Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/tesseract/src/lstm/fullyconnected.h @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/tesseract/src/lstm/fullyconnected.h Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,132 @@ +/////////////////////////////////////////////////////////////////////// +// File: fullyconnected.h +// Description: Simple feed-forward layer with various non-linearities. +// Author: Ray Smith +// +// (C) Copyright 2014, Google Inc. +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +/////////////////////////////////////////////////////////////////////// + +#ifndef TESSERACT_LSTM_FULLYCONNECTED_H_ +#define TESSERACT_LSTM_FULLYCONNECTED_H_ + +#include "network.h" +#include "networkscratch.h" +#include "tesstypes.h" + +namespace tesseract { + +// C++ Implementation of the Softmax (output) class from lstm.py. +class FullyConnected : public Network { +public: + TESS_API + FullyConnected(const std::string &name, int ni, int no, NetworkType type); + ~FullyConnected() override = default; + + // Returns the shape output from the network given an input shape (which may + // be partially unknown ie zero). + StaticShape OutputShape(const StaticShape &input_shape) const override; + + std::string spec() const override { + std::string spec; + if (type_ == NT_TANH) { + spec += "Ft" + std::to_string(no_); + } else if (type_ == NT_LOGISTIC) { + spec += "Fs" + std::to_string(no_); + } else if (type_ == NT_RELU) { + spec += "Fr" + std::to_string(no_); + } else if (type_ == NT_LINEAR) { + spec += "Fl" + std::to_string(no_); + } else if (type_ == NT_POSCLIP) { + spec += "Fp" + std::to_string(no_); + } else if (type_ == NT_SYMCLIP) { + spec += "Fn" + std::to_string(no_); + } else if (type_ == NT_SOFTMAX) { + spec += "Fc" + std::to_string(no_); + } else { + spec += "Fm" + std::to_string(no_); + } + return spec; + } + + // Changes the type to the given type. Used to commute a softmax to a + // non-output type for adding on other networks. + void ChangeType(NetworkType type) { + type_ = type; + } + + // Suspends/Enables training by setting the training_ flag. Serialize and + // DeSerialize only operate on the run-time data if state is false. + void SetEnableTraining(TrainingState state) override; + + // Sets up the network for training. Initializes weights using weights of + // scale `range` picked according to the random number generator `randomizer`. + int InitWeights(float range, TRand *randomizer) override; + // Recursively searches the network for softmaxes with old_no outputs, + // and remaps their outputs according to code_map. See network.h for details. + int RemapOutputs(int old_no, const std::vector<int> &code_map) override; + + // Converts a float network to an int network. + void ConvertToInt() override; + + // Provides debug output on the weights. + void DebugWeights() override; + + // Writes to the given file. Returns false in case of error. + bool Serialize(TFile *fp) const override; + // Reads from the given file. Returns false in case of error. + bool DeSerialize(TFile *fp) override; + + // Runs forward propagation of activations on the input line. + // See Network for a detailed discussion of the arguments. + void Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose, + NetworkScratch *scratch, NetworkIO *output) override; + // Components of Forward so FullyConnected can be reused inside LSTM. + void SetupForward(const NetworkIO &input, const TransposedArray *input_transpose); + void ForwardTimeStep(int t, TFloat *output_line); + void ForwardTimeStep(const TFloat *d_input, int t, TFloat *output_line); + void ForwardTimeStep(const int8_t *i_input, int t, TFloat *output_line); + + // Runs backward propagation of errors on the deltas line. + // See Network for a detailed discussion of the arguments. + bool Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch, + NetworkIO *back_deltas) override; + // Components of Backward so FullyConnected can be reused inside LSTM. + void BackwardTimeStep(const NetworkIO &fwd_deltas, int t, TFloat *curr_errors, + TransposedArray *errors_t, TFloat *backprop); + void FinishBackward(const TransposedArray &errors_t); + + // Updates the weights using the given learning rate, momentum and adam_beta. + // num_samples is used in the adam computation iff use_adam_ is true. + void Update(float learning_rate, float momentum, float adam_beta, int num_samples) override; + // Sums the products of weight updates in *this and other, splitting into + // positive (same direction) in *same and negative (different direction) in + // *changed. + void CountAlternators(const Network &other, TFloat *same, TFloat *changed) const override; + +protected: + // Weight arrays of size [no, ni + 1]. + WeightMatrix weights_; + // Transposed copy of input used during training of size [ni, width]. + TransposedArray source_t_; + // Pointer to transposed input stored elsewhere. If not null, this is used + // in preference to calculating the transpose and storing it in source_t_. + const TransposedArray *external_source_; + // Activations from forward pass of size [width, no]. + NetworkIO acts_; + // Memory of the integer mode input to forward as softmax always outputs + // float, so the information is otherwise lost. + bool int_mode_; +}; + +} // namespace tesseract. + +#endif // TESSERACT_LSTM_FULLYCONNECTED_H_
