sums[LR_SAME][i] / total_same;
+    tprintf("Layer %d=%s: lr %g->%g%%, lr %g->%g%%", i, layer->name().c_str(),
+            lr * factor, 100.0 * frac_down, lr, 100.0 * frac_same);
+    if (frac_down < frac_same * kImprovementFraction) {
+      tprintf(" REDUCED\n");
+      ScaleLayerLearningRate(layers[i], factor);
+      ++num_lowered;
+    } else {
+      tprintf(" SAME\n");
+    }
+  }
+  if (num_lowered == 0) {
+    // Just lower everything to make sure.
+    for (int i = 0; i < num_layers; ++i) {
+      if (num_weights[i] > 0) {
+        ScaleLayerLearningRate(layers[i], factor);
+        ++num_lowered;
+      }
+    }
+  }
+  return num_lowered;
+}
+
+// Converts the string to integer class labels, with appropriate null_char_s
+// in between if not in SimpleTextOutput mode. Returns false on failure.
+/* static */
+bool LSTMTrainer::EncodeString(const std::string &str,
+                               const UNICHARSET &unicharset,
+                               const UnicharCompress *recoder, bool simple_text,
+                               int null_char, std::vector<int> *labels) {
+  if (str.c_str() == nullptr || str.length() <= 0) {
+    tprintf("Empty truth string!\n");
+    return false;
+  }
+  unsigned err_index;
+  std::vector<int> internal_labels;
+  labels->clear();
+  if (!simple_text) {
+    labels->push_back(null_char);
+  }
+  std::string cleaned = unicharset.CleanupString(str.c_str());
+  if (unicharset.encode_string(cleaned.c_str(), true, &internal_labels, nullptr,
+                               &err_index)) {
+    bool success = true;
+    for (auto internal_label : internal_labels) {
+      if (recoder != nullptr) {
+        // Re-encode labels via recoder.
+        RecodedCharID code;
+        int len = recoder->EncodeUnichar(internal_label, &code);
+        if (len > 0) {
+          for (int j = 0; j < len; ++j) {
+            labels->push_back(code(j));
+            if (!simple_text) {
+              labels->push_back(null_char);
+            }
+          }
+        } else {
+          success = false;
+          err_index = 0;
+          break;
+        }
+      } else {
+        labels->push_back(internal_label);
+        if (!simple_text) {
+          labels->push_back(null_char);
+        }
+      }
+    }
+    if (success) {
+      return true;
+    }
+  }
+  tprintf("Encoding of string failed! Failure bytes:");
+  while (err_index < cleaned.size()) {
+    tprintf(" %x", cleaned[err_index++] & 0xff);
+  }
+  tprintf("\n");
+  return false;
+}
+
+// Performs forward-backward on the given trainingdata.
+// Returns a Trainability enum to indicate the suitability of the sample.
+Trainability LSTMTrainer::TrainOnLine(const ImageData *trainingdata,
+                                      bool batch) {
+  NetworkIO fwd_outputs, targets;
+  Trainability trainable =
+      PrepareForBackward(trainingdata, &fwd_outputs, &targets);
+  ++sample_iteration_;
+  if (trainable == UNENCODABLE || trainable == NOT_BOXED) {
+    return trainable; // Sample was unusable.
+  }
+  bool debug =
+      debug_interval_ > 0 && training_iteration() % debug_interval_ == 0;
+  // Run backprop on the output.
+  NetworkIO bp_deltas;
+  if (network_->IsTraining() &&
+      (trainable != PERFECT ||
+       training_iteration() >
+           last_perfect_training_iteration_ + perfect_delay_)) {
+    network_->Backward(debug, targets, &scratch_space_, &bp_deltas);
+    network_->Update(learning_rate_, batch ? -1.0f : momentum_, adam_beta_,
+                     training_iteration_ + 1);
+  }
+#ifndef GRAPHICS_DISABLED
+  if (debug_interval_ == 1 && debug_win_ != nullptr) {
+    debug_win_->AwaitEvent(SVET_CLICK);
+  }
+#endif // !GRAPHICS_DISABLED
+  // Roll the memory of past means.
+  RollErrorBuffers();
+  return trainable;
+}
+
+// Prepares the ground truth, runs forward, and prepares the targets.
+// Returns a Trainability enum to indicate the suitability of the sample.
+Trainability LSTMTrainer::PrepareForBackward(const ImageData *trainingdata,
+                                             NetworkIO *fwd_outputs,
+                                             NetworkIO *targets) {
+  if (trainingdata == nullptr) {
+    tprintf("Null trainingdata.\n");
+    return UNENCODABLE;
+  }
+  // Ensure repeatability of random elements even across checkpoints.
+  bool debug =
+      debug_interval_ > 0 && training_iteration() % debug_interval_ == 0;
+  std::vector<int> truth_labels;
+  if (!EncodeString(trainingdata->transcription(), &truth_labels)) {
+    tprintf("Can't encode transcription: '%s' in language '%s'\n",
+            trainingdata->transcription().c_str(),
+            trainingdata->language().c_str());
+    return UNENCODABLE;
+  }
+  bool upside_down = false;
+  if (randomly_rotate_) {
+    // This ensures consistent training results.
+    SetRandomSeed();
+    upside_down = randomizer_.SignedRand(1.0) > 0.0;
+    if (upside_down) {
+      // Modify the truth labels to match the rotation:
+      // Apart from space and null, increment the label. This changes the
+      // script-id to the same script-id but upside-down.
+      // The labels need to be reversed in order, as the first is now the last.
+      for (auto truth_label : truth_labels) {
+        if (truth_label != UNICHAR_SPACE && truth_label != null_char_) {
+          ++truth_label;
+        }
+      }
+      std::reverse(truth_labels.begin(), truth_labels.end());
+    }
+  }
+  unsigned w = 0;
+  while (w < truth_labels.size() &&
+         (truth_labels[w] == UNICHAR_SPACE || truth_labels[w] == null_char_)) {
+    ++w;
+  }
+  if (w == truth_labels.size()) {
+    tprintf("Blank transcription: %s\n", trainingdata->transcription().c_str());
+    return UNENCODABLE;
+  }
+  float image_scale;
+  NetworkIO inputs;
+  bool invert = trainingdata->boxes().empty();
+  if (!RecognizeLine(*trainingdata, invert ? 0.5f : 0.0f, debug, invert, upside_down,
+                     &image_scale, &inputs, fwd_outputs)) {
+    tprintf("Image %s not trainable\n", trainingdata->imagefilename().c_str());
+    return UNENCODABLE;
+  }
+  targets->Resize(*fwd_outputs, network_->NumOutputs());
+  LossType loss_type = OutputLossType();
+  if (loss_type == LT_SOFTMAX) {
+    if (!ComputeTextTargets(*fwd_outputs, truth_labels, targets)) {
+      tprintf("Compute simple targets failed for %s!\n",
+              trainingdata->imagefilename().c_str());
+      return UNENCODABLE;
+    }
+  } else if (loss_type == LT_CTC) {
+    if (!ComputeCTCTargets(truth_labels, fwd_outputs, targets)) {
+      tprintf("Compute CTC targets failed for %s!\n",
+              trainingdata->imagefilename().c_str());
+      return UNENCODABLE;
+    }
+  } else {
+    tprintf("Logistic outputs not implemented yet!\n");
+    return UNENCODABLE;
+  }
+  std::vector<int> ocr_labels;
+  std::vector<int> xcoords;
+  LabelsFromOutputs(*fwd_outputs, &ocr_labels, &xcoords);
+  // CTC does not produce correct target labels to begin with.
+  if (loss_type != LT_CTC) {
+    LabelsFromOutputs(*targets, &truth_labels, &xcoords);
+  }
+  if (!DebugLSTMTraining(inputs, *trainingdata, *fwd_outputs, truth_labels,
+                         *targets)) {
+    tprintf("Input width was %d\n", inputs.Width());
+    return UNENCODABLE;
+  }
+  std::string ocr_text = DecodeLabels(ocr_labels);
+  std::string truth_text = DecodeLabels(truth_labels);
+  targets->SubtractAllFromFloat(*fwd_outputs);
+  if (debug_interval_ != 0) {
+    if (truth_text != ocr_text) {
+      tprintf("Iteration %d: BEST OCR TEXT : %s\n", training_iteration(),
+              ocr_text.c_str());
+    }
+  }
+  double char_error = ComputeCharError(truth_labels, ocr_labels);
+  double word_error = ComputeWordError(&truth_text, &ocr_text);
+  double delta_error = ComputeErrorRates(*targets, char_error, word_error);
+  if (debug_interval_ != 0) {
+    tprintf("File %s line %d %s:\n", trainingdata->imagefilename().c_str(),
+            trainingdata->page_number(), delta_error == 0.0 ? "(Perfect)" : "");
+  }
+  if (delta_error == 0.0) {
+    return PERFECT;
+  }
+  if (targets->AnySuspiciousTruth(kHighConfidence)) {
+    return HI_PRECISION_ERR;
+  }
+  return TRAINABLE;
+}
+
+// Writes the trainer to memory, so that the current training state can be
+// restored.  *this must always be the master trainer that retains the only
+// copy of the training data and language model. trainer is the model that is
+// actually serialized.
+bool LSTMTrainer::SaveTrainingDump(SerializeAmount serialize_amount,
+                                   const LSTMTrainer &trainer,
+                                   std::vector<char> *data) const {
+  TFile fp;
+  fp.OpenWrite(data);
+  return trainer.Serialize(serialize_amount, &mgr_, &fp);
+}
+
+// Restores the model to *this.
+bool LSTMTrainer::ReadLocalTrainingDump(const TessdataManager *mgr,
+                                        const char *data, int size) {
+  if (size == 0) {
+    tprintf("Warning: data size is 0 in LSTMTrainer::ReadLocalTrainingDump\n");
+    return false;
+  }
+  TFile fp;
+  fp.Open(data, size);
+  return DeSerialize(mgr, &fp);
+}
+
+// Writes the full recognition traineddata to the given filename.
+bool LSTMTrainer::SaveTraineddata(const char *filename) {
+  std::vector<char> recognizer_data;
+  SaveRecognitionDump(&recognizer_data);
+  mgr_.OverwriteEntry(TESSDATA_LSTM, &recognizer_data[0],
+                      recognizer_data.size());
+  return mgr_.SaveFile(filename, SaveDataToFile);
+}
+
+// Writes the recognizer to memory, so that it can be used for testing later.
+void LSTMTrainer::SaveRecognitionDump(std::vector<char> *data) const {
+  TFile fp;
+  fp.OpenWrite(data);
+  network_->SetEnableTraining(TS_TEMP_DISABLE);
+  ASSERT_HOST(LSTMRecognizer::Serialize(&mgr_, &fp));
+  network_->SetEnableTraining(TS_RE_ENABLE);
+}
+
+// Returns a suitable filename for a training dump, based on the model_base_,
+// best_error_rate_, best_iteration_ and training_iteration_.
+std::string LSTMTrainer::DumpFilename() const {
+  std::stringstream filename;
+  filename.imbue(std::locale::classic());
+  filename << model_base_ << std::fixed << std::setprecision(3)
+           << "_" << best_error_rate_
+           << "_" << best_iteration_
+           << "_" << training_iteration_
+           << ".checkpoint";
+  return filename.str();
+}
+
+// Fills the whole error buffer of the given type with the given value.
+void LSTMTrainer::FillErrorBuffer(double new_error, ErrorTypes type) {
+  for (int i = 0; i < kRollingBufferSize_; ++i) {
+    error_buffers_[type][i] = new_error;
+  }
+  error_rates_[type] = 100.0 * new_error;
+}
+
+// Helper generates a map from each current recoder_ code (ie softmax index)
+// to the corresponding old_recoder code, or -1 if there isn't one.
+std::vector<int> LSTMTrainer::MapRecoder(
+    const UNICHARSET &old_chset, const UnicharCompress &old_recoder) const {
+  int num_new_codes = recoder_.code_range();
+  int num_new_unichars = GetUnicharset().size();
+  std::vector<int> code_map(num_new_codes, -1);
+  for (int c = 0; c < num_new_codes; ++c) {
+    int old_code = -1;
+    // Find all new unichar_ids that recode to something that includes c.
+    // The <= is to include the null char, which may be beyond the unicharset.
+    for (int uid = 0; uid <= num_new_unichars; ++uid) {
+      RecodedCharID codes;
+      int length = recoder_.EncodeUnichar(uid, &codes);
+      int code_index = 0;
+      while (code_index < length && codes(code_index) != c) {
+        ++code_index;
+      }
+      if (code_index == length) {
+        continue;
+      }
+      // The old unicharset must have the same unichar.
+      int old_uid =
+          uid < num_new_unichars
+              ? old_chset.unichar_to_id(GetUnicharset().id_to_unichar(uid))
+              : old_chset.size() - 1;
+      if (old_uid == INVALID_UNICHAR_ID) {
+        continue;
+      }
+      // The encoding of old_uid at the same code_index is the old code.
+      RecodedCharID old_codes;
+      if (code_index < old_recoder.EncodeUnichar(old_uid, &old_codes)) {
+        old_code = old_codes(code_index);
+        break;
+      }
+    }
+    code_map[c] = old_code;
+  }
+  return code_map;
+}
+
+// Private version of InitCharSet above finishes the job after initializing
+// the mgr_ data member.
+void LSTMTrainer::InitCharSet() {
+  EmptyConstructor();
+  training_flags_ = TF_COMPRESS_UNICHARSET;
+  // Initialize the unicharset and recoder.
+  if (!LoadCharsets(&mgr_)) {
+    ASSERT_HOST(
+        "Must provide a traineddata containing lstm_unicharset and"
+        " lstm_recoder!\n" != nullptr);
+  }
+  SetNullChar();
+}
+
+// Helper computes and sets the null_char_.
+void LSTMTrainer::SetNullChar() {
+  null_char_ = GetUnicharset().has_special_codes() ? UNICHAR_BROKEN
+                                                   : GetUnicharset().size();
+  RecodedCharID code;
+  recoder_.EncodeUnichar(null_char_, &code);
+  null_char_ = code(0);
+}
+
+// Factored sub-constructor sets up reasonable default values.
+void LSTMTrainer::EmptyConstructor() {
+#ifndef GRAPHICS_DISABLED
+  align_win_ = nullptr;
+  target_win_ = nullptr;
+  ctc_win_ = nullptr;
+  recon_win_ = nullptr;
+#endif
+  checkpoint_iteration_ = 0;
+  training_stage_ = 0;
+  num_training_stages_ = 2;
+  InitIterations();
+}
+
+// Outputs the string and periodically displays the given network inputs
+// as an image in the given window, and the corresponding labels at the
+// corresponding x_starts.
+// Returns false if the truth string is empty.
+bool LSTMTrainer::DebugLSTMTraining(const NetworkIO &inputs,
+                                    const ImageData &trainingdata,
+                                    const NetworkIO &fwd_outputs,
+                                    const std::vector<int> &truth_labels,
+                                    const NetworkIO &outputs) {
+  const std::string &truth_text = DecodeLabels(truth_labels);
+  if (truth_text.c_str() == nullptr || truth_text.length() <= 0) {
+    tprintf("Empty truth string at decode time!\n");
+    return false;
+  }
+  if (debug_interval_ != 0) {
+    // Get class labels, xcoords and string.
+    std::vector<int> labels;
+    std::vector<int> xcoords;
+    LabelsFromOutputs(outputs, &labels, &xcoords);
+    std::string text = DecodeLabels(labels);
+    tprintf("Iteration %d: GROUND  TRUTH : %s\n", training_iteration(),
+            truth_text.c_str());
+    if (truth_text != text) {
+      tprintf("Iteration %d: ALIGNED TRUTH : %s\n", training_iteration(),
+              text.c_str());
+    }
+    if (debug_interval_ > 0 && training_iteration() % debug_interval_ == 0) {
+      tprintf("TRAINING activation path for truth string %s\n",
+              truth_text.c_str());
+      DebugActivationPath(outputs, labels, xcoords);
+#ifndef GRAPHICS_DISABLED
+      DisplayForward(inputs, labels, xcoords, "LSTMTraining", &align_win_);
+      if (OutputLossType() == LT_CTC) {
+        DisplayTargets(fwd_outputs, "CTC Outputs", &ctc_win_);
+        DisplayTargets(outputs, "CTC Targets", &target_win_);
+      }
+#endif
+    }
+  }
+  return true;
+}
+
+#ifndef GRAPHICS_DISABLED
+
+// Displays the network targets as line a line graph.
+void LSTMTrainer::DisplayTargets(const NetworkIO &targets,
+                                 const char *window_name, ScrollView **window) {
+  int width = targets.Width();
+  int num_features = targets.NumFeatures();
+  Network::ClearWindow(true, window_name, width * kTargetXScale, kTargetYScale,
+                       window);
+  for (int c = 0; c < num_features; ++c) {
+    int color = c % (ScrollView::GREEN_YELLOW - 1) + 2;
+    (*window)->Pen(static_cast<ScrollView::Color>(color));
+    int start_t = -1;
+    for (int t = 0; t < width; ++t) {
+      double target = targets.f(t)[c];
+      target *= kTargetYScale;
+      if (target >= 1) {
+        if (start_t < 0) {
+          (*window)->SetCursor(t - 1, 0);
+          start_t = t;
+        }
+        (*window)->DrawTo(t, target);
+      } else if (start_t >= 0) {
+        (*window)->DrawTo(t, 0);
+        (*window)->DrawTo(start_t - 1, 0);
+        start_t = -1;
+      }
+    }
+    if (start_t >= 0) {
+      (*window)->DrawTo(width, 0);
+      (*window)->DrawTo(start_t - 1, 0);
+    }
+  }
+  (*window)->Update();
+}
+
+#endif // !GRAPHICS_DISABLED
+
+// Builds a no-compromises target where the first positions should be the
+// truth labels and the rest is padded with the null_char_.
+bool LSTMTrainer::ComputeTextTargets(const NetworkIO &outputs,
+                                     const std::vector<int> &truth_labels,
+                                     NetworkIO *targets) {
+  if (truth_labels.size() > targets->Width()) {
+    tprintf("Error: transcription %s too long to fit into target of width %d\n",
+            DecodeLabels(truth_labels).c_str(), targets->Width());
+    return false;
+  }
+  int i = 0;
+  for (auto truth_label : truth_labels) {
+    targets->SetActivations(i, truth_label, 1.0);
+    ++i;
+  }
+  for (i = truth_labels.size(); i < targets->Width(); ++i) {
+    targets->SetActivations(i, null_char_, 1.0);
+  }
+  return true;
+}
+
+// Builds a target using standard CTC. truth_labels should be pre-padded with
+// nulls wherever desired. They don't have to be between all labels.
+// outputs is input-output, as it gets clipped to minimum probability.
+bool LSTMTrainer::ComputeCTCTargets(const std::vector<int> &truth_labels,
+                                    NetworkIO *outputs, NetworkIO *targets) {
+  // Bottom-clip outputs to a minimum probability.
+  CTC::NormalizeProbs(outputs);
+  return CTC::ComputeCTCTargets(truth_labels, null_char_,
+                                outputs->float_array(), targets);
+}
+
+// Computes network errors, and stores the results in the rolling buffers,
+// along with the supplied text_error.
+// Returns the delta error of the current sample (not running average.)
+double LSTMTrainer::ComputeErrorRates(const NetworkIO &deltas,
+                                      double char_error, double word_error) {
+  UpdateErrorBuffer(ComputeRMSError(deltas), ET_RMS);
+  // Delta error is the fraction of timesteps with >0.5 error in the top choice
+  // score. If zero, then the top choice characters are guaranteed correct,
+  // even when there is residue in the RMS error.
+  double delta_error = ComputeWinnerError(deltas);
+  UpdateErrorBuffer(delta_error, ET_DELTA);
+  UpdateErrorBuffer(word_error, ET_WORD_RECERR);
+  UpdateErrorBuffer(char_error, ET_CHAR_ERROR);
+  // Skip ratio measures the difference between sample_iteration_ and
+  // training_iteration_, which reflects the number of unusable samples,
+  // usually due to unencodable truth text, or the text not fitting in the
+  // space for the output.
+  double skip_count = sample_iteration_ - prev_sample_iteration_;
+  UpdateErrorBuffer(skip_count, ET_SKIP_RATIO);
+  return delta_error;
+}
+
+// Computes the network activation RMS error rate.
+double LSTMTrainer::ComputeRMSError(const NetworkIO &deltas) {
+  double total_error = 0.0;
+  int width = deltas.Width();
+  int num_classes = deltas.NumFeatures();
+  for (int t = 0; t < width; ++t) {
+    const float *class_errs = deltas.f(t);
+    for (int c = 0; c < num_classes; ++c) {
+      double error = class_errs[c];
+      total_error += error * error;
+    }
+  }
+  return sqrt(total_error / (width * num_classes));
+}
+
+// Computes network activation winner error rate. (Number of values that are
+// in error by >= 0.5 divided by number of time-steps.) More closely related
+// to final character error than RMS, but still directly calculable from
+// just the deltas. Because of the binary nature of the targets, zero winner
+// error is a sufficient but not necessary condition for zero char error.
+double LSTMTrainer::ComputeWinnerError(const NetworkIO &deltas) {
+  int num_errors = 0;
+  int width = deltas.Width();
+  int num_classes = deltas.NumFeatures();
+  for (int t = 0; t < width; ++t) {
+    const float *class_errs = deltas.f(t);
+    for (int c = 0; c < num_classes; ++c) {
+      float abs_delta = std::fabs(class_errs[c]);
+      // TODO(rays) Filtering cases where the delta is very large to cut out
+      // GT errors doesn't work. Find a better way or get better truth.
+      if (0.5 <= abs_delta) {
+        ++num_errors;
+      }
+    }
+  }
+  return static_cast<double>(num_errors) / width;
+}
+
+// Computes a very simple bag of chars char error rate.
+double LSTMTrainer::ComputeCharError(const std::vector<int> &truth_str,
+                                     const std::vector<int> &ocr_str) {
+  std::vector<int> label_counts(NumOutputs());
+  unsigned truth_size = 0;
+  for (auto ch : truth_str) {
+    if (ch != null_char_) {
+      ++label_counts[ch];
+      ++truth_size;
+    }
+  }
+  for (auto ch : ocr_str) {
+    if (ch != null_char_) {
+      --label_counts[ch];
+    }
+  }
+  unsigned char_errors = 0;
+  for (auto label_count : label_counts) {
+    char_errors += abs(label_count);
+  }
+  // Limit BCER to interval [0,1] and avoid division by zero.
+  if (truth_size <= char_errors) {
+    return (char_errors == 0) ? 0.0 : 1.0;
+  }
+  return static_cast<double>(char_errors) / truth_size;
+}
+
+// Computes word recall error rate using a very simple bag of words algorithm.
+// NOTE that this is destructive on both input strings.
+double LSTMTrainer::ComputeWordError(std::string *truth_str,
+                                     std::string *ocr_str) {
+  using StrMap = std::unordered_map<std::string, int, std::hash<std::string>>;
+  std::vector<std::string> truth_words = split(*truth_str, ' ');
+  if (truth_words.empty()) {
+    return 0.0;
+  }
+  std::vector<std::string> ocr_words = split(*ocr_str, ' ');
+  StrMap word_counts;
+  for (const auto &truth_word : truth_words) {
+    std::string truth_word_string(truth_word.c_str());
+    auto it = word_counts.find(truth_word_string);
+    if (it == word_counts.end()) {
+      word_counts.insert(std::make_pair(truth_word_string, 1));
+    } else {
+      ++it->second;
+    }
+  }
+  for (const auto &ocr_word : ocr_words) {
+    std::string ocr_word_string(ocr_word.c_str());
+    auto it = word_counts.find(ocr_word_string);
+    if (it == word_counts.end()) {
+      word_counts.insert(std::make_pair(ocr_word_string, -1));
+    } else {
+      --it->second;
+    }
+  }
+  int word_recall_errs = 0;
+  for (const auto &word_count : word_counts) {
+    if (word_count.second > 0) {
+      word_recall_errs += word_count.second;
+    }
+  }
+  return static_cast<double>(word_recall_errs) / truth_words.size();
+}
+
+// Updates the error buffer and corresponding mean of the given type with
+// the new_error.
+void LSTMTrainer::UpdateErrorBuffer(double new_error, ErrorTypes type) {
+  int index = training_iteration_ % kRollingBufferSize_;
+  error_buffers_[type][index] = new_error;
+  // Compute the mean error.
+  int mean_count =
+      std::min<int>(training_iteration_ + 1, error_buffers_[type].size());
+  double buffer_sum = 0.0;
+  for (int i = 0; i < mean_count; ++i) {
+    buffer_sum += error_buffers_[type][i];
+  }
+  double mean = buffer_sum / mean_count;
+  // Trim precision to 1/1000 of 1%.
+  error_rates_[type] = IntCastRounded(100000.0 * mean) / 1000.0;
+}
+
+// Rolls error buffers and reports the current means.
+void LSTMTrainer::RollErrorBuffers() {
+  prev_sample_iteration_ = sample_iteration_;
+  if (NewSingleError(ET_DELTA) > 0.0) {
+    ++learning_iteration_;
+  } else {
+    last_perfect_training_iteration_ = training_iteration_;
+  }
+  ++training_iteration_;
+  if (debug_interval_ != 0) {
+    tprintf("Mean rms=%g%%, delta=%g%%, train=%g%%(%g%%), skip ratio=%g%%\n",
+            error_rates_[ET_RMS], error_rates_[ET_DELTA],
+            error_rates_[ET_CHAR_ERROR], error_rates_[ET_WORD_RECERR],
+            error_rates_[ET_SKIP_RATIO]);
+  }
+}
+
+// Given that error_rate is either a new min or max, updates the best/worst
+// error rates, and record of progress.
+// Tester is an externally supplied callback function that tests on some
+// data set with a given model and records the error rates in a graph.
+std::string LSTMTrainer::UpdateErrorGraph(int iteration, double error_rate,
+                                          const std::vector<char> &model_data,
+                                          const TestCallback &tester) {
+  if (error_rate > best_error_rate_ &&
+      iteration < best_iteration_ + kErrorGraphInterval) {
+    // Too soon to record a new point.
+    if (tester != nullptr && !worst_model_data_.empty()) {
+      mgr_.OverwriteEntry(TESSDATA_LSTM, &worst_model_data_[0],
+                          worst_model_data_.size());
+      return tester(worst_iteration_, nullptr, mgr_, CurrentTrainingStage());
+    } else {
+      return "";
+    }
+  }
+  std::string result;
+  // NOTE: there are 2 asymmetries here:
+  // 1. We are computing the global minimum, but the local maximum in between.
+  // 2. If the tester returns an empty string, indicating that it is busy,
+  //    call it repeatedly on new local maxima to test the previous min, but
+  //    not the other way around, as there is little point testing the maxima
+  //    between very frequent minima.
+  if (error_rate < best_error_rate_) {
+    // This is a new (global) minimum.
+    if (tester != nullptr && !worst_model_data_.empty()) {
+      mgr_.OverwriteEntry(TESSDATA_LSTM, &worst_model_data_[0],
+                          worst_model_data_.size());
+      result = tester(worst_iteration_, worst_error_rates_, mgr_,
+                      CurrentTrainingStage());
+      worst_model_data_.clear();
+      best_model_data_ = model_data;
+    }
+    best_error_rate_ = error_rate;
+    memcpy(best_error_rates_, error_rates_, sizeof(error_rates_));
+    best_iteration_ = iteration;
+    best_error_history_.push_back(error_rate);
+    best_error_iterations_.push_back(iteration);
+    // Compute 2% decay time.
+    double two_percent_more = error_rate + 2.0;
+    int i;
+    for (i = best_error_history_.size() - 1;
+         i >= 0 && best_error_history_[i] < two_percent_more; --i) {
+    }
+    int old_iteration = i >= 0 ? best_error_iterations_[i] : 0;
+    improvement_steps_ = iteration - old_iteration;
+    tprintf("2 Percent improvement time=%d, best error was %g @ %d\n",
+            improvement_steps_, i >= 0 ? best_error_history_[i] : 100.0,
+            old_iteration);
+  } else if (error_rate > best_error_rate_) {
+    // This is a new (local) maximum.
+    if (tester != nullptr) {
+      if (!best_model_data_.empty()) {
+        mgr_.OverwriteEntry(TESSDATA_LSTM, &best_model_data_[0],
+                            best_model_data_.size());
+        result = tester(best_iteration_, best_error_rates_, mgr_,
+                        CurrentTrainingStage());
+      } else if (!worst_model_data_.empty()) {
+        // Allow for multiple data points with "worst" error rate.
+        mgr_.OverwriteEntry(TESSDATA_LSTM, &worst_model_data_[0],
+                            worst_model_data_.size());
+        result = tester(worst_iteration_, worst_error_rates_, mgr_,
+                        CurrentTrainingStage());
+      }
+      if (result.length() > 0) {
+        best_model_data_.clear();
+      }
+      worst_model_data_ = model_data;
+    }
+  }
+  worst_error_rate_ = error_rate;
+  memcpy(worst_error_rates_, error_rates_, sizeof(error_rates_));
+  worst_iteration_ = iteration;
+  return result;
+}
+
+} // namespace tesseract.