Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/tesseract/src/lstm/plumbing.h @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/tesseract/src/lstm/plumbing.h Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,155 @@ +/////////////////////////////////////////////////////////////////////// +// File: plumbing.h +// Description: Base class for networks that organize other networks +// eg series or parallel. +// Author: Ray Smith +// +// (C) Copyright 2014, Google Inc. +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +/////////////////////////////////////////////////////////////////////// + +#ifndef TESSERACT_LSTM_PLUMBING_H_ +#define TESSERACT_LSTM_PLUMBING_H_ + +#include "matrix.h" +#include "network.h" + +namespace tesseract { + +// Holds a collection of other networks and forwards calls to each of them. +class TESS_API Plumbing : public Network { +public: + // ni_ and no_ will be set by AddToStack. + explicit Plumbing(const std::string &name); + ~Plumbing() override { + for (auto data : stack_) { + delete data; + } + } + + // Returns the required shape input to the network. + StaticShape InputShape() const override { + return stack_[0]->InputShape(); + } + std::string spec() const override { + return "Sub-classes of Plumbing must implement spec()!"; + } + + // Returns true if the given type is derived from Plumbing, and thus contains + // multiple sub-networks that can have their own learning rate. + bool IsPlumbingType() const override { + return true; + } + + // Suspends/Enables training by setting the training_ flag. Serialize and + // DeSerialize only operate on the run-time data if state is false. + void SetEnableTraining(TrainingState state) override; + + // Sets flags that control the action of the network. See NetworkFlags enum + // for bit values. + void SetNetworkFlags(uint32_t flags) override; + + // Sets up the network for training. Initializes weights using weights of + // scale `range` picked according to the random number generator `randomizer`. + // Note that randomizer is a borrowed pointer that should outlive the network + // and should not be deleted by any of the networks. + // Returns the number of weights initialized. + int InitWeights(float range, TRand *randomizer) override; + // Recursively searches the network for softmaxes with old_no outputs, + // and remaps their outputs according to code_map. See network.h for details. + int RemapOutputs(int old_no, const std::vector<int> &code_map) override; + + // Converts a float network to an int network. + void ConvertToInt() override; + + // Provides a pointer to a TRand for any networks that care to use it. + // Note that randomizer is a borrowed pointer that should outlive the network + // and should not be deleted by any of the networks. + void SetRandomizer(TRand *randomizer) override; + + // Adds the given network to the stack. + virtual void AddToStack(Network *network); + + // Sets needs_to_backprop_ to needs_backprop and returns true if + // needs_backprop || any weights in this network so the next layer forward + // can be told to produce backprop for this layer if needed. + bool SetupNeedsBackprop(bool needs_backprop) override; + + // Returns an integer reduction factor that the network applies to the + // time sequence. Assumes that any 2-d is already eliminated. Used for + // scaling bounding boxes of truth data. + // WARNING: if GlobalMinimax is used to vary the scale, this will return + // the last used scale factor. Call it before any forward, and it will return + // the minimum scale factor of the paths through the GlobalMinimax. + int XScaleFactor() const override; + + // Provides the (minimum) x scale factor to the network (of interest only to + // input units) so they can determine how to scale bounding boxes. + void CacheXScaleFactor(int factor) override; + + // Provides debug output on the weights. + void DebugWeights() override; + + // Returns the current stack. + const std::vector<Network *> &stack() const { + return stack_; + } + // Returns a set of strings representing the layer-ids of all layers below. + void EnumerateLayers(const std::string *prefix, std::vector<std::string> &layers) const; + // Returns a pointer to the network layer corresponding to the given id. + Network *GetLayer(const char *id) const; + // Returns the learning rate for a specific layer of the stack. + float LayerLearningRate(const char *id) { + const float *lr_ptr = LayerLearningRatePtr(id); + ASSERT_HOST(lr_ptr != nullptr); + return *lr_ptr; + } + // Scales the learning rate for a specific layer of the stack. + void ScaleLayerLearningRate(const char *id, double factor) { + float *lr_ptr = LayerLearningRatePtr(id); + ASSERT_HOST(lr_ptr != nullptr); + *lr_ptr *= factor; + } + + // Set the learning rate for a specific layer of the stack to the given value. + void SetLayerLearningRate(const char *id, float learning_rate) { + float *lr_ptr = LayerLearningRatePtr(id); + ASSERT_HOST(lr_ptr != nullptr); + *lr_ptr = learning_rate; + } + + // Returns a pointer to the learning rate for the given layer id. + float *LayerLearningRatePtr(const char *id); + + // Writes to the given file. Returns false in case of error. + bool Serialize(TFile *fp) const override; + // Reads from the given file. Returns false in case of error. + bool DeSerialize(TFile *fp) override; + + // Updates the weights using the given learning rate, momentum and adam_beta. + // num_samples is used in the adam computation iff use_adam_ is true. + void Update(float learning_rate, float momentum, float adam_beta, int num_samples) override; + // Sums the products of weight updates in *this and other, splitting into + // positive (same direction) in *same and negative (different direction) in + // *changed. + void CountAlternators(const Network &other, TFloat *same, TFloat *changed) const override; + +protected: + // The networks. + std::vector<Network *> stack_; + // Layer-specific learning rate iff network_flags_ & NF_LAYER_SPECIFIC_LR. + // One element for each element of stack_. + std::vector<float> learning_rates_; +}; + +} // namespace tesseract. + +#endif // TESSERACT_LSTM_PLUMBING_H_
