diff mupdf-source/thirdparty/tesseract/src/textord/textlineprojection.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/textord/textlineprojection.cpp	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,773 @@
+// Copyright 2011 Google Inc. All Rights Reserved.
+// Author: rays@google.com (Ray Smith)
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifdef HAVE_CONFIG_H
+#  include "config_auto.h"
+#endif
+
+#include <allheaders.h>
+#include "bbgrid.h"  // Base class.
+#include "blobbox.h" // BlobNeighbourDir.
+#include "blobs.h"
+#include "colpartition.h"
+#include "helpers.h" // for IntCastRounded
+#include "normalis.h"
+#include "textlineprojection.h"
+
+#include <algorithm>
+
+// Padding factor to use on definitely oriented blobs
+const int kOrientedPadFactor = 8;
+// Padding factor to use on not definitely oriented blobs.
+const int kDefaultPadFactor = 2;
+// Penalty factor for going away from the line center.
+const int kWrongWayPenalty = 4;
+// Ratio between parallel gap and perpendicular gap used to measure total
+// distance of a box from a target box in curved textline space.
+// parallel-gap is treated more favorably by this factor to allow catching
+// quotes and ellipsis at the end of textlines.
+const int kParaPerpDistRatio = 4;
+// Multiple of scale_factor_ that the inter-line gap must be before we start
+// padding the increment box perpendicular to the text line.
+const int kMinLineSpacingFactor = 4;
+// Maximum tab-stop overrun for horizontal padding, in projection pixels.
+const int kMaxTabStopOverrun = 6;
+
+namespace tesseract {
+
+TextlineProjection::TextlineProjection(int resolution) : x_origin_(0), y_origin_(0), pix_(nullptr) {
+  // The projection map should be about 100 ppi, whatever the input.
+  scale_factor_ = IntCastRounded(resolution / 100.0);
+  if (scale_factor_ < 1) {
+    scale_factor_ = 1;
+  }
+}
+TextlineProjection::~TextlineProjection() {
+  pix_.destroy();
+}
+
+// Build the projection profile given the input_block containing lists of
+// blobs, a rotation to convert to image coords,
+// and a full-resolution nontext_map, marking out areas to avoid.
+// During construction, we have the following assumptions:
+// The rotation is a multiple of 90 degrees, ie no deskew yet.
+// The blobs have had their left and right rules set to also limit
+// the range of projection.
+void TextlineProjection::ConstructProjection(TO_BLOCK *input_block, const FCOORD &rotation,
+                                             Image nontext_map) {
+  pix_.destroy();
+  TBOX image_box(0, 0, pixGetWidth(nontext_map), pixGetHeight(nontext_map));
+  x_origin_ = 0;
+  y_origin_ = image_box.height();
+  int width = (image_box.width() + scale_factor_ - 1) / scale_factor_;
+  int height = (image_box.height() + scale_factor_ - 1) / scale_factor_;
+
+  pix_ = pixCreate(width, height, 8);
+  ProjectBlobs(&input_block->blobs, rotation, image_box, nontext_map);
+  ProjectBlobs(&input_block->large_blobs, rotation, image_box, nontext_map);
+  Image final_pix = pixBlockconv(pix_, 1, 1);
+  //  Pix* final_pix = pixBlockconv(pix_, 2, 2);
+  pix_.destroy();
+  pix_ = final_pix;
+}
+
+#ifndef GRAPHICS_DISABLED
+
+// Display the blobs in the window colored according to textline quality.
+void TextlineProjection::PlotGradedBlobs(BLOBNBOX_LIST *blobs, ScrollView *win) {
+  BLOBNBOX_IT it(blobs);
+  for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
+    BLOBNBOX *blob = it.data();
+    const TBOX &box = blob->bounding_box();
+    bool bad_box = BoxOutOfHTextline(box, nullptr, false);
+    if (blob->UniquelyVertical()) {
+      win->Pen(ScrollView::YELLOW);
+    } else {
+      win->Pen(bad_box ? ScrollView::RED : ScrollView::BLUE);
+    }
+    win->Rectangle(box.left(), box.bottom(), box.right(), box.top());
+  }
+  win->Update();
+}
+
+#endif // !GRAPHICS_DISABLED
+
+// Moves blobs that look like they don't sit well on a textline from the
+// input blobs list to the output small_blobs list.
+// This gets them away from initial textline finding to stop diacritics
+// from forming incorrect textlines. (Introduced mainly to fix Thai.)
+void TextlineProjection::MoveNonTextlineBlobs(BLOBNBOX_LIST *blobs,
+                                              BLOBNBOX_LIST *small_blobs) const {
+  BLOBNBOX_IT it(blobs);
+  BLOBNBOX_IT small_it(small_blobs);
+  for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
+    BLOBNBOX *blob = it.data();
+    const TBOX &box = blob->bounding_box();
+    bool debug = AlignedBlob::WithinTestRegion(2, box.left(), box.bottom());
+    if (BoxOutOfHTextline(box, nullptr, debug) && !blob->UniquelyVertical()) {
+      blob->ClearNeighbours();
+      small_it.add_to_end(it.extract());
+    }
+  }
+}
+
+#ifndef GRAPHICS_DISABLED
+
+// Create a window and display the projection in it.
+void TextlineProjection::DisplayProjection() const {
+  int width = pixGetWidth(pix_);
+  int height = pixGetHeight(pix_);
+  Image pixc = pixCreate(width, height, 32);
+  int src_wpl = pixGetWpl(pix_);
+  int col_wpl = pixGetWpl(pixc);
+  uint32_t *src_data = pixGetData(pix_);
+  uint32_t *col_data = pixGetData(pixc);
+  for (int y = 0; y < height; ++y, src_data += src_wpl, col_data += col_wpl) {
+    for (int x = 0; x < width; ++x) {
+      int pixel = GET_DATA_BYTE(src_data, x);
+      l_uint32 result;
+      if (pixel <= 17) {
+        composeRGBPixel(0, 0, pixel * 15, &result);
+      } else if (pixel <= 145) {
+        composeRGBPixel(0, (pixel - 17) * 2, 255, &result);
+      } else {
+        composeRGBPixel((pixel - 145) * 2, 255, 255, &result);
+      }
+      col_data[x] = result;
+    }
+  }
+  auto *win = new ScrollView("Projection", 0, 0, width, height, width, height);
+  win->Draw(pixc, 0, 0);
+  win->Update();
+  pixc.destroy();
+}
+
+#endif // !GRAPHICS_DISABLED
+
+// Compute the distance of the box from the partition using curved projection
+// space. As DistanceOfBoxFromBox, except that the direction is taken from
+// the ColPartition and the median bounds of the ColPartition are used as
+// the to_box.
+int TextlineProjection::DistanceOfBoxFromPartition(const TBOX &box, const ColPartition &part,
+                                                   const DENORM *denorm, bool debug) const {
+  // Compute a partition box that uses the median top/bottom of the blobs
+  // within and median left/right for vertical.
+  TBOX part_box = part.bounding_box();
+  if (part.IsHorizontalType()) {
+    part_box.set_top(part.median_top());
+    part_box.set_bottom(part.median_bottom());
+  } else {
+    part_box.set_left(part.median_left());
+    part_box.set_right(part.median_right());
+  }
+  // Now use DistanceOfBoxFromBox to make the actual calculation.
+  return DistanceOfBoxFromBox(box, part_box, part.IsHorizontalType(), denorm, debug);
+}
+
+// Compute the distance from the from_box to the to_box using curved
+// projection space. Separation that involves a decrease in projection
+// density (moving from the from_box to the to_box) is weighted more heavily
+// than constant density, and an increase is weighted less.
+// If horizontal_textline is true, then curved space is used vertically,
+// as for a diacritic on the edge of a textline.
+// The projection uses original image coords, so denorm is used to get
+// back to the image coords from box/part space.
+// How the calculation works: Think of a diacritic near a textline.
+// Distance is measured from the far side of the from_box to the near side of
+// the to_box. Shown is the horizontal textline case.
+//          |------^-----|
+//          | from | box |
+//          |------|-----|
+//   perpendicular |
+//          <------v-------->|--------------------|
+//                  parallel |     to box         |
+//                           |--------------------|
+// Perpendicular distance uses "curved space" See VerticalDistance below.
+// Parallel distance is linear.
+// Result is perpendicular_gap + parallel_gap / kParaPerpDistRatio.
+int TextlineProjection::DistanceOfBoxFromBox(const TBOX &from_box, const TBOX &to_box,
+                                             bool horizontal_textline, const DENORM *denorm,
+                                             bool debug) const {
+  // The parallel_gap is the horizontal gap between a horizontal textline and
+  // the box. Analogous for vertical.
+  int parallel_gap = 0;
+  // start_pt is the box end of the line to be modified for curved space.
+  TPOINT start_pt;
+  // end_pt is the partition end of the line to be modified for curved space.
+  TPOINT end_pt;
+  if (horizontal_textline) {
+    parallel_gap = from_box.x_gap(to_box) + from_box.width();
+    start_pt.x = (from_box.left() + from_box.right()) / 2;
+    end_pt.x = start_pt.x;
+    if (from_box.top() - to_box.top() >= to_box.bottom() - from_box.bottom()) {
+      start_pt.y = from_box.top();
+      end_pt.y = std::min(to_box.top(), start_pt.y);
+    } else {
+      start_pt.y = from_box.bottom();
+      end_pt.y = std::max(to_box.bottom(), start_pt.y);
+    }
+  } else {
+    parallel_gap = from_box.y_gap(to_box) + from_box.height();
+    if (from_box.right() - to_box.right() >= to_box.left() - from_box.left()) {
+      start_pt.x = from_box.right();
+      end_pt.x = std::min(to_box.right(), start_pt.x);
+    } else {
+      start_pt.x = from_box.left();
+      end_pt.x = std::max(to_box.left(), start_pt.x);
+    }
+    start_pt.y = (from_box.bottom() + from_box.top()) / 2;
+    end_pt.y = start_pt.y;
+  }
+  // The perpendicular gap is the max vertical distance gap out of:
+  // top of from_box to to_box top and bottom of from_box to to_box bottom.
+  // This value is then modified for curved projection space.
+  // Analogous for vertical.
+  int perpendicular_gap = 0;
+  // If start_pt == end_pt, then the from_box lies entirely within the to_box
+  // (in the perpendicular direction), so we don't need to calculate the
+  // perpendicular_gap.
+  if (start_pt.x != end_pt.x || start_pt.y != end_pt.y) {
+    if (denorm != nullptr) {
+      // Denormalize the start and end.
+      denorm->DenormTransform(nullptr, start_pt, &start_pt);
+      denorm->DenormTransform(nullptr, end_pt, &end_pt);
+    }
+    if (abs(start_pt.y - end_pt.y) >= abs(start_pt.x - end_pt.x)) {
+      perpendicular_gap = VerticalDistance(debug, start_pt.x, start_pt.y, end_pt.y);
+    } else {
+      perpendicular_gap = HorizontalDistance(debug, start_pt.x, end_pt.x, start_pt.y);
+    }
+  }
+  // The parallel_gap weighs less than the perpendicular_gap.
+  return perpendicular_gap + parallel_gap / kParaPerpDistRatio;
+}
+
+// Compute the distance between (x, y1) and (x, y2) using the rule that
+// a decrease in textline density is weighted more heavily than an increase.
+// The coordinates are in source image space, ie processed by any denorm
+// already, but not yet scaled by scale_factor_.
+// Going from the outside of a textline to the inside should measure much
+// less distance than going from the inside of a textline to the outside.
+// How it works:
+// An increase is cheap (getting closer to a textline).
+// Constant costs unity.
+// A decrease is expensive (getting further from a textline).
+// Pixels in projection map Counted distance
+//              2
+//              3              1/x
+//              3               1
+//              2               x
+//              5              1/x
+//              7              1/x
+// Total: 1 + x + 3/x where x = kWrongWayPenalty.
+int TextlineProjection::VerticalDistance(bool debug, int x, int y1, int y2) const {
+  x = ImageXToProjectionX(x);
+  y1 = ImageYToProjectionY(y1);
+  y2 = ImageYToProjectionY(y2);
+  if (y1 == y2) {
+    return 0;
+  }
+  int wpl = pixGetWpl(pix_);
+  int step = y1 < y2 ? 1 : -1;
+  uint32_t *data = pixGetData(pix_) + y1 * wpl;
+  wpl *= step;
+  int prev_pixel = GET_DATA_BYTE(data, x);
+  int distance = 0;
+  int right_way_steps = 0;
+  for (int y = y1; y != y2; y += step) {
+    data += wpl;
+    int pixel = GET_DATA_BYTE(data, x);
+    if (debug) {
+      tprintf("At (%d,%d), pix = %d, prev=%d\n", x, y + step, pixel, prev_pixel);
+    }
+    if (pixel < prev_pixel) {
+      distance += kWrongWayPenalty;
+    } else if (pixel > prev_pixel) {
+      ++right_way_steps;
+    } else {
+      ++distance;
+    }
+    prev_pixel = pixel;
+  }
+  return distance * scale_factor_ + right_way_steps * scale_factor_ / kWrongWayPenalty;
+}
+
+// Compute the distance between (x1, y) and (x2, y) using the rule that
+// a decrease in textline density is weighted more heavily than an increase.
+int TextlineProjection::HorizontalDistance(bool debug, int x1, int x2, int y) const {
+  x1 = ImageXToProjectionX(x1);
+  x2 = ImageXToProjectionX(x2);
+  y = ImageYToProjectionY(y);
+  if (x1 == x2) {
+    return 0;
+  }
+  int wpl = pixGetWpl(pix_);
+  int step = x1 < x2 ? 1 : -1;
+  uint32_t *data = pixGetData(pix_) + y * wpl;
+  int prev_pixel = GET_DATA_BYTE(data, x1);
+  int distance = 0;
+  int right_way_steps = 0;
+  for (int x = x1; x != x2; x += step) {
+    int pixel = GET_DATA_BYTE(data, x + step);
+    if (debug) {
+      tprintf("At (%d,%d), pix = %d, prev=%d\n", x + step, y, pixel, prev_pixel);
+    }
+    if (pixel < prev_pixel) {
+      distance += kWrongWayPenalty;
+    } else if (pixel > prev_pixel) {
+      ++right_way_steps;
+    } else {
+      ++distance;
+    }
+    prev_pixel = pixel;
+  }
+  return distance * scale_factor_ + right_way_steps * scale_factor_ / kWrongWayPenalty;
+}
+
+// Returns true if the blob appears to be outside of a textline.
+// Such blobs are potentially diacritics (even if large in Thai) and should
+// be kept away from initial textline finding.
+bool TextlineProjection::BoxOutOfHTextline(const TBOX &box, const DENORM *denorm,
+                                           bool debug) const {
+  int grad1 = 0;
+  int grad2 = 0;
+  EvaluateBoxInternal(box, denorm, debug, &grad1, &grad2, nullptr, nullptr);
+  int worst_result = std::min(grad1, grad2);
+  int total_result = grad1 + grad2;
+  if (total_result >= 6) {
+    return false; // Strongly in textline.
+  }
+  // Medium strength: if either gradient is negative, it is likely outside
+  // the body of the textline.
+  if (worst_result < 0) {
+    return true;
+  }
+  return false;
+}
+
+// Evaluates the textlineiness of a ColPartition. Uses EvaluateBox below,
+// but uses the median top/bottom for horizontal and median left/right for
+// vertical instead of the bounding box edges.
+// Evaluates for both horizontal and vertical and returns the best result,
+// with a positive value for horizontal and a negative value for vertical.
+int TextlineProjection::EvaluateColPartition(const ColPartition &part, const DENORM *denorm,
+                                             bool debug) const {
+  if (part.IsSingleton()) {
+    return EvaluateBox(part.bounding_box(), denorm, debug);
+  }
+  // Test vertical orientation.
+  TBOX box = part.bounding_box();
+  // Use the partition median for left/right.
+  box.set_left(part.median_left());
+  box.set_right(part.median_right());
+  int vresult = EvaluateBox(box, denorm, debug);
+
+  // Test horizontal orientation.
+  box = part.bounding_box();
+  // Use the partition median for top/bottom.
+  box.set_top(part.median_top());
+  box.set_bottom(part.median_bottom());
+  int hresult = EvaluateBox(box, denorm, debug);
+  if (debug) {
+    tprintf("Partition hresult=%d, vresult=%d from:", hresult, vresult);
+    part.bounding_box().print();
+    part.Print();
+  }
+  return hresult >= -vresult ? hresult : vresult;
+}
+
+// Computes the mean projection gradients over the horizontal and vertical
+// edges of the box:
+//   -h-h-h-h-h-h
+//  |------------| mean=htop   -v|+v--------+v|-v
+//  |+h+h+h+h+h+h|             -v|+v        +v|-v
+//  |            |             -v|+v        +v|-v
+//  |    box     |             -v|+v  box   +v|-v
+//  |            |             -v|+v        +v|-v
+//  |+h+h+h+h+h+h|             -v|+v        +v|-v
+//  |------------| mean=hbot   -v|+v--------+v|-v
+//   -h-h-h-h-h-h
+//                           mean=vleft  mean=vright
+//
+// Returns MAX(htop,hbot) - MAX(vleft,vright), which is a positive number
+// for a horizontal textline, a negative number for a vertical textline,
+// and near zero for undecided. Undecided is most likely non-text.
+// All the gradients are truncated to remain non-negative, since negative
+// horizontal gradients don't give any indication of being vertical and
+// vice versa.
+// Additional complexity: The coordinates have to be transformed to original
+// image coordinates with denorm (if not null), scaled to match the projection
+// pix, and THEN step out 2 pixels each way from the edge to compute the
+// gradient, and tries 3 positions, each measuring the gradient over a
+// 4-pixel spread: (+3/-1), (+2/-2), (+1/-3).  This complexity is handled by
+// several layers of helpers below.
+int TextlineProjection::EvaluateBox(const TBOX &box, const DENORM *denorm, bool debug) const {
+  return EvaluateBoxInternal(box, denorm, debug, nullptr, nullptr, nullptr, nullptr);
+}
+
+// Internal version of EvaluateBox returns the unclipped gradients as well
+// as the result of EvaluateBox.
+// hgrad1 and hgrad2 are the gradients for the horizontal textline.
+int TextlineProjection::EvaluateBoxInternal(const TBOX &box, const DENORM *denorm, bool debug,
+                                            int *hgrad1, int *hgrad2, int *vgrad1,
+                                            int *vgrad2) const {
+  int top_gradient = BestMeanGradientInRow(denorm, box.left(), box.right(), box.top(), true);
+  int bottom_gradient =
+      -BestMeanGradientInRow(denorm, box.left(), box.right(), box.bottom(), false);
+  int left_gradient = BestMeanGradientInColumn(denorm, box.left(), box.bottom(), box.top(), true);
+  int right_gradient =
+      -BestMeanGradientInColumn(denorm, box.right(), box.bottom(), box.top(), false);
+  int top_clipped = std::max(top_gradient, 0);
+  int bottom_clipped = std::max(bottom_gradient, 0);
+  int left_clipped = std::max(left_gradient, 0);
+  int right_clipped = std::max(right_gradient, 0);
+  if (debug) {
+    tprintf("Gradients: top = %d, bottom = %d, left= %d, right= %d for box:", top_gradient,
+            bottom_gradient, left_gradient, right_gradient);
+    box.print();
+  }
+  int result = std::max(top_clipped, bottom_clipped) - std::max(left_clipped, right_clipped);
+  if (hgrad1 != nullptr && hgrad2 != nullptr) {
+    *hgrad1 = top_gradient;
+    *hgrad2 = bottom_gradient;
+  }
+  if (vgrad1 != nullptr && vgrad2 != nullptr) {
+    *vgrad1 = left_gradient;
+    *vgrad2 = right_gradient;
+  }
+  return result;
+}
+
+// Helper returns the mean gradient value for the horizontal row at the given
+// y, (in the external coordinates) by subtracting the mean of the transformed
+// row 2 pixels above from the mean of the transformed row 2 pixels below.
+// This gives a positive value for a good top edge and negative for bottom.
+// Returns the best result out of +2/-2, +3/-1, +1/-3 pixels from the edge.
+int TextlineProjection::BestMeanGradientInRow(const DENORM *denorm, int16_t min_x, int16_t max_x,
+                                              int16_t y, bool best_is_max) const {
+  TPOINT start_pt(min_x, y);
+  TPOINT end_pt(max_x, y);
+  int upper = MeanPixelsInLineSegment(denorm, -2, start_pt, end_pt);
+  int lower = MeanPixelsInLineSegment(denorm, 2, start_pt, end_pt);
+  int best_gradient = lower - upper;
+  upper = MeanPixelsInLineSegment(denorm, -1, start_pt, end_pt);
+  lower = MeanPixelsInLineSegment(denorm, 3, start_pt, end_pt);
+  int gradient = lower - upper;
+  if ((gradient > best_gradient) == best_is_max) {
+    best_gradient = gradient;
+  }
+  upper = MeanPixelsInLineSegment(denorm, -3, start_pt, end_pt);
+  lower = MeanPixelsInLineSegment(denorm, 1, start_pt, end_pt);
+  gradient = lower - upper;
+  if ((gradient > best_gradient) == best_is_max) {
+    best_gradient = gradient;
+  }
+  return best_gradient;
+}
+
+// Helper returns the mean gradient value for the vertical column at the
+// given x, (in the external coordinates) by subtracting the mean of the
+// transformed column 2 pixels left from the mean of the transformed column
+// 2 pixels to the right.
+// This gives a positive value for a good left edge and negative for right.
+// Returns the best result out of +2/-2, +3/-1, +1/-3 pixels from the edge.
+int TextlineProjection::BestMeanGradientInColumn(const DENORM *denorm, int16_t x, int16_t min_y,
+                                                 int16_t max_y, bool best_is_max) const {
+  TPOINT start_pt(x, min_y);
+  TPOINT end_pt(x, max_y);
+  int left = MeanPixelsInLineSegment(denorm, -2, start_pt, end_pt);
+  int right = MeanPixelsInLineSegment(denorm, 2, start_pt, end_pt);
+  int best_gradient = right - left;
+  left = MeanPixelsInLineSegment(denorm, -1, start_pt, end_pt);
+  right = MeanPixelsInLineSegment(denorm, 3, start_pt, end_pt);
+  int gradient = right - left;
+  if ((gradient > best_gradient) == best_is_max) {
+    best_gradient = gradient;
+  }
+  left = MeanPixelsInLineSegment(denorm, -3, start_pt, end_pt);
+  right = MeanPixelsInLineSegment(denorm, 1, start_pt, end_pt);
+  gradient = right - left;
+  if ((gradient > best_gradient) == best_is_max) {
+    best_gradient = gradient;
+  }
+  return best_gradient;
+}
+
+// Helper returns the mean pixel value over the line between the start_pt and
+// end_pt (inclusive), but shifted perpendicular to the line in the projection
+// image by offset pixels. For simplicity, it is assumed that the vector is
+// either nearly horizontal or nearly vertical. It works on skewed textlines!
+// The end points are in external coordinates, and will be denormalized with
+// the denorm if not nullptr before further conversion to pix coordinates.
+// After all the conversions, the offset is added to the direction
+// perpendicular to the line direction. The offset is thus in projection image
+// coordinates, which allows the caller to get a guaranteed displacement
+// between pixels used to calculate gradients.
+int TextlineProjection::MeanPixelsInLineSegment(const DENORM *denorm, int offset, TPOINT start_pt,
+                                                TPOINT end_pt) const {
+  TransformToPixCoords(denorm, &start_pt);
+  TransformToPixCoords(denorm, &end_pt);
+  TruncateToImageBounds(&start_pt);
+  TruncateToImageBounds(&end_pt);
+  int wpl = pixGetWpl(pix_);
+  uint32_t *data = pixGetData(pix_);
+  int total = 0;
+  int count = 0;
+  int x_delta = end_pt.x - start_pt.x;
+  int y_delta = end_pt.y - start_pt.y;
+  if (abs(x_delta) >= abs(y_delta)) {
+    if (x_delta == 0) {
+      return 0;
+    }
+    // Horizontal line. Add the offset vertically.
+    int x_step = x_delta > 0 ? 1 : -1;
+    // Correct offset for rotation, keeping it anti-clockwise of the delta.
+    offset *= x_step;
+    start_pt.y += offset;
+    end_pt.y += offset;
+    TruncateToImageBounds(&start_pt);
+    TruncateToImageBounds(&end_pt);
+    x_delta = end_pt.x - start_pt.x;
+    y_delta = end_pt.y - start_pt.y;
+    count = x_delta * x_step + 1;
+    for (int x = start_pt.x; x != end_pt.x; x += x_step) {
+      int y = start_pt.y + DivRounded(y_delta * (x - start_pt.x), x_delta);
+      total += GET_DATA_BYTE(data + wpl * y, x);
+    }
+  } else {
+    // Vertical line. Add the offset horizontally.
+    int y_step = y_delta > 0 ? 1 : -1;
+    // Correct offset for rotation, keeping it anti-clockwise of the delta.
+    // Pix holds the image with y=0 at the top, so the offset is negated.
+    offset *= -y_step;
+    start_pt.x += offset;
+    end_pt.x += offset;
+    TruncateToImageBounds(&start_pt);
+    TruncateToImageBounds(&end_pt);
+    x_delta = end_pt.x - start_pt.x;
+    y_delta = end_pt.y - start_pt.y;
+    count = y_delta * y_step + 1;
+    for (int y = start_pt.y; y != end_pt.y; y += y_step) {
+      int x = start_pt.x + DivRounded(x_delta * (y - start_pt.y), y_delta);
+      total += GET_DATA_BYTE(data + wpl * y, x);
+    }
+  }
+  return DivRounded(total, count);
+}
+
+// Given an input pix, and a box, the sides of the box are shrunk inwards until
+// they bound any black pixels found within the original box.
+// The function converts between tesseract coords and the pix coords assuming
+// that this pix is full resolution equal in size to the original image.
+// Returns an empty box if there are no black pixels in the source box.
+static TBOX BoundsWithinBox(Image pix, const TBOX &box) {
+  int im_height = pixGetHeight(pix);
+  Box *input_box = boxCreate(box.left(), im_height - box.top(), box.width(), box.height());
+  Box *output_box = nullptr;
+  pixClipBoxToForeground(pix, input_box, nullptr, &output_box);
+  TBOX result_box;
+  if (output_box != nullptr) {
+    l_int32 x, y, width, height;
+    boxGetGeometry(output_box, &x, &y, &width, &height);
+    result_box.set_left(x);
+    result_box.set_right(x + width);
+    result_box.set_top(im_height - y);
+    result_box.set_bottom(result_box.top() - height);
+    boxDestroy(&output_box);
+  }
+  boxDestroy(&input_box);
+  return result_box;
+}
+
+// Splits the given box in half at x_middle or y_middle according to split_on_x
+// and checks for nontext_map pixels in each half. Reduces the bbox so that it
+// still includes the middle point, but does not touch any fg pixels in
+// nontext_map. An empty box may be returned if there is no such box.
+static void TruncateBoxToMissNonText(int x_middle, int y_middle, bool split_on_x, Image nontext_map,
+                                     TBOX *bbox) {
+  TBOX box1(*bbox);
+  TBOX box2(*bbox);
+  TBOX im_box;
+  if (split_on_x) {
+    box1.set_right(x_middle);
+    im_box = BoundsWithinBox(nontext_map, box1);
+    if (!im_box.null_box()) {
+      box1.set_left(im_box.right());
+    }
+    box2.set_left(x_middle);
+    im_box = BoundsWithinBox(nontext_map, box2);
+    if (!im_box.null_box()) {
+      box2.set_right(im_box.left());
+    }
+  } else {
+    box1.set_bottom(y_middle);
+    im_box = BoundsWithinBox(nontext_map, box1);
+    if (!im_box.null_box()) {
+      box1.set_top(im_box.bottom());
+    }
+    box2.set_top(y_middle);
+    im_box = BoundsWithinBox(nontext_map, box2);
+    if (!im_box.null_box()) {
+      box2.set_bottom(im_box.top());
+    }
+  }
+  box1 += box2;
+  *bbox = box1;
+}
+
+// Helper function to add 1 to a rectangle in source image coords to the
+// internal projection pix_.
+void TextlineProjection::IncrementRectangle8Bit(const TBOX &box) {
+  int scaled_left = ImageXToProjectionX(box.left());
+  int scaled_top = ImageYToProjectionY(box.top());
+  int scaled_right = ImageXToProjectionX(box.right());
+  int scaled_bottom = ImageYToProjectionY(box.bottom());
+  int wpl = pixGetWpl(pix_);
+  uint32_t *data = pixGetData(pix_) + scaled_top * wpl;
+  for (int y = scaled_top; y <= scaled_bottom; ++y) {
+    for (int x = scaled_left; x <= scaled_right; ++x) {
+      int pixel = GET_DATA_BYTE(data, x);
+      if (pixel < 255) {
+        SET_DATA_BYTE(data, x, pixel + 1);
+      }
+    }
+    data += wpl;
+  }
+}
+
+// Inserts a list of blobs into the projection.
+// Rotation is a multiple of 90 degrees to get from blob coords to
+// nontext_map coords, nontext_map_box is the bounds of the nontext_map.
+// Blobs are spread horizontally or vertically according to their internal
+// flags, but the spreading is truncated by set pixels in the nontext_map
+// and also by the horizontal rule line limits on the blobs.
+void TextlineProjection::ProjectBlobs(BLOBNBOX_LIST *blobs, const FCOORD &rotation,
+                                      const TBOX &nontext_map_box, Image nontext_map) {
+  BLOBNBOX_IT blob_it(blobs);
+  for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
+    BLOBNBOX *blob = blob_it.data();
+    TBOX bbox = blob->bounding_box();
+    ICOORD middle((bbox.left() + bbox.right()) / 2, (bbox.bottom() + bbox.top()) / 2);
+    bool spreading_horizontally = PadBlobBox(blob, &bbox);
+    // Rotate to match the nontext_map.
+    bbox.rotate(rotation);
+    middle.rotate(rotation);
+    if (rotation.x() == 0.0f) {
+      spreading_horizontally = !spreading_horizontally;
+    }
+    // Clip to the image before applying the increments.
+    bbox &= nontext_map_box; // This is in-place box intersection.
+    // Check for image pixels before spreading.
+    TruncateBoxToMissNonText(middle.x(), middle.y(), spreading_horizontally, nontext_map, &bbox);
+    if (bbox.area() > 0) {
+      IncrementRectangle8Bit(bbox);
+    }
+  }
+}
+
+// Pads the bounding box of the given blob according to whether it is on
+// a horizontal or vertical text line, taking into account tab-stops near
+// the blob. Returns true if padding was in the horizontal direction.
+bool TextlineProjection::PadBlobBox(BLOBNBOX *blob, TBOX *bbox) {
+  // Determine which direction to spread.
+  // If text is well spaced out, it can be useful to pad perpendicular to
+  // the textline direction, so as to ensure diacritics get absorbed
+  // correctly, but if the text is tightly spaced, this will destroy the
+  // blank space between textlines in the projection map, and that would
+  // be very bad.
+  int pad_limit = scale_factor_ * kMinLineSpacingFactor;
+  int xpad = 0;
+  int ypad = 0;
+  bool padding_horizontally = false;
+  if (blob->UniquelyHorizontal()) {
+    xpad = bbox->height() * kOrientedPadFactor;
+    padding_horizontally = true;
+    // If the text appears to be very well spaced, pad the other direction by a
+    // single pixel in the projection profile space to help join diacritics to
+    // the textline.
+    if ((blob->neighbour(BND_ABOVE) == nullptr ||
+         bbox->y_gap(blob->neighbour(BND_ABOVE)->bounding_box()) > pad_limit) &&
+        (blob->neighbour(BND_BELOW) == nullptr ||
+         bbox->y_gap(blob->neighbour(BND_BELOW)->bounding_box()) > pad_limit)) {
+      ypad = scale_factor_;
+    }
+  } else if (blob->UniquelyVertical()) {
+    ypad = bbox->width() * kOrientedPadFactor;
+    if ((blob->neighbour(BND_LEFT) == nullptr ||
+         bbox->x_gap(blob->neighbour(BND_LEFT)->bounding_box()) > pad_limit) &&
+        (blob->neighbour(BND_RIGHT) == nullptr ||
+         bbox->x_gap(blob->neighbour(BND_RIGHT)->bounding_box()) > pad_limit)) {
+      xpad = scale_factor_;
+    }
+  } else {
+    if ((blob->neighbour(BND_ABOVE) != nullptr &&
+         blob->neighbour(BND_ABOVE)->neighbour(BND_BELOW) == blob) ||
+        (blob->neighbour(BND_BELOW) != nullptr &&
+         blob->neighbour(BND_BELOW)->neighbour(BND_ABOVE) == blob)) {
+      ypad = bbox->width() * kDefaultPadFactor;
+    }
+    if ((blob->neighbour(BND_RIGHT) != nullptr &&
+         blob->neighbour(BND_RIGHT)->neighbour(BND_LEFT) == blob) ||
+        (blob->neighbour(BND_LEFT) != nullptr &&
+         blob->neighbour(BND_LEFT)->neighbour(BND_RIGHT) == blob)) {
+      xpad = bbox->height() * kDefaultPadFactor;
+      padding_horizontally = true;
+    }
+  }
+  bbox->pad(xpad, ypad);
+  pad_limit = scale_factor_ * kMaxTabStopOverrun;
+  // Now shrink horizontally to avoid stepping more than pad_limit over a
+  // tab-stop.
+  if (bbox->left() < blob->left_rule() - pad_limit) {
+    bbox->set_left(blob->left_rule() - pad_limit);
+  }
+  if (bbox->right() > blob->right_rule() + pad_limit) {
+    bbox->set_right(blob->right_rule() + pad_limit);
+  }
+  return padding_horizontally;
+}
+
+// Helper denormalizes the TPOINT with the denorm if not nullptr, then
+// converts to pix_ coordinates.
+void TextlineProjection::TransformToPixCoords(const DENORM *denorm, TPOINT *pt) const {
+  if (denorm != nullptr) {
+    // Denormalize the point.
+    denorm->DenormTransform(nullptr, *pt, pt);
+  }
+  pt->x = ImageXToProjectionX(pt->x);
+  pt->y = ImageYToProjectionY(pt->y);
+}
+
+#if defined(_MSC_VER) && !defined(__clang__)
+#  pragma optimize("g", off)
+#endif // _MSC_VER
+// Helper truncates the TPOINT to be within the pix_.
+void TextlineProjection::TruncateToImageBounds(TPOINT *pt) const {
+  pt->x = ClipToRange<int>(pt->x, 0, pixGetWidth(pix_) - 1);
+  pt->y = ClipToRange<int>(pt->y, 0, pixGetHeight(pix_) - 1);
+}
+#if defined(_MSC_VER) && !defined(__clang__)
+#  pragma optimize("", on)
+#endif // _MSC_VER
+
+// Transform tesseract image coordinates to coordinates used in the projection.
+int TextlineProjection::ImageXToProjectionX(int x) const {
+  x = ClipToRange((x - x_origin_) / scale_factor_, 0, pixGetWidth(pix_) - 1);
+  return x;
+}
+int TextlineProjection::ImageYToProjectionY(int y) const {
+  y = ClipToRange((y_origin_ - y) / scale_factor_, 0, pixGetHeight(pix_) - 1);
+  return y;
+}
+
+} // namespace tesseract.