diff mupdf-source/thirdparty/tesseract/src/training/classifier_tester.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/training/classifier_tester.cpp	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,127 @@
+// Copyright 2011 Google Inc. All Rights Reserved.
+// Author: rays@google.com (Ray Smith)
+
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+//  Filename: classifier_tester.cpp
+//  Purpose:  Tests a character classifier on data as formatted for training,
+//            but doesn't have to be the same as the training data.
+//  Author:   Ray Smith
+
+#include <tesseract/baseapi.h>
+#include <algorithm>
+#include <cstdio>
+#include "commontraining.h"
+#include "mastertrainer.h"
+#include "params.h"
+#include "tessclassifier.h"
+#include "tesseractclass.h"
+
+using namespace tesseract;
+
+static STRING_PARAM_FLAG(classifier, "", "Classifier to test");
+static STRING_PARAM_FLAG(lang, "eng", "Language to test");
+static STRING_PARAM_FLAG(tessdata_dir, "", "Directory of traineddata files");
+
+enum ClassifierName { CN_PRUNER, CN_FULL, CN_COUNT };
+
+static const char *names[] = {"pruner", "full"};
+
+static tesseract::ShapeClassifier *InitializeClassifier(const char *classifier_name,
+                                                        const UNICHARSET &unicharset, int argc,
+                                                        char **argv, tesseract::TessBaseAPI **api) {
+  // Decode the classifier string.
+  ClassifierName classifier = CN_COUNT;
+  for (int c = 0; c < CN_COUNT; ++c) {
+    if (strcmp(classifier_name, names[c]) == 0) {
+      classifier = static_cast<ClassifierName>(c);
+      break;
+    }
+  }
+  if (classifier == CN_COUNT) {
+    fprintf(stderr, "Invalid classifier name:%s\n", FLAGS_classifier.c_str());
+    return nullptr;
+  }
+
+  // We need to initialize tesseract to test.
+  *api = new tesseract::TessBaseAPI;
+  tesseract::OcrEngineMode engine_mode = tesseract::OEM_TESSERACT_ONLY;
+  tesseract::Tesseract *tesseract = nullptr;
+  tesseract::Classify *classify = nullptr;
+  if (classifier == CN_PRUNER || classifier == CN_FULL) {
+    if ((*api)->Init(FLAGS_tessdata_dir.c_str(), FLAGS_lang.c_str(), engine_mode) < 0) {
+      fprintf(stderr, "Tesseract initialization failed!\n");
+      return nullptr;
+    }
+    tesseract = const_cast<tesseract::Tesseract *>((*api)->tesseract());
+    classify = static_cast<tesseract::Classify *>(tesseract);
+    if (classify->shape_table() == nullptr) {
+      fprintf(stderr, "Tesseract must contain a ShapeTable!\n");
+      return nullptr;
+    }
+  }
+  tesseract::ShapeClassifier *shape_classifier = nullptr;
+
+  if (classifier == CN_PRUNER) {
+    shape_classifier = new tesseract::TessClassifier(true, classify);
+  } else if (classifier == CN_FULL) {
+    shape_classifier = new tesseract::TessClassifier(false, classify);
+  }
+  tprintf("Testing classifier %s:\n", classifier_name);
+  return shape_classifier;
+}
+
+// This program has complex setup requirements, so here is some help:
+// Two different modes, tr files and serialized mastertrainer.
+// From tr files:
+//   classifier_tester -U unicharset -F font_properties -X xheights
+//     -classifier x -lang lang [-output_trainer trainer] *.tr
+// From a serialized trainer:
+//  classifier_tester -input_trainer trainer [-lang lang] -classifier x
+//
+// In the first case, the unicharset must be the unicharset from within
+// the classifier under test, and the font_properties and xheights files must
+// match the files used during training.
+// In the second case, the trainer file must have been prepared from
+// some previous run of shapeclustering, mftraining, or classifier_tester
+// using the same conditions as above, ie matching unicharset/font_properties.
+//
+// Available values of classifier (x above) are:
+// pruner   : Tesseract class pruner only.
+// full     : Tesseract full classifier.
+//            with an input trainer.)
+int main(int argc, char **argv) {
+  tesseract::CheckSharedLibraryVersion();
+  ParseArguments(&argc, &argv);
+  std::string file_prefix;
+  auto trainer = tesseract::LoadTrainingData(argv + 1, false, nullptr, file_prefix);
+  tesseract::TessBaseAPI *api;
+  // Decode the classifier string.
+  tesseract::ShapeClassifier *shape_classifier =
+      InitializeClassifier(FLAGS_classifier.c_str(), trainer->unicharset(), argc, argv, &api);
+  if (shape_classifier == nullptr) {
+    fprintf(stderr, "Classifier init failed!:%s\n", FLAGS_classifier.c_str());
+    return EXIT_FAILURE;
+  }
+
+  // We want to test junk as well if it is available.
+  // trainer->IncludeJunk();
+  // We want to test with replicated samples too.
+  trainer->ReplicateAndRandomizeSamplesIfRequired();
+
+  trainer->TestClassifierOnSamples(tesseract::CT_UNICHAR_TOP1_ERR,
+                                   std::max(3, static_cast<int>(FLAGS_debug_level)), false,
+                                   shape_classifier, nullptr);
+  delete shape_classifier;
+  delete api;
+
+  return EXIT_SUCCESS;
+} /* main */