Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/tesseract/src/training/common/networkbuilder.h @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/tesseract/src/training/common/networkbuilder.h Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,156 @@ +/////////////////////////////////////////////////////////////////////// +// File: networkbuilder.h +// Description: Class to parse the network description language and +// build a corresponding network. +// Author: Ray Smith +// +// (C) Copyright 2014, Google Inc. +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +/////////////////////////////////////////////////////////////////////// + +#ifndef TESSERACT_LSTM_NETWORKBUILDER_H_ +#define TESSERACT_LSTM_NETWORKBUILDER_H_ + +#include "export.h" +#include "static_shape.h" +#include "stridemap.h" + +class UNICHARSET; + +namespace tesseract { + +class Input; +class Network; +class Parallel; +class TRand; + +class TESS_COMMON_TRAINING_API NetworkBuilder { +public: + explicit NetworkBuilder(int num_softmax_outputs) : num_softmax_outputs_(num_softmax_outputs) {} + + // Builds a network with a network_spec in the network description + // language, to recognize a character set of num_outputs size. + // If append_index is non-negative, then *network must be non-null and the + // given network_spec will be appended to *network AFTER append_index, with + // the top of the input *network discarded. + // Note that network_spec is call by value to allow a non-const char* pointer + // into the string for BuildFromString. + // net_flags control network behavior according to the NetworkFlags enum. + // The resulting network is returned via **network. + // Returns false if something failed. + static bool InitNetwork(int num_outputs, const char *network_spec, int append_index, + int net_flags, float weight_range, TRand *randomizer, Network **network); + + // Parses the given string and returns a network according to the following + // language: + // ============ Syntax of description below: ============ + // <d> represents a number. + // <net> represents any single network element, including (recursively) a + // [...] series or (...) parallel construct. + // (s|t|r|l|m) (regex notation) represents a single required letter. + // NOTE THAT THROUGHOUT, x and y are REVERSED from conventional mathematics, + // to use the same convention as Tensor Flow. The reason TF adopts this + // convention is to eliminate the need to transpose images on input, since + // adjacent memory locations in images increase x and then y, while adjacent + // memory locations in tensors in TF, and NetworkIO in tesseract increase the + // rightmost index first, then the next-left and so-on, like C arrays. + // ============ INPUTS ============ + // <b>,<h>,<w>,<d> A batch of b images with height h, width w, and depth d. + // b, h and/or w may be zero, to indicate variable size. Some network layer + // (summarizing LSTM) must be used to make a variable h known. + // d may be 1 for greyscale, 3 for color. + // NOTE that throughout the constructed network, the inputs/outputs are all of + // the same [batch,height,width,depth] dimensions, even if a different size. + // ============ PLUMBING ============ + // [...] Execute ... networks in series (layers). + // (...) Execute ... networks in parallel, with their output depths added. + // R<d><net> Execute d replicas of net in parallel, with their output depths + // added. + // Rx<net> Execute <net> with x-dimension reversal. + // Ry<net> Execute <net> with y-dimension reversal. + // S<y>,<x> Rescale 2-D input by shrink factor x,y, rearranging the data by + // increasing the depth of the input by factor xy. + // Mp<y>,<x> Maxpool the input, reducing the size by an (x,y) rectangle. + // ============ FUNCTIONAL UNITS ============ + // C(s|t|r|l|m)<y>,<x>,<d> Convolves using a (x,y) window, with no shrinkage, + // random infill, producing d outputs, then applies a non-linearity: + // s: Sigmoid, t: Tanh, r: Relu, l: Linear, m: Softmax. + // F(s|t|r|l|m)<d> Truly fully-connected with s|t|r|l|m non-linearity and d + // outputs. Connects to every x,y,depth position of the input, reducing + // height, width to 1, producing a single <d> vector as the output. + // Input height and width must be constant. + // For a sliding-window linear or non-linear map that connects just to the + // input depth, and leaves the input image size as-is, use a 1x1 convolution + // eg. Cr1,1,64 instead of Fr64. + // L(f|r|b)(x|y)[s]<n> LSTM cell with n states/outputs. + // The LSTM must have one of: + // f runs the LSTM forward only. + // r runs the LSTM reversed only. + // b runs the LSTM bidirectionally. + // It will operate on either the x- or y-dimension, treating the other + // dimension independently (as if part of the batch). + // s (optional) summarizes the output in the requested dimension, + // outputting only the final step, collapsing the dimension to a + // single element. + // LS<n> Forward-only LSTM cell in the x-direction, with built-in Softmax. + // LE<n> Forward-only LSTM cell in the x-direction, with built-in softmax, + // with binary Encoding. + // L2xy<n> Full 2-d LSTM operating in quad-directions (bidi in x and y) and + // all the output depths added. + // ============ OUTPUTS ============ + // The network description must finish with an output specification: + // O(2|1|0)(l|s|c)<n> output layer with n classes + // 2 (heatmap) Output is a 2-d vector map of the input (possibly at + // different scale). + // 1 (sequence) Output is a 1-d sequence of vector values. + // 0 (category) Output is a 0-d single vector value. + // l uses a logistic non-linearity on the output, allowing multiple + // hot elements in any output vector value. + // s uses a softmax non-linearity, with one-hot output in each value. + // c uses a softmax with CTC. Can only be used with s (sequence). + // NOTE1: Only O1s and O1c are currently supported. + // NOTE2: n is totally ignored, and for compatibility purposes only. The + // output number of classes is obtained automatically from the + // unicharset. + Network *BuildFromString(const StaticShape &input_shape, const char **str); + +private: + // Parses an input specification and returns the result, which may include a + // series. + Network *ParseInput(const char **str); + // Parses a sequential series of networks, defined by [<net><net>...]. + Network *ParseSeries(const StaticShape &input_shape, Input *input_layer, const char **str); + // Parses a parallel set of networks, defined by (<net><net>...). + Network *ParseParallel(const StaticShape &input_shape, const char **str); + // Parses a network that begins with 'R'. + Network *ParseR(const StaticShape &input_shape, const char **str); + // Parses a network that begins with 'S'. + Network *ParseS(const StaticShape &input_shape, const char **str); + // Parses a network that begins with 'C'. + Network *ParseC(const StaticShape &input_shape, const char **str); + // Parses a network that begins with 'M'. + Network *ParseM(const StaticShape &input_shape, const char **str); + // Parses an LSTM network, either individual, bi- or quad-directional. + Network *ParseLSTM(const StaticShape &input_shape, const char **str); + // Builds a set of 4 lstms with t and y reversal, running in true parallel. + static Network *BuildLSTMXYQuad(int num_inputs, int num_states); + // Parses a Fully connected network. + Network *ParseFullyConnected(const StaticShape &input_shape, const char **str); + // Parses an Output spec. + Network *ParseOutput(const StaticShape &input_shape, const char **str); + +private: + int num_softmax_outputs_; +}; + +} // namespace tesseract. + +#endif // TESSERACT_LSTM_NETWORKBUILDER_H_
