diff mupdf-source/thirdparty/tesseract/src/training/common/networkbuilder.h @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/training/common/networkbuilder.h	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,156 @@
+///////////////////////////////////////////////////////////////////////
+// File:        networkbuilder.h
+// Description: Class to parse the network description language and
+//              build a corresponding network.
+// Author:      Ray Smith
+//
+// (C) Copyright 2014, Google Inc.
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+///////////////////////////////////////////////////////////////////////
+
+#ifndef TESSERACT_LSTM_NETWORKBUILDER_H_
+#define TESSERACT_LSTM_NETWORKBUILDER_H_
+
+#include "export.h"
+#include "static_shape.h"
+#include "stridemap.h"
+
+class UNICHARSET;
+
+namespace tesseract {
+
+class Input;
+class Network;
+class Parallel;
+class TRand;
+
+class TESS_COMMON_TRAINING_API NetworkBuilder {
+public:
+  explicit NetworkBuilder(int num_softmax_outputs) : num_softmax_outputs_(num_softmax_outputs) {}
+
+  // Builds a network with a network_spec in the network description
+  // language, to recognize a character set of num_outputs size.
+  // If append_index is non-negative, then *network must be non-null and the
+  // given network_spec will be appended to *network AFTER append_index, with
+  // the top of the input *network discarded.
+  // Note that network_spec is call by value to allow a non-const char* pointer
+  // into the string for BuildFromString.
+  // net_flags control network behavior according to the NetworkFlags enum.
+  // The resulting network is returned via **network.
+  // Returns false if something failed.
+  static bool InitNetwork(int num_outputs, const char *network_spec, int append_index,
+                          int net_flags, float weight_range, TRand *randomizer, Network **network);
+
+  // Parses the given string and returns a network according to the following
+  // language:
+  //  ============ Syntax of description below: ============
+  // <d> represents a number.
+  // <net> represents any single network element, including (recursively) a
+  //   [...] series or (...) parallel construct.
+  // (s|t|r|l|m) (regex notation) represents a single required letter.
+  // NOTE THAT THROUGHOUT, x and y are REVERSED from conventional mathematics,
+  // to use the same convention as Tensor Flow. The reason TF adopts this
+  // convention is to eliminate the need to transpose images on input, since
+  // adjacent memory locations in images increase x and then y, while adjacent
+  // memory locations in tensors in TF, and NetworkIO in tesseract increase the
+  // rightmost index first, then the next-left and so-on, like C arrays.
+  // ============ INPUTS ============
+  // <b>,<h>,<w>,<d> A batch of b images with height h, width w, and depth d.
+  //   b, h and/or w may be zero, to indicate variable size. Some network layer
+  //   (summarizing LSTM) must be used to make a variable h known.
+  //   d may be 1 for greyscale, 3 for color.
+  // NOTE that throughout the constructed network, the inputs/outputs are all of
+  // the same [batch,height,width,depth] dimensions, even if a different size.
+  // ============ PLUMBING ============
+  // [...] Execute ... networks in series (layers).
+  // (...) Execute ... networks in parallel, with their output depths added.
+  // R<d><net> Execute d replicas of net in parallel, with their output depths
+  //   added.
+  // Rx<net> Execute <net> with x-dimension reversal.
+  // Ry<net> Execute <net> with y-dimension reversal.
+  // S<y>,<x> Rescale 2-D input by shrink factor x,y, rearranging the data by
+  //   increasing the depth of the input by factor xy.
+  // Mp<y>,<x> Maxpool the input, reducing the size by an (x,y) rectangle.
+  // ============ FUNCTIONAL UNITS ============
+  // C(s|t|r|l|m)<y>,<x>,<d> Convolves using a (x,y) window, with no shrinkage,
+  //   random infill, producing d outputs, then applies a non-linearity:
+  //   s: Sigmoid, t: Tanh, r: Relu, l: Linear, m: Softmax.
+  // F(s|t|r|l|m)<d> Truly fully-connected with s|t|r|l|m non-linearity and d
+  //   outputs. Connects to every x,y,depth position of the input, reducing
+  //   height, width to 1, producing a single <d> vector as the output.
+  //   Input height and width must be constant.
+  //   For a sliding-window linear or non-linear map that connects just to the
+  //   input depth, and leaves the input image size as-is, use a 1x1 convolution
+  //   eg. Cr1,1,64 instead of Fr64.
+  // L(f|r|b)(x|y)[s]<n> LSTM cell with n states/outputs.
+  //   The LSTM must have one of:
+  //    f runs the LSTM forward only.
+  //    r runs the LSTM reversed only.
+  //    b runs the LSTM bidirectionally.
+  //   It will operate on either the x- or y-dimension, treating the other
+  //     dimension independently (as if part of the batch).
+  //   s (optional) summarizes the output in the requested dimension,
+  //     outputting only the final step, collapsing the dimension to a
+  //     single element.
+  // LS<n> Forward-only LSTM cell in the x-direction, with built-in Softmax.
+  // LE<n> Forward-only LSTM cell in the x-direction, with built-in softmax,
+  //       with binary Encoding.
+  // L2xy<n> Full 2-d LSTM operating in quad-directions (bidi in x and y) and
+  //   all the output depths added.
+  // ============ OUTPUTS ============
+  // The network description must finish with an output specification:
+  // O(2|1|0)(l|s|c)<n> output layer with n classes
+  //  2 (heatmap) Output is a 2-d vector map of the input (possibly at
+  //    different scale).
+  //  1 (sequence) Output is a 1-d sequence of vector values.
+  //  0 (category) Output is a 0-d single vector value.
+  //  l uses a logistic non-linearity on the output, allowing multiple
+  //    hot elements in any output vector value.
+  //  s uses a softmax non-linearity, with one-hot output in each value.
+  //  c uses a softmax with CTC. Can only be used with s (sequence).
+  //  NOTE1: Only O1s and O1c are currently supported.
+  //  NOTE2: n is totally ignored, and for compatibility purposes only. The
+  //         output number of classes is obtained automatically from the
+  //         unicharset.
+  Network *BuildFromString(const StaticShape &input_shape, const char **str);
+
+private:
+  // Parses an input specification and returns the result, which may include a
+  // series.
+  Network *ParseInput(const char **str);
+  // Parses a sequential series of networks, defined by [<net><net>...].
+  Network *ParseSeries(const StaticShape &input_shape, Input *input_layer, const char **str);
+  // Parses a parallel set of networks, defined by (<net><net>...).
+  Network *ParseParallel(const StaticShape &input_shape, const char **str);
+  // Parses a network that begins with 'R'.
+  Network *ParseR(const StaticShape &input_shape, const char **str);
+  // Parses a network that begins with 'S'.
+  Network *ParseS(const StaticShape &input_shape, const char **str);
+  // Parses a network that begins with 'C'.
+  Network *ParseC(const StaticShape &input_shape, const char **str);
+  // Parses a network that begins with 'M'.
+  Network *ParseM(const StaticShape &input_shape, const char **str);
+  // Parses an LSTM network, either individual, bi- or quad-directional.
+  Network *ParseLSTM(const StaticShape &input_shape, const char **str);
+  // Builds a set of 4 lstms with t and y reversal, running in true parallel.
+  static Network *BuildLSTMXYQuad(int num_inputs, int num_states);
+  // Parses a Fully connected network.
+  Network *ParseFullyConnected(const StaticShape &input_shape, const char **str);
+  // Parses an Output spec.
+  Network *ParseOutput(const StaticShape &input_shape, const char **str);
+
+private:
+  int num_softmax_outputs_;
+};
+
+} // namespace tesseract.
+
+#endif // TESSERACT_LSTM_NETWORKBUILDER_H_